e learning

CAB - Collaboration across Borders: Peer Evaluation for Collaborative Learning




e learning

Collaborative Learning: A Connected Community Approach




e learning

Virtual Medical Campus (VMC) Graz: Innovative Curriculum meets Innovative Learning Objects Technology




e learning

The Development, Use and Evaluation of a Program Design Tool in the Learning and Teaching of Software Development




e learning

Mobile Learning, Cognitive Architecture and the Study of Literature




e learning

An Exploration of How a Technology-Facilitated Part-Complete Solution Method Supports the Learning of Computer Programming




e learning

A Didactic Experience in Collaborative Learning Supported by Digital Media




e learning

Design, Development, and Implementation of an Open Source Learning Object Repository (OSLOR)




e learning

Impact of Motivation on Intentions in Online Learning: Canada vs China




e learning

Using Digital Video Game in Service Learning Projects




e learning

Influence on Student Academic Behaviour through Motivation, Self-Efficacy and Value-Expectation: An Action Research Project to Improve Learning




e learning

A Longitudinal Study of the Use of Computer Supported Collaborative Learning in Promoting Lifelong Learning Skills




e learning

Building Computer Games as Effective Learning Tools for Digital Natives – and Similars




e learning

Distributed Collaborative Learning in Online LIS Education: A Curricular Analysis




e learning

Towards a Method for Mobile Learning Design




e learning

The Use of Computer Simulation to Compare Student performance in Traditional versus Distance Learning Environments

Simulations have been shown to be an effective tool in traditional learning environments; however, as distance learning grows in popularity, the need to examine simulation effectiveness in this environment has become paramount. A casual-comparative design was chosen for this study to determine whether students using a computer-based instructional simulation in hybrid and fully online environments learned better than traditional classroom learners. The study spans a period of 6 years beginning fall 2008 through spring 2014. The population studied was 281 undergraduate business students self-enrolled in a 200-level microcomputer application course. The overall results support previous studies in that computer simulations are most effective when used as a supplement to face-to-face lectures and in hybrid environments.




e learning

Assessing the Affordances of SimReal+ and their Applicability to Support the Learning of Mathematics in Teacher Education

Aim/Purpose: Assess the affordances and constraints of SimReal+ in teacher education Background There is a huge interest in visualizations in mathematics education, but there is little empirical support for their use in educational settings Methodology: Single case study with 22 participants from one class in teacher education. Quantitative and qualitative methods to collect students’ responses to a survey questionnaire and open-ended questions Contribution: The paper contributes to the understanding of affordances and constraints of visualization tools in mathematics education Findings: The visualization tool SimReal+ has potential for learning mathematics in teacher education, but the user interface should be improved to make it more usable for different users. Teachers need to consider technological and pedagogical affordances of SimReal+ at the student, classroom, and mathematics subject level Recommendations for Practitioners: Address technological and pedagogical affordances of SimReal+ Recommendation for Researchers: Improve the design of SimReal+ to make it technologically and pedagogically more usable Impact on Society: Understand the affordances and constraints of visualization tools in education Future Research: Implement a next cycle of experimentation with SimReal+ in teacher education to ensure more validity and reliability




e learning

Predicting Suitable Areas for Growing Cassava Using Remote Sensing and Machine Learning Techniques: A Study in Nakhon-Phanom Thailand

Aim/Purpose: Although cassava is one of the crops that can be grown during the dry season in Northeastern Thailand, most farmers in the region do not know whether the crop can grow in their specific areas because the available agriculture planning guideline provides only a generic list of dry-season crops that can be grown in the whole region. The purpose of this research is to develop a predictive model that can be used to predict suitable areas for growing cassava in Northeastern Thailand during the dry season. Background: This paper develops a decision support system that can be used by farmers to assist them determine if cassava can be successfully grown in their specific areas. Methodology: This study uses satellite imagery and data on land characteristics to develop a machine learning model for predicting suitable areas for growing cassava in Thailand’s Nakhon-Phanom province. Contribution: This research contributes to the body of knowledge by developing a novel model for predicting suitable areas for growing cassava. Findings: This study identified elevation and Ferric Acrisols (Af) soil as the two most important features for predicting the best-suited areas for growing cassava in Nakhon-Phanom province, Thailand. The two-class boosted decision tree algorithm performs best when compared with other algorithms. The model achieved an accuracy of .886, and .746 F1-score. Recommendations for Practitioners: Farmers and agricultural extension agents will use the decision support system developed in this study to identify specific areas that are suitable for growing cassava in Nakhon-Phanom province, Thailand Recommendation for Researchers: To improve the predictive accuracy of the model developed in this study, more land and crop characteristics data should be incorporated during model development. The ground truth data for areas growing cassava should also be collected for a longer period to provide a more accurate sample of the areas that are suitable for cassava growing. Impact on Society: The use of machine learning for the development of new farming systems will enable farmers to produce more food throughout the year to feed the world’s growing population. Future Research: Further studies should be carried out to map other suitable areas for growing dry-season crops and to develop decision support systems for those crops.




e learning

Understanding Online Learning Based on Different Age Categories

Aim/Purpose: To understand readiness of students for learning in online environments across different age groups. Background: Online learners today are diverse in age due to increasing adult/mature students who continue their higher education while they are working. Understanding the influence of the learners’ age on their online learning experience is limited. Methodology: A survey methodology approach was followed. A sample of one thousand nine hundred and twenty surveys were used. Correlation analysis was performed. Contribution: The study contributes by adding to the limited body of knowledge in this area and adds to the dimensions of the Online Learning Readiness Survey additional dimensions such as usefulness, tendency, anxiety, and attitudes. Findings: Older students have more confidence than younger ones in computer proficiency and learning skills. They are more motivated, show better attitudes and are less anxious. Recommendations for Practitioners: Practitioners should consider preferences that allow students to configure the learning approach to their age. These preferences should be tied to the dimensions of the online learning readiness survey (OLRS). Recommendations for Researchers: More empirical research is required using OLRS for online learning environments. OLRS factors are strong and can predict student readiness and performance. These are opportunities for artificial intelligence in the support of technology-mediated tools for learning.




e learning

Over Mountain Tops and Through the Valleys of Postgraduate Study and Research: A Transformative Learning Experience from Two Supervisees’ Perspectives

Aim/Purpose: The purpose of this paper is to illuminate the learning that happens in assuming a supervisee’s role during the postgraduate study. Background: The facilitators and barriers students encountered while pursuing postgraduate studies, strategies to achieve success in postgraduate studies, and how to decrease attrition rates of students, have been sufficiently explored in literature. However, there is little written about the personal and professional impact on students when they are being supervised to complete their postgraduate studies. Methodology: Autoethnographic method of deep reflection was used to examine the learning that transpired from the supervisee’s perspective. Two lecturers (a Senior Lecturer in Nursing and an Aboriginal Tutor) focused on their postgraduate journeys as supervisees, respectively, with over 30 years of study experience between them, in Australia and abroad. Contribution: Future postgraduate students, researchers, would-be supervisors and experienced supervisors could learn from the reflections of the authors’ postgraduate experiences. Findings: Four themes surfaced, and these were Eureka moments, Critical friend(s), Supervisory relationship, and Transformative learning. The authors highlighted the significance of a supervisory relationship which is key to negotiating the journey with the supervisor. Essential for these students also were insights on finding the path as well as the destination and the transformative aspects that happened as a necessary part of the journey. Conclusion. The postgraduate journey has taught them many lessons, the most profound of which was the change in perspective and attitude in the process of being and becoming. Personal and professional transformative learning did occur. At its deepest level, the authors’ reflections resulted in self-actualization and a rediscovery of their more authentic selves. Recommendations for Practitioners: This article highlights the importance of the supervisory relationship that must be negotiated to ensure the success of the candidate. Reflections of the transformation are recommended to support the students further. Recommendation for Researchers: Quality supervision can make a significant influence on the progress of students. Further research on the supervisory relationship is recommended. Impact on Society: The support in terms of supervision to ensure postgraduate students’ success is essential. Postgraduate students contribute to the human, social, professional, intellectual, and economic capital of universities and nations globally. Future Research: Further reflections of the transformative learning will advance the understanding of the personal and professional changes that occur with postgraduate supervision.




e learning

Distance Learning During the COVID-19 Crisis as Perceived by Preservice Teachers

Aim/Purpose: This study examined learning during the COVID-19 crisis, as perceived by preservice teachers at the time of their academic studies and their student teaching experience. Background: The COVID-19 crisis is unexpected. On one hand, it disrupted learning in all learning frameworks, on the other, it may create a change in learning characteristics even after the end of the crisis. This study examined the pro-ductive, challenging, and thwarting factors that preservice teachers encountered during their studies and in the course of their student teaching during the COVID-19 period, from the perspective of preservice teachers. Methodology: The study involved 287 students studying at teacher training institutions in Israel. The preservice teachers were studying online, and in addition experienced online teaching of students in schools, guided by their own teacher. The study used a mixed method. The questionnaire included closed and open questions. The data were collected in 2020. Contribution: Identifying the affecting factors may deepen the understanding of online learning/teaching and assist in the optimal implementation of online learning. Findings: Online learning experience. We found that some of the lessons at institutions of higher learning were delivered in the format of online lectures. Many pre-service teachers had difficulty sitting in front of a computer for many hours—“Zoom fatigue.” Preservice teachers who had difficulty self-regulating and self-mobilizing for study, experienced accumulating loads, which caused them feelings of stress and anxiety. The word count indicated that the words that appeared most often were “load” and “stress.” Some preservice teachers wrote that collaborating in forums with others made it easier for them. Some suggested diversifying by digital means, incorporating asynchronous units and illustrative films, and easing up on online lectures, as a substitute for face-to-face lectures. Online teaching experience in schools. The preservice teachers' descriptions show that in lessons taught in the format of lectures and communication of content, there were discipline problems and non-learning. According to the preservice teachers, discipline problems stemmed from difficulties concentrating, physical distance, load, and failure to address the students' difficulties. Recommendations for Practitioners: In choosing schools for student teaching, it is recommended to reach an understanding with the school about the online learning policy and organization. It is important to hold synchronous sessions in small groups of 5 to 10 students. The sessions should focus on the mental wellbeing of the students, and on the acquisition of knowledge and skills. Students should be prepared for participation in asynchronous digital lessons, which should be produced by professionals. It should be remembered that the change of medium from face-to-face to online learning also changes the familiar learning environment for all parties and requires modifying the ways of teaching. Recommendations for Researchers: A change in the learning medium also requires a change in the definition of objectives and goals expected of each party—students, teachers, and parents. All parties must learn to view online learning as a method that enables empowerment and the application of 21st century skills. Impact on Society: Teachers' ability to deploy 21st century skills in an online environment de-pends largely on their experience, knowledge, skills, and attitude toward these skills. Future Research: This study examined the issue from the perspective of preservice teachers. It is recommended to examine it also from the perspective of teachers and students.




e learning

Machine Learning-based Flu Forecasting Study Using the Official Data from the Centers for Disease Control and Prevention and Twitter Data

Aim/Purpose: In the United States, the Centers for Disease Control and Prevention (CDC) tracks the disease activity using data collected from medical practice's on a weekly basis. Collection of data by CDC from medical practices on a weekly basis leads to a lag time of approximately 2 weeks before any viable action can be planned. The 2-week delay problem was addressed in the study by creating machine learning models to predict flu outbreak. Background: The 2-week delay problem was addressed in the study by correlation of the flu trends identified from Twitter data and official flu data from the Centers for Disease Control and Prevention (CDC) in combination with creating a machine learning model using both data sources to predict flu outbreak. Methodology: A quantitative correlational study was performed using a quasi-experimental design. Flu trends from the CDC portal and tweets with mention of flu and influenza from the state of Georgia were used over a period of 22 weeks from December 29, 2019 to May 30, 2020 for this study. Contribution: This research contributed to the body of knowledge by using a simple bag-of-word method for sentiment analysis followed by the combination of CDC and Twitter data to generate a flu prediction model with higher accuracy than using CDC data only. Findings: The study found that (a) there is no correlation between official flu data from CDC and tweets with mention of flu and (b) there is an improvement in the performance of a flu forecasting model based on a machine learning algorithm using both official flu data from CDC and tweets with mention of flu. Recommendations for Practitioners: In this study, it was found that there was no correlation between the official flu data from the CDC and the count of tweets with mention of flu, which is why tweets alone should be used with caution to predict a flu out-break. Based on the findings of this study, social media data can be used as an additional variable to improve the accuracy of flu prediction models. It is also found that fourth order polynomial and support vector regression models offered the best accuracy of flu prediction models. Recommendations for Researchers: Open-source data, such as Twitter feed, can be mined for useful intelligence benefiting society. Machine learning-based prediction models can be improved by adding open-source data to the primary data set. Impact on Society: Key implication of this study for practitioners in the field were to use social media postings to identify neighborhoods and geographic locations affected by seasonal outbreak, such as influenza, which would help reduce the spread of the disease and ultimately lead to containment. Based on the findings of this study, social media data will help health authorities in detecting seasonal outbreaks earlier than just using official CDC channels of disease and illness reporting from physicians and labs thus, empowering health officials to plan their responses swiftly and allocate their resources optimally for the most affected areas. Future Research: A future researcher could use more complex deep learning algorithms, such as Artificial Neural Networks and Recurrent Neural Networks, to evaluate the accuracy of flu outbreak prediction models as compared to the regression models used in this study. A future researcher could apply other sentiment analysis techniques, such as natural language processing and deep learning techniques, to identify context-sensitive emotion, concept extraction, and sarcasm detection for the identification of self-reporting flu tweets. A future researcher could expand the scope by continuously collecting tweets on a public cloud and applying big data applications, such as Hadoop and MapReduce, to perform predictions using several months of historical data or even years for a larger geographical area.




e learning

Case-Based Experiential/Immersive Learning for Business Problem-Solving: A Plan in Progress

Aim/Purpose. Business schools need to design, develop and deliver courses that are relevant to business problem-solving. Current pedagogies do not often provide the insight – or experience – necessary to close the gap between theory and practice. Background. The paper describes an initiative to design, develop and deliver courses in business-technology problem-solving that thoroughly immerses students in the actual world of business. Methodology. The methodology included case-based analysis where actual cases where selected to model problem-solving scenarios. Contribution. Several courses are developed that immerse students into actual problem-solving experiences. Findings The courses will be delivered to business students to assess the impact of immersive/experiential learning. Recommendations for Practitioners. Additional courses should be informed by actual cases; the commitment to relevance should be expanded. Recommendations for Researchers. Ongoing research to measure the impact of immersive/experiential learning is recommended. Impact on Society. Business schools should rethink the content of their courses and the pedagogies that have dominated business schools for many decades. Future Research. Additional research will include more courses and additional immersive/experiential pedagogies.




e learning

The Effect of Static Visual Instruction on Students’ Online Learning: A Pilot Study




e learning

Using eTechnologies for Active Learning




e learning

(GbL #2) Constructive Simulation as a Collaborative Learning Tool in Education and Training of Crisis Staff




e learning

Determinants of Intent to Continue Using Online Learning: A Tale of Two Universities




e learning

The Potential for Facebook Application in Undergraduate Learning: A Study of Jordanian Students

The purpose of this paper was to explore the current and potential use of Facebook for learning purposes by Jordanian university students. The paper attempted to compare such use with other uses of Facebook. Further, the paper investigated Jordanian university students’ attitudes towards using Facebook as a formal academic tool, through the use of course-specific Facebook groups. To that end, quantitative data were collected from a sample of 451 students from three Jordanian public universities. Findings indicated that the vast majority of Jordanian students had Facebook accounts, which echoes its popularity amongst Jordanian youth compared to other types of online social networking sites. While both “social activities” and “entertainment” were the primary motivators for Jordanian students to create and use Facebook accounts, a growing number of them were using Facebook for academic purposes too. Further, Jordanian students had a positive attitude toward the use of “Facebook groups” as an educational tool for specific courses, and under specific conditions. Based on its findings, the paper provides suggestions for Jordanian higher institutions to invest in the application of Facebook as a formal academic tool.




e learning

A Cognitive Knowledge-based Framework for Social and Metacognitive Support in Mobile Learning

Aim/Purpose: This work aims to present a knowledge modeling technique that supports the representation of the student learning process and that is capable of providing a means for self-assessment and evaluating newly acquired knowledge. The objective is to propose a means to address the pedagogical challenges in m-learning by aiding students’ metacognition through a model of a student with the target domain and pedagogy. Background: This research proposes a framework for social and meta-cognitive support to tackle the challenges raised. Two algorithms are introduced: the meta-cognition algorithm for representing the student’s learning process, which is capable of providing a means for self-assessment, and the social group mapping algorithm for classifying students according to social groups. Methodology : Based on the characteristics of knowledge in an m-learning system, the cognitive knowledge base is proposed for knowledge elicitation and representation. The proposed technique allows a proper categorization of students to support collaborative learning in a social platform by utilizing the strength of m-learning in a social context. The social group mapping and metacognition algorithms are presented. Contribution: The proposed model is envisaged to serve as a guide for developers in implementing suitable m-learning applications. Furthermore, educationists and instructors can devise new pedagogical practices based on the possibilities provided by the proposed m-learning framework. Findings: The effectiveness of any knowledge management system is grounded in the technique used in representing the knowledge. The CKB proposed manipulates knowledge as a dynamic concept network, similar to human knowledge processing, thus, providing a rich semantic capability, which provides various relationships between concepts. Recommendations for Practitioners: Educationist and instructors need to develop new pedagogical practices in line with m-learning. Recommendation for Researchers: The design and implementation of an effective m-learning application are challenging due to the reliance on both pedagogical and technological elements. To tackle this challenge, frameworks which describe the conceptual interaction between the various components of pedagogy and technology need to be proposed. Impact on Society: The creation of an educational platform that provides instant access to relevant knowledge. Future Research: In the future, the proposed framework will be evaluated against some set of criteria for its effectiveness in acquiring and presenting knowledge in a real-life scenario. By analyzing real student interaction in m-learning, the algorithms will be tested to show their applicability in eliciting student metacognition and support for social interactivity.




e learning

A New Typology Design of Performance Metrics to Measure Errors in Machine Learning Regression Algorithms

Aim/Purpose: The aim of this study was to analyze various performance metrics and approaches to their classification. The main goal of the study was to develop a new typology that will help to advance knowledge of metrics and facilitate their use in machine learning regression algorithms Background: Performance metrics (error measures) are vital components of the evaluation frameworks in various fields. A performance metric can be defined as a logical and mathematical construct designed to measure how close are the actual results from what has been expected or predicted. A vast variety of performance metrics have been described in academic literature. The most commonly mentioned metrics in research studies are Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), etc. Knowledge about metrics properties needs to be systematized to simplify the design and use of the metrics. Methodology: A qualitative study was conducted to achieve the objectives of identifying related peer-reviewed research studies, literature reviews, critical thinking and inductive reasoning. Contribution: The main contribution of this paper is in ordering knowledge of performance metrics and enhancing understanding of their structure and properties by proposing a new typology, generic primary metrics mathematical formula and a visualization chart Findings: Based on the analysis of the structure of numerous performance metrics, we proposed a framework of metrics which includes four (4) categories: primary metrics, extended metrics, composite metrics, and hybrid sets of metrics. The paper identified three (3) key components (dimensions) that determine the structure and properties of primary metrics: method of determining point distance, method of normalization, method of aggregation of point distances over a data set. For each component, implementation options have been identified. The suggested new typology has been shown to cover a total of over 40 commonly used primary metrics Recommendations for Practitioners: Presented findings can be used to facilitate teaching performance metrics to university students and expedite metrics selection and implementation processes for practitioners Recommendation for Researchers: By using the proposed typology, researchers can streamline development of new metrics with predetermined properties Impact on Society: The outcomes of this study could be used for improving evaluation results in machine learning regression, forecasting and prognostics with direct or indirect positive impacts on innovation and productivity in a societal sense Future Research: Future research is needed to examine the properties of the extended metrics, composite metrics, and hybrid sets of metrics. Empirical study of the metrics is needed using R Studio or Azure Machine Learning Studio, to find associations between the properties of primary metrics and their “numerical” behavior in a wide spectrum of data characteristics and business or research requirements




e learning

Predicting Software Change-Proneness From Software Evolution Using Machine Learning Methods

Aim/Purpose: To predict the change-proneness of software from the continuous evolution using machine learning methods. To identify when software changes become statistically significant and how metrics change. Background: Software evolution is the most time-consuming activity after a software release. Understanding evolution patterns aids in understanding post-release software activities. Many methodologies have been proposed to comprehend software evolution and growth. As a result, change prediction is critical for future software maintenance. Methodology: I propose using machine learning methods to predict change-prone classes. Classes that are expected to change in future releases were defined as change-prone. The previous release was only considered by the researchers to define change-proneness. In this study, I use the evolution of software to redefine change-proneness. Many snapshots of software were studied to determine when changes became statistically significant, and snapshots were taken biweekly. The research was validated by looking at the evolution of five large open-source systems. Contribution: In this study, I use the evolution of software to redefine change-proneness. The research was validated by looking at the evolution of five large open-source systems. Findings: Software metrics can measure the significance of evolution in software. In addition, metric values change within different periods and the significance of change should be considered for each metric separately. For five classifiers, change-proneness prediction models were trained on one snapshot and tested on the next. In most snapshots, the prediction performance was excellent. For example, for Eclipse, the F-measure values were between 80 and 94. For other systems, the F-measure values were higher than 75 for most snapshots. Recommendations for Practitioners: Software change happens frequently in the evolution of software; however, the significance of change happens over a considerable length of time and this time should be considered when evaluating the quality of software. Recommendation for Researchers: Researchers should consider the significance of change when studying software evolution. Software changes should be taken from different perspectives besides the size or length of the code. Impact on Society: Software quality management is affected by the continuous evolution of projects. Knowing the appropriate time for software maintenance reduces the costs and impacts of software changes. Future Research: Studying the significance of software evolution for software refactoring helps improve the internal quality of software code.




e learning

A Model Predicting Student Engagement and Intention with Mobile Learning Management Systems

Aim/Purpose: The aim of this study is to develop and evaluate a comprehensive model that predicts students’ engagement with and intent to continue using mobile-Learning Management Systems (m-LMS). Background: m-LMS are increasingly popular tools for delivering course content in higher education. Understanding the factors that affect student engagement and continuance intention can help educational institutions to develop more effective and user-friendly m-LMS platforms. Methodology: Participants with prior experience with m-LMS were employed to develop and evaluate the proposed model that draws on the Technology Acceptance Model (TAM), Task-Technology Fit (TTF), and other related models. Partial Least Squares-Structural Equation Modeling (PLS-SEM) was used to evaluate the model. Contribution: The study provides a comprehensive model that takes into account a variety of factors affecting engagement and continuance intention and has a strong predictive capability. Findings: The results of the study provide evidence for the strong predictive capability of the proposed model and supports previous research. The model identifies perceived usefulness, perceived ease of use, interactivity, compatibility, enjoyment, and social influence as factors that significantly influence student engagement and continuance intention. Recommendations for Practitioners: The findings of this study can help educational institutions to effectively meet the needs of students for interactive, effective, and user-friendly m-LMS platforms. Recommendation for Researchers: This study highlights the importance of understanding the antecedents of students’ engagement with m-LMS. Future research should be conducted to test the proposed model in different contexts and with different populations to further validate its applicability. Impact on Society: The engagement model can help educational institutions to understand how to improve student engagement and continuance intention with m-LMS, ultimately leading to more effective and efficient mobile learning. Future Research: Additional research should be conducted to test the proposed model in different contexts and with different populations to further validate its applicability.




e learning

Customer Churn Prediction in the Banking Sector Using Machine Learning-Based Classification Models

Aim/Purpose: Previous research has generally concentrated on identifying the variables that most significantly influence customer churn or has used customer segmentation to identify a subset of potential consumers, excluding its effects on forecast accuracy. Consequently, there are two primary research goals in this work. The initial goal was to examine the impact of customer segmentation on the accuracy of customer churn prediction in the banking sector using machine learning models. The second objective is to experiment, contrast, and assess which machine learning approaches are most effective in predicting customer churn. Background: This paper reviews the theoretical basis of customer churn, and customer segmentation, and suggests using supervised machine-learning techniques for customer attrition prediction. Methodology: In this study, we use different machine learning models such as k-means clustering to segment customers, k-nearest neighbors, logistic regression, decision tree, random forest, and support vector machine to apply to the dataset to predict customer churn. Contribution: The results demonstrate that the dataset performs well with the random forest model, with an accuracy of about 97%, and that, following customer segmentation, the mean accuracy of each model performed well, with logistic regression having the lowest accuracy (87.27%) and random forest having the best (97.25%). Findings: Customer segmentation does not have much impact on the precision of predictions. It is dependent on the dataset and the models we choose. Recommendations for Practitioners: The practitioners can apply the proposed solutions to build a predictive system or apply them in other fields such as education, tourism, marketing, and human resources. Recommendation for Researchers: The research paradigm is also applicable in other areas such as artificial intelligence, machine learning, and churn prediction. Impact on Society: Customer churn will cause the value flowing from customers to enterprises to decrease. If customer churn continues to occur, the enterprise will gradually lose its competitive advantage. Future Research: Build a real-time or near real-time application to provide close information to make good decisions. Furthermore, handle the imbalanced data using new techniques.




e learning

Unveiling the Secrets of Big Data Projects: Harnessing Machine Learning Algorithms and Maturity Domains to Predict Success

Aim/Purpose: While existing literature has extensively explored factors influencing the success of big data projects and proposed big data maturity models, no study has harnessed machine learning to predict project success and identify the critical features contributing significantly to that success. The purpose of this paper is to offer fresh insights into the realm of big data projects by leveraging machine-learning algorithms. Background: Previously, we introduced the Global Big Data Maturity Model (GBDMM), which encompassed various domains inspired by the success factors of big data projects. In this paper, we transformed these maturity domains into a survey and collected feedback from 90 big data experts across the Middle East, Gulf, Africa, and Turkey regions regarding their own projects. This approach aims to gather firsthand insights from practitioners and experts in the field. Methodology: To analyze the feedback obtained from the survey, we applied several algorithms suitable for small datasets and categorical features. Our approach included cross-validation and feature selection techniques to mitigate overfitting and enhance model performance. Notably, the best-performing algorithms in our study were the Decision Tree (achieving an F1 score of 67%) and the Cat Boost classifier (also achieving an F1 score of 67%). Contribution: This research makes a significant contribution to the field of big data projects. By utilizing machine-learning techniques, we predict the success or failure of such projects and identify the key features that significantly contribute to their success. This provides companies with a valuable model for predicting their own big data project outcomes. Findings: Our analysis revealed that the domains of strategy and data have the most influential impact on the success of big data projects. Therefore, companies should prioritize these domains when undertaking such projects. Furthermore, we now have an initial model capable of predicting project success or failure, which can be invaluable for companies. Recommendations for Practitioners: Based on our findings, we recommend that practitioners concentrate on developing robust strategies and prioritize data management to enhance the outcomes of their big data projects. Additionally, practitioners can leverage machine-learning techniques to predict the success rate of these projects. Recommendation for Researchers: For further research in this field, we suggest exploring additional algorithms and techniques and refining existing models to enhance the accuracy and reliability of predicting the success of big data projects. Researchers may also investigate further into the interplay between strategy, data, and the success of such projects. Impact on Society: By improving the success rate of big data projects, our findings enable organizations to create more efficient and impactful data-driven solutions across various sectors. This, in turn, facilitates informed decision-making, effective resource allocation, improved operational efficiency, and overall performance enhancement. Future Research: In the future, gathering additional feedback from a broader range of big data experts will be valuable and help refine the prediction algorithm. Conducting longitudinal studies to analyze the long-term success and outcomes of Big Data projects would be beneficial. Furthermore, exploring the applicability of our model across different regions and industries will provide further insights into the field.




e learning

Continued Usage Intention of Mobile Learning (M-Learning) in Iraqi Universities Under an Unstable Environment: Integrating the ECM and UTAUT2 Models

Aim/Purpose: This study examines the adoption and continued use of m-learning in Iraqi universities amidst an unstable environment by extending the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) and Expectation-Confirmation Model (ECM) models. The primary goal is to address the specific challenges and opportunities in Iraq’s higher education institutions (HEIs) due to geopolitical instability and understand their impact on student acceptance, satisfaction, and continued m-learning usage. Background: The research builds on the growing importance of m-learning, especially in HEIs, and recognizes the unique challenges faced by institutions in Iraq, given the region’s instability. It identifies gaps in existing models and proposes extensions, introducing the variable “civil conflicts” to account for the volatile context. The study aims to contribute to a deeper understanding of m-learning acceptance in conflict-affected regions and provide insights for improving m-learning initiatives in Iraqi HEIs. Methodology: To achieve its objectives, this research employed a quantitative survey to collect data from 399 students in five Iraqi universities. PLS-SEM is used for the analysis of quantitative data, testing the extended UTAUT2 and ECM models. Contribution: The study’s findings are expected to contribute to the development of a nuanced understanding of m-learning adoption and continued usage in conflict-affected regions, particularly in the Iraqi HEI context. Findings: The study’s findings may inform strategies to enhance the effectiveness of m-learning initiatives in Iraqi HEIs and offer insights into how education can be supported in regions characterized by instability. Recommendations for Practitioners: Educators and policymakers can benefit from the research by making informed decisions to support education continuity and quality, particularly in conflict-affected areas. Recommendation for Researchers: Researchers can build upon this study by further exploring the adoption and usage of m-learning in unstable environments and evaluating the effectiveness of the proposed model extensions. Impact on Society: The research has the potential to positively impact society by improving access to quality education in regions affected by conflict and instability. Future Research: Future research can expand upon this study by examining the extended model’s applicability in different conflict-affected regions and assessing the long-term impact of m-learning initiatives on students’ educational outcomes.




e learning

Principles of Sustainable Learning Object Libraries




e learning

A New Learning Object Repository for Language Learning: Methods and Possible Outcomes




e learning

Guidelines and Standards for the Development of Fully Online Learning Objects




e learning

Meta-Data Application in Development, Exchange and Delivery of Digital Reusable Learning Content




e learning

Adaptive Learning by Using SCOs Metadata




e learning

Perceptions of Roles and Responsibilities in Online Learning: A Case Study




e learning

Building a Framework to Support Project-Based Collaborative Learning Experiences in an Asynchronous Learning Network




e learning

An Ontology to Automate Learning Scenarios? An Approach to its Knowledge Domain




e learning

Towards A Comprehensive Learning Object Metadata: Incorporation of Context to Stipulate Meaningful Learning and Enhance Learning Object Reusability




e learning

Experiences and Opinions of E-learners: What Works, What are the Challenges, and What Competencies Ensure Successful Online Learning




e learning

Instructors' Attitudes toward Active Learning




e learning

Learning about Online Learning Processes and Students' Motivation through Web Usage Mining




e learning

Computer Supported Collaborative Learning and Higher Order Thinking Skills: A Case Study of Textile Studies




e learning

Complexity of Social Interactions in Collaborative Learning: The Case of Online Database Environment




e learning

Comparison of Online Learning Behaviors in School vs. at Home in Terms of Age and Gender Based on Log File Analysis