antibody

Covid-19: Govt Offer Free PCR & Antibody Tests

The Government is offering free PCR and antibody testing to the general public beginning Saturday, May 9th between 2pm  – 7pm at the Southside...




antibody

Coronavirus Antibody Testing / Reopening Public Recreational Spaces / Next Generation Jazz Festival Results

We explore what antibody testing is and the potential it has against the coronavirus as UC Davis Health begins testing some of its healthcare workers. Local county leaders check in, and the results of the Next Generation Jazz Festival.




antibody

Colonial To Cover Covid-19 Antibody Testing

“Clients of Colonial Medical Insurance Company will be covered for Covid-19 antibody testing following an agreement with Helix Genetic and Scientific Solutions Ltd. of Hamilton,” the company announced. A Colonial spokesperson said, “The agreement, which will be operated as a pilot programme through June 30, will provide insurance cover for physician-ordered COVID-19 antibody testing for […]

(Click to read the full article)




antibody

Live attenuated pertussis vaccine BPZE1 induces a broad antibody response in humans

BACKGROUND The live attenuated BPZE1 vaccine candidate induces protection against B. pertussis and prevents nasal colonization in animal models. Here we report on the responses in humans receiving a single intranasal administration of BPZE1.METHODS We performed multiple assays to dissect the immune responses induced in humans (n = 12) receiving BPZE1, with particular emphasis on the magnitude and characteristics of the antibody responses. Such responses were benchmarked to adolescents (n = 12) receiving the complete vaccination program of the currently used acellular pertussis vaccine (aPV). Using immunoproteomics analysis, potentially novel immunogenic B. pertussis antigens were identified.RESULTS All BPZE1 vaccinees showed robust B. pertussis–specific antibody responses with regard to significant increase in 1 or more of the following parameters: IgG, IgA, and memory B cells to B. pertussis antigens. BPZE1–specific T cells showed a Th1 phenotype, and the IgG exclusively consisted of IgG1 and IgG3. In contrast, all aPV vaccines showed a Th2-biased response. Immunoproteomics profiling revealed that BPZE1 elicited broader and different antibody specificities to B. pertussis antigens as compared with the aPV that primarily induced antibodies to the vaccine antigens. Moreover, BPZE1 was superior at inducing opsonizing antibodies that stimulated ROS production in neutrophils and enhanced bactericidal function, which was in line with the finding that antibodies against adenylate cyclase toxin were only elicited by BPZE1.CONCLUSION The breadth of the antibodies, the Th1-type cellular response, and killing mechanisms elicited by BPZE1 may hold prospects of improving vaccine efficacy and protection against B. pertussis transmission.TRIAL REGISTRATION ClinicalTrials.gov NCT02453048, NCT00870350.FUNDING ILiAD Biotechnologies, Swedish Research Council (Vetenskapsrådet), Swedish Heart-Lung Foundation.




antibody

Antibody tests aren't always reliable or available. But businesses are racing to use them

There's been talk of creating immunity passports for workers using coronavirus antibody tests, but they're in short supply and not 100% accurate.




antibody

Letters to the Editor: Finally, the coronavirus screening we need — blood antibody testing

Screening a sample of the population to see who has been infected with COVID-19 and who hasn't is a huge step forward in returning to normal life.




antibody

Letters to the Editor: Why the Stanford blood antibody study might not be very useful

Participants in the Stanford study self-selected, among other flaws. Its results do not reveal anything meaningful about the coronavirus.




antibody

Letters to the Editor: No, flawed coronavirus antibody studies don't mean we can reopen

The study authors are reckless to say we need to "recalibrate" public health approaches because the actual COVID-19 mortality rate might be lower.




antibody

A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics

Mathias Uhlén
Dec 1, 2005; 4:1920-1932
Research




antibody

Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibody-based Proteomics

Linn Fagerberg
Feb 1, 2014; 13:397-406
Research




antibody

Decreased Immunoglobulin G Core Fucosylation, A Player in Antibody-dependent Cell-mediated Cytotoxicity, is Associated with Autoimmune Thyroid Diseases [Research]

Autoimmune thyroid diseases (AITD) are the most common group of autoimmune diseases, associated with lymphocyte infiltration and the production of thyroid autoantibodies, like thyroid peroxidase antibodies (TPOAb), in the thyroid gland. Immunoglobulins and cell-surface receptors are glycoproteins with distinctive glycosylation patterns that play a structural role in maintaining and modulating their functions. We investigated associations of total circulating IgG and peripheral blood mononuclear cells glycosylation with AITD and the influence of genetic background in a case-control study with several independent cohorts and over 3,000 individuals in total. The study revealed an inverse association of IgG core fucosylation with TPOAb and AITD, as well as decreased peripheral blood mononuclear cells antennary α1,2 fucosylation in AITD, but no shared genetic variance between AITD and glycosylation. These data suggest that the decreased level of IgG core fucosylation is a risk factor for AITD that promotes antibody-dependent cell-mediated cytotoxicity previously associated with TPOAb levels.




antibody

Structural basis of specific inhibition of extracellular activation of pro- or latent myostatin by the monoclonal antibody SRK-015 [Molecular Biophysics]

Myostatin (or growth/differentiation factor 8 (GDF8)) is a member of the transforming growth factor β superfamily of growth factors and negatively regulates skeletal muscle growth. Its dysregulation is implicated in muscle wasting diseases. SRK-015 is a clinical-stage mAb that prevents extracellular proteolytic activation of pro- and latent myostatin. Here we used integrated structural and biochemical approaches to elucidate the molecular mechanism of antibody-mediated neutralization of pro-myostatin activation. The crystal structure of pro-myostatin in complex with 29H4-16 Fab, a high-affinity variant of SRK-015, at 2.79 Å resolution revealed that the antibody binds to a conformational epitope in the arm region of the prodomain distant from the proteolytic cleavage sites. This epitope is highly sequence-divergent, having only limited similarity to other closely related members of the transforming growth factor β superfamily. Hydrogen/deuterium exchange MS experiments indicated that antibody binding induces conformational changes in pro- and latent myostatin that span the arm region, the loops contiguous to the protease cleavage sites, and the latency-associated structural elements. Moreover, negative-stain EM with full-length antibodies disclosed a stable, ring-like antigen–antibody structure in which the two Fab arms of a single antibody occupy the two arm regions of the prodomain in the pro- and latent myostatin homodimers, suggesting a 1:1 (antibody:myostatin homodimer) binding stoichiometry. These results suggest that SRK-015 binding stabilizes the latent conformation and limits the accessibility of protease cleavage sites within the prodomain. These findings shed light on approaches that specifically block the extracellular activation of growth factors by targeting their precursor forms.




antibody

Structural basis of specific inhibition of extracellular activation of pro- or latent myostatin by the monoclonal antibody SRK-015 [Molecular Biophysics]

Myostatin (or growth/differentiation factor 8 (GDF8)) is a member of the transforming growth factor β superfamily of growth factors and negatively regulates skeletal muscle growth. Its dysregulation is implicated in muscle wasting diseases. SRK-015 is a clinical-stage mAb that prevents extracellular proteolytic activation of pro- and latent myostatin. Here we used integrated structural and biochemical approaches to elucidate the molecular mechanism of antibody-mediated neutralization of pro-myostatin activation. The crystal structure of pro-myostatin in complex with 29H4-16 Fab, a high-affinity variant of SRK-015, at 2.79 Å resolution revealed that the antibody binds to a conformational epitope in the arm region of the prodomain distant from the proteolytic cleavage sites. This epitope is highly sequence-divergent, having only limited similarity to other closely related members of the transforming growth factor β superfamily. Hydrogen/deuterium exchange MS experiments indicated that antibody binding induces conformational changes in pro- and latent myostatin that span the arm region, the loops contiguous to the protease cleavage sites, and the latency-associated structural elements. Moreover, negative-stain EM with full-length antibodies disclosed a stable, ring-like antigen–antibody structure in which the two Fab arms of a single antibody occupy the two arm regions of the prodomain in the pro- and latent myostatin homodimers, suggesting a 1:1 (antibody:myostatin homodimer) binding stoichiometry. These results suggest that SRK-015 binding stabilizes the latent conformation and limits the accessibility of protease cleavage sites within the prodomain. These findings shed light on approaches that specifically block the extracellular activation of growth factors by targeting their precursor forms.




antibody

Affinity maturation, humanization, and co-crystallization of a rabbit anti-human ROR2 monoclonal antibody for therapeutic applications [Immunology]

Antibodies are widely used as cancer therapeutics, but their current use is limited by the low number of antigens restricted to cancer cells. A receptor tyrosine kinase, receptor tyrosine kinase-like orphan receptor 2 (ROR2), is normally expressed only during embryogenesis and is tightly down-regulated in postnatal healthy tissues. However, it is up-regulated in a diverse set of hematologic and solid malignancies, thus ROR2 represents a candidate antigen for antibody-based cancer therapy. Here we describe the affinity maturation and humanization of a rabbit mAb that binds human and mouse ROR2 but not human ROR1 or other human cell-surface antigens. Co-crystallization of the parental rabbit mAb in complex with the human ROR2 kringle domain (hROR2-Kr) guided affinity maturation by heavy-chain complementarity-determining region 3 (HCDR3)-focused mutagenesis and selection. The affinity-matured rabbit mAb was then humanized by complementarity-determining region (CDR) grafting and framework fine tuning and again co-crystallized with hROR2-Kr. We show that the affinity-matured and humanized mAb retains strong affinity and specificity to ROR2 and, following conversion to a T cell–engaging bispecific antibody, has potent cytotoxicity toward ROR2-expressing cells. We anticipate that this humanized affinity-matured mAb will find application for antibody-based cancer therapy of ROR2-expressing neoplasms.




antibody

Biokinetics of Radiolabeled Monoclonal Antibody BC8: Differences in Biodistribution and Dosimetry among Hematologic Malignancies.

We reviewed 111In-DOTA-anti-CD45 antibody (BC8) imaging and bone marrow biopsy measurements to ascertain biodistribution and biokinetics of the radiolabeled antibody and to investigate differences based on type of hematologic malignancy. Methods: Serial whole-body scintigraphic images (4 time-points) were obtained after infusion of the 111In-DOTA-BC8 (176-406 MBq) in 52 adult patients with hematologic malignancies (lymphoma, multiple myeloma, acute myeloid leukemia and myelodysplastic syndrome). Counts were obtained for the regions of interest for spleen, liver, kidneys, testicles (in males), and two marrow sites (acetabulum and sacrum) and correction for attenuation and background was made. Bone marrow biopsies were obtained 14-24 hours post-infusion and percent of administered activity was determined. Radiation absorbed doses were calculated. Results: Initial uptake in liver averaged 32% ± 8.4% (S.D.) of administered activity (52 patients), which cleared monoexponentially with biological half-time of 293 ± 157 hours (33 patients) or did not clear (19 patients). Initial uptake in spleen averaged 22% ± 12% and cleared with a biological half-time 271 ± 185 hours (36 patients) or longer (6 patients). Initial uptake in kidney averaged 2.4% ± 2.0% and cleared with a biological half-time of 243 ± 144 hours (27 patients) or longer (9 patients). Initial uptake in red marrow averaged 23% ± 11% and cleared with half-times of 215 ± 107 hours (43 patients) or longer (5 patients). Whole-body retention half-times averaged 198 ± 75 hours. Splenic uptake was higher in the AML/MDS group when compared to the lymphoma group (p ≤ 0.05) and to the multiple myeloma group (p ≤ 0.10). Liver represented the dose-limiting organ. For liver uptake, no significant differences were observed between the three malignancy groups. Average calculated radiation absorbed doses per unit administered activity for a therapy infusions of 90Y-DOTA-BC8 were for red marrow: 470 ± 260 cGy/MBq, liver 1100 ± 330 cGy/MBq, spleen 4120 ± 1950 cGy/MBq, total body 7520 ± 20 cGy/MBq, osteogenic cells 290 ± 200 cGy/MBq, and kidneys 240 ± 200 cGy/MBqR. Conclusion: 111In-DOTA-BC8 had long retention time in liver, spleen, kidneys, and red marrow, and the highest absorbed doses were calculated for spleen and liver. Few differences were observed by malignancy type. The exception was greater splenic uptake among leukemia/MDS group when compared to lymphoma and multiple myeloma groups.




antibody

Site-specific N-glycan Analysis of Antibody-binding Fc {gamma} Receptors from Primary Human Monocytes [Research]

FcRIIIa (CD16a) and FcRIIa (CD32a) on monocytes are essential for proper effector functions including antibody dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Indeed, therapeutic monoclonal antibodies (mAbs) that bind FcRs with greater affinity exhibit greater efficacy. Furthermore, post-translational modification impacts antibody binding affinity, most notably the composition of the asparagine(N)-linked glycan at N162 of CD16a. CD16a is widely recognized as the key receptor for the monocyte response, however the post-translational modifications of CD16a from endogenous monocytes are not described. Here we isolated monocytes from individual donors and characterized the composition of CD16a and CD32a N-glycans from all modified sites. The composition of CD16a N-glycans varied by glycosylation site and donor. CD16a displayed primarily complex-type biantennary N-glycans at N162, however some individuals expressed CD16a V158 with ~20% hybrid and oligomannose types which increased affinity for IgG1 Fc according to surface plasmon resonance binding analyses. The CD16a N45-glycans contain markedly less processing than other sites with >75% hybrid and oligomannose forms. N38 and N74 of CD16a both contain highly processed complex-type N-glycans with N-acetyllactosamine repeats and complex-type biantennary N-glycans dominate at N169. The composition of CD16a N-glycans isolated from monocytes included a higher proportion of oligomannose-type N-glycans at N45 and less sialylation plus greater branch fucosylation than we observed in a recent analysis of NK cell CD16a. The additional analysis of CD32a from monocytes revealed different features than observed for CD16a including the presence of a predominantly biantennary complex-type N-glycans with two sialic acids at both sites (N64 and N145).




antibody

Deep Characterization of the Human Antibody Response to Natural Infection Using Longitudinal Immune Repertoire Sequencing [Research]

Human antibody response studies are largely restricted to periods of high immune activity (e.g. vaccination). To comprehensively understand the healthy B cell immune repertoire and how this changes over time and through natural infection, we conducted immune repertoire RNA sequencing on flow cytometry-sorted B cell subsets to profile a single individual's antibodies over 11 months through two periods of natural viral infection. We found that 1) a baseline of healthy variable (V) gene usage in antibodies exists and is stable over time, but antibodies in memory cells consistently have a different usage profile relative to earlier B cell stages; 2) a single complementarity-determining region 3 (CDR3) is potentially generated from more than one VJ gene combination; and 3) IgG and IgA antibody transcripts are found at low levels in early human B cell development, suggesting that class switching may occur earlier than previously realized. These findings provide insight into immune repertoire stability, response to natural infections, and human B cell development.




antibody

Decreased Immunoglobulin G Core Fucosylation, A Player in Antibody-dependent Cell-mediated Cytotoxicity, is Associated with Autoimmune Thyroid Diseases [Research]

Autoimmune thyroid diseases (AITD) are the most common group of autoimmune diseases, associated with lymphocyte infiltration and the production of thyroid autoantibodies, like thyroid peroxidase antibodies (TPOAb), in the thyroid gland. Immunoglobulins and cell-surface receptors are glycoproteins with distinctive glycosylation patterns that play a structural role in maintaining and modulating their functions. We investigated associations of total circulating IgG and peripheral blood mononuclear cells glycosylation with AITD and the influence of genetic background in a case-control study with several independent cohorts and over 3,000 individuals in total. The study revealed an inverse association of IgG core fucosylation with TPOAb and AITD, as well as decreased peripheral blood mononuclear cells antennary α1,2 fucosylation in AITD, but no shared genetic variance between AITD and glycosylation. These data suggest that the decreased level of IgG core fucosylation is a risk factor for AITD that promotes antibody-dependent cell-mediated cytotoxicity previously associated with TPOAb levels.




antibody

Structural basis of specific inhibition of extracellular activation of pro- or latent myostatin by the monoclonal antibody SRK-015 [Molecular Biophysics]

Myostatin (or growth/differentiation factor 8 (GDF8)) is a member of the transforming growth factor β superfamily of growth factors and negatively regulates skeletal muscle growth. Its dysregulation is implicated in muscle wasting diseases. SRK-015 is a clinical-stage mAb that prevents extracellular proteolytic activation of pro- and latent myostatin. Here we used integrated structural and biochemical approaches to elucidate the molecular mechanism of antibody-mediated neutralization of pro-myostatin activation. The crystal structure of pro-myostatin in complex with 29H4-16 Fab, a high-affinity variant of SRK-015, at 2.79 Å resolution revealed that the antibody binds to a conformational epitope in the arm region of the prodomain distant from the proteolytic cleavage sites. This epitope is highly sequence-divergent, having only limited similarity to other closely related members of the transforming growth factor β superfamily. Hydrogen/deuterium exchange MS experiments indicated that antibody binding induces conformational changes in pro- and latent myostatin that span the arm region, the loops contiguous to the protease cleavage sites, and the latency-associated structural elements. Moreover, negative-stain EM with full-length antibodies disclosed a stable, ring-like antigen–antibody structure in which the two Fab arms of a single antibody occupy the two arm regions of the prodomain in the pro- and latent myostatin homodimers, suggesting a 1:1 (antibody:myostatin homodimer) binding stoichiometry. These results suggest that SRK-015 binding stabilizes the latent conformation and limits the accessibility of protease cleavage sites within the prodomain. These findings shed light on approaches that specifically block the extracellular activation of growth factors by targeting their precursor forms.




antibody

Affinity maturation, humanization, and co-crystallization of a rabbit anti-human ROR2 monoclonal antibody for therapeutic applications [Immunology]

Antibodies are widely used as cancer therapeutics, but their current use is limited by the low number of antigens restricted to cancer cells. A receptor tyrosine kinase, receptor tyrosine kinase-like orphan receptor 2 (ROR2), is normally expressed only during embryogenesis and is tightly down-regulated in postnatal healthy tissues. However, it is up-regulated in a diverse set of hematologic and solid malignancies, thus ROR2 represents a candidate antigen for antibody-based cancer therapy. Here we describe the affinity maturation and humanization of a rabbit mAb that binds human and mouse ROR2 but not human ROR1 or other human cell-surface antigens. Co-crystallization of the parental rabbit mAb in complex with the human ROR2 kringle domain (hROR2-Kr) guided affinity maturation by heavy-chain complementarity-determining region 3 (HCDR3)-focused mutagenesis and selection. The affinity-matured rabbit mAb was then humanized by complementarity-determining region (CDR) grafting and framework fine tuning and again co-crystallized with hROR2-Kr. We show that the affinity-matured and humanized mAb retains strong affinity and specificity to ROR2 and, following conversion to a T cell–engaging bispecific antibody, has potent cytotoxicity toward ROR2-expressing cells. We anticipate that this humanized affinity-matured mAb will find application for antibody-based cancer therapy of ROR2-expressing neoplasms.




antibody

Longitudinal Metabolome-Wide Signals Prior to the Appearance of a First Islet Autoantibody in Children Participating in the TEDDY Study

Children at increased genetic risk for type 1 diabetes (T1D) after environmental exposures may develop pancreatic islet autoantibodies (IA) at a very young age. Metabolic profile changes over time may imply responses to exposures and signal development of the first IA. Our present research in The Environmental Determinants of Diabetes in the Young (TEDDY) study aimed to identify metabolome-wide signals preceding the first IA against GAD (GADA-first) or against insulin (IAA-first). We profiled metabolomes by mass spectrometry from children’s plasma at 3-month intervals after birth until appearance of the first IA. A trajectory analysis discovered each first IA preceded by reduced amino acid proline and branched-chain amino acids (BCAAs), respectively. With independent time point analysis following birth, we discovered dehydroascorbic acid (DHAA) contributing to the risk of each first IA, and -aminobutyric acid (GABAs) associated with the first autoantibody against insulin (IAA-first). Methionine and alanine, compounds produced in BCAA metabolism and fatty acids, also preceded IA at different time points. Unsaturated triglycerides and phosphatidylethanolamines decreased in abundance before appearance of either autoantibody. Our findings suggest that IAA-first and GADA-first are heralded by different patterns of DHAA, GABA, multiple amino acids, and fatty acids, which may be important to primary prevention of T1D.




antibody

Coronavirus: Scottish biotech firm to help develop Covid-19 antibody test

OMEGA Diagnostics shares jumped 77 per cent after it announced it is part of the UK rapid test consortium working to jointly develop and manufacture an antibody test.




antibody

Pneumococcal Antibody Levels in Children With PID Receiving Immunoglobulin

Although immunoglobulin replacement is recognized as effective in children with primary immunodeficiency, pneumococcal infection may occur. There is no available prospective clinical study evaluating levels of protective serospecific antibodies in patients and products.

Protective (0.2 µg/mL) antibody levels for the most frequent pneumococcal serotypes were measured in children treated for primary immunodeficiencies. A linear relationship was demonstrated between peak and trough levels of serospecific antipneumococcal antibodies in patients and infused immunoglobulins. (Read the full article)




antibody

Infectious and Autoantibody-Associated Encephalitis: Clinical Features and Long-term Outcome

Encephalitis is a serious and disabling condition. There are infectious and immune-mediated causes of encephalitis, but many cases remain undiagnosed.

This large single-center study on childhood encephalitis provides insight into the relative frequency and clinicoradiologic phenotypes of infectious, autoantibody-associated, and unknown encephalitis. Risk factors for an abnormal outcome are also defined. (Read the full article)




antibody

What about errors in antibody testing? | Ask CIDD




antibody

Palivizumab, a Humanized Respiratory Syncytial Virus Monoclonal Antibody, Reduces Hospitalization From Respiratory Syncytial Virus Infection in High-risk Infants

The IMpact-RSV Study Group
Sep 1, 1998; 102:531-537
ARTICLES





antibody

What the first coronavirus antibody testing surveys can tell us

We need to be very cautious about preliminary studies estimating how many people have already been infected by the coronavirus




antibody

Antibody Shot Protects Monkeys From HIV-Like Infection

Title: Antibody Shot Protects Monkeys From HIV-Like Infection
Category: Health News
Created: 4/27/2016 12:00:00 AM
Last Editorial Review: 4/28/2016 12:00:00 AM




antibody

Coronavirus Antibody Tests Show Inaccuracies, as Some States Prepare to Reopen

Title: Coronavirus Antibody Tests Show Inaccuracies, as Some States Prepare to Reopen
Category: Health News
Created: 4/25/2020 12:00:00 AM
Last Editorial Review: 4/27/2020 12:00:00 AM




antibody

Company Selling Direct-to-Consumer Coronavirus Antibody Test

Title: Company Selling Direct-to-Consumer Coronavirus Antibody Test
Category: Health News
Created: 4/30/2020 12:00:00 AM
Last Editorial Review: 5/1/2020 12:00:00 AM




antibody

Phase I Dose-Escalation and -Expansion Study of Telisotuzumab (ABT-700), an Anti-c-Met Antibody, in Patients with Advanced Solid Tumors

This first-in-human phase I study evaluated the pharmacokinetics, safety, and preliminary efficacy of telisotuzumab, formerly called ABT-700, an antagonistic antibody directed against c-Met. For dose escalation (3+3 design), 3 to 6 patients with advanced solid tumors were enrolled into four dose cohorts (5–25 mg/kg). In the dose-expansion phase, a subset of patients was prospectively selected for MET amplification (FISH screening). Patients received telisotuzumab intravenously on day 1 every 21 days. For dose expansion, 15 mg/kg was chosen as the dose on the basis of safety, pharmacokinetics, and other data from the escalation cohorts. Forty-five patients were enrolled and received at least one dose of telisotuzumab (dose escalation, n = 15; dose expansion, n = 30). Telisotuzumab showed a linear pharmacokinetics profile; peak plasma concentration was proportional to dose level. There were no acute infusion reactions and no dose-limiting toxicities were observed. The most common treatment-related adverse events included hypoalbuminemia (n = 9, 20.0%) and fatigue (n = 5, 11.1%). By Response Evaluation Criteria In Solid Tumors (RECIST), 4 of 10 (40.0%) patients with MET-amplified tumors had confirmed partial response in target lesions (one ovarian, two gastric, and one esophageal), two (20.0%) had stable disease, three (30.0%) had progressive disease; one patient was unable to be evaluated. Among patients with nonamplified tumors (n = 35), no objective responses were observed; however, 11 patients had stable disease per RECIST criteria. In conclusion, telisotuzumab has an acceptable safety profile with clinical activity observed in patients with MET-amplified advanced solid tumors.




antibody

Inhibition of Importin {beta}1 Augments the Anticancer Effect of Agonistic Anti-Death Receptor 5 Antibody in TRAIL-resistant Tumor Cells

TNF-related apoptosis-inducing ligand (TRAIL) and an agonistic antibody against the death-inducing TRAIL receptor 5, DR5, are thought to selectively induce tumor cell death and therefore, have gained attention as potential therapeutics currently under investigation in several clinical trials. However, some tumor cells are resistant to TRAIL/DR5–induced cell death, even though they express DR5. Previously, we reported that DR5 is transported into the nucleus by importin β1, and knockdown of importin β1 upregulates cell surface expression of DR5 resulting in increased TRAIL sensitivity in vitro. Here, we examined the impact of importin β1 knockdown on agonistic anti-human DR5 (hDR5) antibody therapy. Drug-inducible importin β1 knockdown sensitizes HeLa cells to TRAIL-induced cell death in vitro, and exerts an antitumor effect when combined with agonistic anti-hDR5 antibody administration in vivo. Therapeutic importin β1 knockdown, administered via the atelocollagen delivery system, as well as treatment with the importin β inhibitor, importazole, induced regression and/or eradication of two human TRAIL-resistant tumor cells when combined with agonistic anti-hDR5 antibody treatment. Thus, these findings suggest that the inhibition of importin β1 would be useful to improve the therapeutic effects of agonistic anti-hDR5 antibody against TRAIL-resistant cancers.




antibody

Erratum for Dai et al., "Autoantibody-Mediated Erythrophagocytosis Increases Tuberculosis Susceptibility in HIV Patients"




antibody

Development of a therapeutic anti-HtrA1 antibody and the identification of DKK3 as a pharmacodynamic biomarker in geographic atrophy [Medical Sciences]

Genetic polymorphisms in the region of the trimeric serine hydrolase high-temperature requirement 1 (HTRA1) are associated with increased risk of age-related macular degeneration (AMD) and disease progression, but the precise biological function of HtrA1 in the eye and its contribution to disease etiologies remain undefined. In this study, we have...




antibody

Structural basis for Zika envelope domain III recognition by a germline version of a recurrent neutralizing antibody [Biochemistry]

Recent epidemics demonstrate the global threat of Zika virus (ZIKV), a flavivirus transmitted by mosquitoes. Although infection is usually asymptomatic or mild, newborns of infected mothers can display severe symptoms, including neurodevelopmental abnormalities and microcephaly. Given the large-scale spread, symptom severity, and lack of treatment or prophylaxis, a safe and...




antibody

High-throughput antibody screening from complex matrices using intact protein electrospray mass spectrometry [Biochemistry]

Toward the goal of increasing the throughput of high-resolution mass characterization of intact antibodies, we developed a RapidFire–mass spectrometry (MS) assay using electrospray ionization. We achieved unprecedented screening throughput as fast as 15 s/sample, which is an order of magnitude improvement over conventional liquid chromatography (LC)-MS approaches. The screening enabled...




antibody

Human recreation decreases antibody titre in bird nestlings: an overlooked transgenerational effect of disturbance [RESEARCH ARTICLE]

Yves Bötsch, Zulima Tablado, Bettina Almasi, and Lukas Jenni

Outdoor recreational activities are booming and most animals perceive humans as predators, which triggers behavioural and/or physiological reactions [e.g. heart rate increase, activation of the hypothalamic–pituitary–adrenal (HPA) axis]. Physiological stress reactions have been shown to affect the immune system of an animal and therefore may also affect the amount of maternal antibodies a female transmits to her offspring. A few studies have revealed that the presence of predators affects the amount of maternal antibodies deposited into eggs of birds. In this study, using Eurasian blue and great tit offspring (Cyanistes caeruleus and Parus major) as model species, we experimentally tested whether human recreation induces changes in the amount of circulating antibodies in young nestlings and whether this effect is modulated by habitat and competition. Moreover, we investigated whether these variations in antibody titre in turn have an impact on hatching success and offspring growth. Nestlings of great tit females that had been disturbed by experimental human recreation during egg laying had lower antibody titres compared with control nestlings. Antibody titre of nestling blue tits showed a negative correlation with the presence of great tits, rather than with human disturbance. The hatching success was positively correlated with the average amount of antibodies in great tit nestlings, independent of the treatment. Antibody titre in the first days of life in both species was positively correlated with body mass, but this relationship disappeared at fledging and was independent of treatment. We suggest that human recreation may have caused a stress-driven activation of the HPA axis in breeding females, chronically increasing their circulating corticosterone, which is known to have an immunosuppressive function. Either, lower amounts of antibodies are transmitted to nestlings or impaired transfer mechanisms lead to lower amounts of immunoglobulins in the eggs. Human disturbance could, therefore, have negative effects on nestling survival at early life-stages, when nestlings are heavily reliant on maternal antibodies, and in turn lead to lower breeding success and parental fitness. This is a so far overlooked effect of disturbance on early life in birds.




antibody

Evaluation of Quantitative Relationship Between Target Expression and Antibody-Drug Conjugate Exposure Inside Cancer Cells [Articles]

Antibody-drug conjugates (ADCs) employ overexpressed cell surface antigens to deliver cytotoxic payloads inside cancer cells. However, the relationship between target expression and ADC efficacy remains ambiguous. In this manuscript, we have addressed a part of this ambiguity by quantitatively investigating the effect of antigen expression levels on ADC exposure within cancer cells. Trastuzumab-valine-citrulline-monomethyl auristatin E was used as a model ADC, and four different cell lines with diverse levels of human epidermal growth factor receptor 2 (HER2) expression were used as model cells. The pharmacokinetics (PK) of total trastuzumab, released monomethyl auristatin E (MMAE), and total MMAE were measured inside the cells and in the cell culture media following incubation with two different concentrations of ADC. In addition, target expression levels, target internalization rate, and cathepsin B and MDR1 protein concentrations were determined for each cell line. All the PK data were mathematically characterized using a cell-level systems PK model for ADC. It was found that SKBR-3, MDA-MB-453, MCF-7, and MDA-MB-468 cells had ~800,000, ~250,000, ~50,000, and ~10,000 HER2 receptors per cell, respectively. A strong linear relationship (R2 > 0.9) was observed between HER2 receptor count and released MMAE exposure inside the cancer cells. There was an inverse relationship found between HER2 expression level and internalization rate, and cathepsin B and multidrug resistance protein 1 (MDR1) expression level varied slightly among the cell lines. The PK model was able to simultaneously capture all the PK profiles reasonably well while estimating only two parameters. Our results demonstrate a strong quantitative relationship between antigen expression level and intracellular exposure of ADCs in cancer cells.

SIGNIFICANCE STATEMENT

In this manuscript, we have demonstrated a strong linear relationship between target expression level and antibody-drug conjugate (ADC) exposure inside cancer cells. We have also shown that this relationship can be accurately captured using the cell-level systems pharmacokinetics model developed for ADCs. Our results indirectly suggest that the lack of relationship between target expression and efficacy of ADC may stem from differences in the pharmacodynamic properties of cancer cells.




antibody

Kinetics, Longevity, and Cross-Reactivity of Antineuraminidase Antibody after Natural Infection with Influenza A Viruses [Clinical Immunology]

The kinetics, longevity, and breadth of antibodies to influenza virus neuraminidase (NA) in archival, sequential serum/plasma samples from influenza A virus (IAV) H5N1 infection survivors and from patients infected with the 2009 pandemic IAV (H1N1) virus were determined using an enzyme-linked lectin-based assay. The reverse-genetics-derived H4N1 viruses harboring a hemagglutinin (HA) segment from A/duck/Shan Tou/461/2000 (H4N9) and an NA segment derived from either IAV H5N1 clade 1, IAV H5N1 clade 2.3.4, the 2009 pandemic IAV (H1N1) (H1N1pdm), or A/Puerto Rico/8/1934 (H1N1) virus were used as the test antigens. These serum/plasma samples were also investigated by microneutralization (MN) and/or hemagglutination inhibition (HI) assays. Neuraminidase-inhibiting (NI) antibodies against N1 NA of both homologous and heterologous viruses were observed in H5N1 survivors and H1N1pdm patients. H5N1 survivors who were never exposed to H1N1pdm virus developed NI antibodies to H1N1pdm NA. Seroconversion of NI antibodies was observed in 65% of the H1N1pdm patients at day 7 after disease onset, but an increase in titer was not observed in serum samples obtained late in infection. On the other hand, an increase in seroconversion rate with the HI assay was observed in the follow-up series of sera obtained on days 7, 14, 28, and 90 after infection. The study also showed that NI antibodies are broadly reactive, while MN and HI antibodies are more strain specific.




antibody

Monoclonal antibody treatment during pregnancy and/or lactation in women with MS or neuromyelitis optica spectrum disorder

Objective

To assess possible adverse effects on breastfed infants of mothers receiving monoclonal antibodies (MAbs) during pregnancy and/or lactation.

Methods

We identified 23 patients from the German Multiple Sclerosis and Pregnancy Registry (DMSKW) who received MAbs (17 natalizumab and 6 anti-CD20) during lactation. Thirteen were already exposed to natalizumab during the third trimester of pregnancy, and 1 received ocrelizumab during pregnancy. Data were obtained from standardized, telephone-administered questionnaires completed by the mother during pregnancy and at 1, 3, 6, and 12 months postpartum. Natalizumab concentration in mother’s milk was analyzed in 3 patients and natalizumab serum concentration in 2 of these patients and their breastfed infants.

Results

We did not observe a negative impact on infant health and development attributable to breast milk exposure after a median follow-up of 1 year. Infants exposed to natalizumab during the third trimester had a lower birth weight and more hospitalizations in the first year of life. The concentration of natalizumab in breast milk and serum of infants was low; B cells normal in infants breastfed under anti-CD20.

Conclusion

More data on the effect of Mab exposure during pregnancy are needed. Otherwise, our data suggest that treatment with natalizumab, ocrelizumab, or rituximab during lactation might be safe for breastfed infants.




antibody

The Bruton tyrosine kinase inhibitor ibrutinib improves anti-MAG antibody polyneuropathy

Objective

To assess whether neuropathy with anti-myelin-associated glycoprotein (MAG) antibody may improve after treatment with ibrutinib, an oral inhibitor of Bruton tyrosine kinase, we prospectively treated with ibrutinib a cohort of 3 patients with anti-MAG neuropathy and Waldenström macroglobulinemia (WM).

Methods

All 3 patients underwent bone marrow biopsy showing WM, with MYD88L265P mutated and CXCR4S338X wild type, and were started on ibrutinib 420 mg/die. Patients were assessed at baseline, at 3-6-9 months, and at 12 months in 2 patients with a longer follow-up, using Inflammatory Neuropathy Cause and Treatment (INCAT) Disability Score, INCAT sensory sum score, and Medical Research Council sum score. The modified International Cooperative Ataxia Rating Scale was performed in 2 patients, whereas it was not used in the patient with Parkinson disease as a major comorbidity. Responders were considered the patients improving by at least one point in 2 clinical scales.

Results

All the patients reported an early and subjective benefit, consistent with the objective improvement, especially of the sensory symptoms as shown by clinical scales. Treatment was well tolerated.

Conclusion

These preliminary data point to a possible efficacy of ibrutinib in anti-MAG antibody neuropathy, which is the most common disabling paraproteinemic neuropathy, where active treatment is eagerly needed.

Classification of evidence

This study provides Class IV evidence that for patients with anti-MAG antibody neuropathy, ibrutinib improves neuropathy symptoms.




antibody

Development of a Novel and Rapid Antibody-Based Diagnostic for Chronic Staphylococcus aureus Infections Based on Biofilm Antigens [Immunoassays]

Prosthetic joint infections are difficult to diagnose and treat due to biofilm formation by the causative pathogens. Pathogen identification relies on microbial culture that requires days to weeks, and in the case of chronic biofilm infections, lacks sensitivity. Diagnosis of infection is often delayed past the point of effective treatment such that only the removal of the implant is curative. Early diagnosis of an infection based on antibody detection might lead to less invasive, early interventions. Our study examined antibody-based assays against the Staphylococcus aureus biofilm-upregulated antigens SAOCOL0486 (a lipoprotein), glucosaminidase (a domain of SACOL1062), and SACOL0688 (the manganese transporter MntC) for detection of chronic S. aureus infection. We evaluated these antigens by enzyme-linked immunosorbent assay (ELISA) using sera from naive rabbits and rabbits with S. aureus-mediated osteomyelitis, and then we validated a proof of concept for the lateral flow assay (LFA). The SACOL0688 LFA demonstrated 100% specificity and 100% sensitivity. We demonstrated the clinical diagnostic utility of the SACOL0688 antigen using synovial fluid (SF) from humans with orthopedic implant infections. Elevated antibody levels to SACOL0688 in clinical SF specimens correlated with 91% sensitivity and 100% specificity for the diagnosis of S. aureus infection by ELISA. We found measuring antibodies levels to SACOL0688 in SF using ELISA or LFA provides a tool for the sensitive and specific diagnosis of S. aureus prosthetic joint infection. Development of the LFA diagnostic modality is a desirable, cost-effective option, potentially providing rapid readout in minutes for chronic biofilm infections.




antibody

Validation of an Epstein-Barr Virus Antibody Risk Stratification Signature for Nasopharyngeal Carcinoma by Use of Multiplex Serology [Virology]

Serological testing for nasopharyngeal carcinoma (NPC) has recently been reinvigorated by the implementation of novel Epstein-Barr virus (EBV)-specific IgA and IgG antibodies from a proteome array. Although proteome arrays are well suited for comprehensive antigen selection, they are not applicable for large-scale studies. We adapted a 13-marker EBV antigen signature for NPC risk identified by proteome arrays to multiplex serology to establish an assay for large-scale studies. Taiwanese NPC cases (n = 175) and matched controls (n = 175) were used for assay validation. Spearman’s correlation was calculated, and the diagnostic value of all multiplex markers was assessed independently using the area under the receiver operating characteristic curve (AUC). Two refined signatures were identified using stepwise logistic regression and internally validated with 10-fold cross validation. Array and multiplex serology showed strong correlation for each individual EBV marker, as well as for a 13-marker combined model on continuous data. Two refined signatures with either four (LF2 and BGLF2 IgG, LF2 and BMRF1 IgA) or two (LF2 and BGLF2 IgG) antibodies on dichotomous data were identified as the most parsimonious set of serological markers able to distinguish NPC cases from controls with AUCs of 0.992 (95% confidence interval [CI], 0.983 to 1.000) and 0.984 (95% CI, 0.971 to 0.997), respectively. Neither differed significantly from the 13-marker model (AUC, 0.992; 95% CI, 0.982 to 1.000). All models were internally validated. Multiplex serology successfully validated the original EBV proteome microarray data. Two refined signatures of four and two antibodies were capable of detecting NPC with 99.2% and 98.4% accuracy.




antibody

A PSMA-Targeting CD3 Bispecific Antibody Induces Antitumor Responses that Are Enhanced by 4-1BB Costimulation

Patients with hematologic cancers have improved outcomes after treatment with bispecific antibodies that bind to CD3 on T cells and that redirect T cells toward cancer cells. However, clinical benefit against solid tumors remains to be shown. We made a bispecific antibody that targets both the common prostate tumor–specific antigen PSMA and CD3 (PMSAxCD3) and provide evidence for tumor inhibition in several preclinical solid tumor models. Mice expressing the human extracellular regions of CD3 and PSMA were generated to examine antitumor efficacy in the presence of an intact immune system and PSMA expression in normal tissues. PSMAxCD3 accumulated in PSMA-expressing tissues and tumors as detected by immuno-PET imaging. Although PSMAxCD3 induced T-cell activation and showed antitumor efficacy in mice with low tumor burden, PSMAxCD3 lost efficacy against larger solid tumors, mirroring the difficulty of treating solid tumors in the clinic. Costimulatory receptors can enhance T-cell responses. We show here that costimulation can enhance the antitumor efficacy of PSMAxCD3. In particular, 4-1BB stimulation in combination with PSMAxCD3 enhanced T-cell activation and proliferation, boosted efficacy against larger tumors, and induced T-cell memory, leading to durable antitumor responses. The combination of CD3 bispecific antibodies and anti-4-1BB costimulation represents a therapeutic approach for the treatment of solid tumors.




antibody

Therapeutic Antibody Against Phosphorylcholine Preserves Coronary Function and Attenuates Vascular 18F-FDG Uptake in Atherosclerotic Mice

This study showed that treatment with a therapeutic monoclonal immunoglobulin-G1 antibody against phosphorylcholine on oxidized phospholipids preserves coronary flow reserve and attenuates atherosclerotic inflammation as determined by the uptake of 18F-fluorodeoxyglucose in atherosclerotic mice. The noninvasive imaging techniques represent translational tools to assess the efficacy of phosphorylcholine-targeted therapy on coronary artery function and atherosclerosis in clinical studies.




antibody

Preclinical Activity of JNJ-7957, a Novel BCMAxCD3 Bispecific Antibody for the Treatment of Multiple Myeloma, Is Potentiated by Daratumumab

Purpose:

Multiple myeloma (MM) patients with disease refractory to all available drugs have a poor outcome, indicating the need for new agents with novel mechanisms of action.

Experimental Design:

We evaluated the anti-MM activity of the fully human BCMAxCD3 bispecific antibody JNJ-7957 in cell lines and bone marrow (BM) samples. The impact of several tumor- and host-related factors on sensitivity to JNJ-7957 therapy was also evaluated.

Results:

We show that JNJ-7957 has potent activity against 4 MM cell lines, against tumor cells in 48 of 49 BM samples obtained from MM patients, and in 5 of 6 BM samples obtained from primary plasma cell leukemia patients. JNJ-7957 activity was significantly enhanced in patients with prior daratumumab treatment, which was partially due to enhanced killing capacity of daratumumab-exposed effector cells. BCMA expression did not affect activity of JNJ-7957. High T-cell frequencies and high effector:target ratios were associated with improved JNJ-7957–mediated lysis of MM cells. The PD-1/PD-L1 axis had a modest negative impact on JNJ-7957 activity against tumor cells from daratumumab-naïve MM patients. Soluble BCMA impaired the ability of JNJ-7957 to kill MM cells, although higher concentrations were able to overcome this negative effect.

Conclusions:

JNJ-7957 effectively kills MM cells ex vivo, including those from heavily pretreated MM patients, whereby several components of the immunosuppressive BM microenvironment had only modest effects on its killing capacity. Our findings support the ongoing trial with JNJ-7957 as single agent and provide the preclinical rationale for evaluating JNJ-7957 in combination with daratumumab in MM.




antibody

Antiviral Activity of a Llama-Derived Single-Domain Antibody against Enterovirus A71 [Antiviral Agents]

In the past few decades, enterovirus A71 (EVA71) has caused devastating outbreaks in the Asia-Pacific region, resulting in serious sequelae in infected young children. No preventive or therapeutic interventions are currently available for curing EVA71 infection, highlighting a great unmet medical need for this disease. Here, we showed that one novel single-domain antibody (sdAb), F1, isolated from an immunized llama, could alleviate EVA71 infection both in vitro and in vivo. We also confirmed that the sdAb clone F1 recognizes EVA71 through a novel conformational epitope comprising the highly conserved region of VP3 capsid protein by using competitive-binding and overlapping-peptide enzyme-linked immunosorbent assays (ELISAs). Because of the virion’s icosahedral structure, we reasoned that adjacent epitopes must be clustered within molecular ranges that may be simultaneously bound by an engineered antibody with multiple valency. Therefore, two single-domain binding modules (F1) were fused to generate an sdAb-in-tandem design so that the capture of viral antigens could be further increased by valency effects. We showed that the tetravalent construct F1xF1-hFc, containing two sdAb-in-tandem on a fragment crystallizable (Fc) scaffold, exhibits more potent neutralization activity against EVA71 than does the bivalent sdAb F1-hFc by at least 5.8-fold. We also demonstrated that, using a human scavenger receptor class B member 2 (hSCARB2) transgenic mouse model, a half dose of the F1xF1-hFc provided better protection against EVA71 infection than did the F1-hFc. Thus, our study furnishes important insights into multivalent sdAb engineering against viral infection and provides a novel strategic deployment approach for preparedness of emerging infectious diseases such as EVA71.




antibody

Scientists Identify SARS-CoV-2-Neutralizing Antibody

A team of researchers from Utrecht University, the Erasmus Medical Center and Harbour BioMed has identified a human monoclonal antibody that neutralizes SARS-CoV-2 and SARS-CoV-1 coronaviruses in cell culture. Named 47D11, this cross-neutralizing antibody targets a communal epitope (antigenic determinant) on these viruses and may offer potential for prevention and treatment of COVID-19. “This research [...]




antibody

Will a home antibody test for covid-19 really be a game changer?

UK prime minister Boris Johnson has said a mass-produced antibody test for covid-19 that can be done at home will be a game changer - but this type of test has limitations