met Glucocerebrosidases catalyze a transgalactosylation reaction that yields a newly-identified brain sterol metabolite, galactosylated cholesterol [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 β-Glucocerebrosidase (GBA) hydrolyzes glucosylceramide (GlcCer) to generate ceramide. Previously, we demonstrated that lysosomal GBA1 and nonlysosomal GBA2 possess not only GlcCer hydrolase activity, but also transglucosylation activity to transfer the glucose residue from GlcCer to cholesterol to form β-cholesterylglucoside (β-GlcChol) in vitro. β-GlcChol is a member of sterylglycosides present in diverse species. How GBA1 and GBA2 mediate β-GlcChol metabolism in the brain is unknown. Here, we purified and characterized sterylglycosides from rodent and fish brains. Although glucose is thought to be the sole carbohydrate component of sterylglycosides in vertebrates, structural analysis of rat brain sterylglycosides revealed the presence of galactosylated cholesterol (β-GalChol), in addition to β-GlcChol. Analyses of brain tissues from GBA2-deficient mice and GBA1- and/or GBA2-deficient Japanese rice fish (Oryzias latipes) revealed that GBA1 and GBA2 are responsible for β-GlcChol degradation and formation, respectively, and that both GBA1 and GBA2 are responsible for β-GalChol formation. Liquid chromatography–tandem MS revealed that β-GlcChol and β-GalChol are present throughout development from embryo to adult in the mouse brain. We found that β-GalChol expression depends on galactosylceramide (GalCer), and developmental onset of β-GalChol biosynthesis appeared to be during myelination. We also found that β-GlcChol and β-GalChol are secreted from neurons and glial cells in association with exosomes. In vitro enzyme assays confirmed that GBA1 and GBA2 have transgalactosylation activity to transfer the galactose residue from GalCer to cholesterol to form β-GalChol. This is the first report of the existence of β-GalChol in vertebrates and how β-GlcChol and β-GalChol are formed in the brain. Full Article
met Correction: Metabolic fingerprinting for diagnosis of fibromyalgia and other rheumatologic disorders. [Additions and Corrections] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 VOLUME 294 (2019) PAGES 2555–2568Due to publisher error, “150 l/mm” was changed to “150 liters/mm” in the second paragraph of the “Vibrational spectroscopy of samples” section under “Experimental Procedures.” The correct phrase should be “150 l/mm.” Full Article
met Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPAR{alpha}-regulated genes [Lipids] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2−/−) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2−/− mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2−/− mice and a total of 91 in female Fatp2−/− mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator–activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2−/− liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities. Full Article
met The mitochondrial protein PGAM5 suppresses energy consumption in brown adipocytes by repressing expression of uncoupling protein 1 [Metabolism] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 Accumulating evidence suggests that brown adipose tissue (BAT) is a potential therapeutic target for managing obesity and related diseases. PGAM family member 5, mitochondrial serine/threonine protein phosphatase (PGAM5), is a protein phosphatase that resides in the mitochondria and regulates many biological processes, including cell death, mitophagy, and immune responses. Because BAT is a mitochondria-rich tissue, we have hypothesized that PGAM5 has a physiological function in BAT. We previously reported that PGAM5-knockout (KO) mice are resistant to severe metabolic stress. Importantly, lipid accumulation is suppressed in PGAM5-KO BAT, even under unstressed conditions, raising the possibility that PGAM5 deficiency stimulates lipid consumption. However, the mechanism underlying this observation is undetermined. Here, using an array of biochemical approaches, including quantitative RT-PCR, immunoblotting, and oxygen consumption assays, we show that PGAM5 negatively regulates energy expenditure in brown adipocytes. We found that PGAM5-KO brown adipocytes have an enhanced oxygen consumption rate and increased expression of uncoupling protein 1 (UCP1), a protein that increases energy consumption in the mitochondria. Mechanistically, we found that PGAM5 phosphatase activity and intramembrane cleavage are required for suppression of UCP1 activity. Furthermore, utilizing a genome-wide siRNA screen in HeLa cells to search for regulators of PGAM5 cleavage, we identified a set of candidate genes, including phosphatidylserine decarboxylase (PISD), which catalyzes the formation of phosphatidylethanolamine at the mitochondrial membrane. Taken together, these results indicate that PGAM5 suppresses mitochondrial energy expenditure by down-regulating UCP1 expression in brown adipocytes and that its phosphatase activity and intramembrane cleavage are required for UCP1 suppression. Full Article
met MtrP, a putative methyltransferase in Corynebacteria, is required for optimal membrane transport of trehalose mycolates [Lipids] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Pathogenic bacteria of the genera Mycobacterium and Corynebacterium cause severe human diseases such as tuberculosis (Mycobacterium tuberculosis) and diphtheria (Corynebacterium diphtheriae). The cells of these species are surrounded by protective cell walls rich in long-chain mycolic acids. These fatty acids are conjugated to the disaccharide trehalose on the cytoplasmic side of the bacterial cell membrane. They are then transported across the membrane to the periplasm where they act as donors for other reactions. We have previously shown that transient acetylation of the glycolipid trehalose monohydroxycorynomycolate (hTMCM) enables its efficient transport to the periplasm in Corynebacterium glutamicum and that acetylation is mediated by the membrane protein TmaT. Here, we show that a putative methyltransferase, encoded at the same genetic locus as TmaT, is also required for optimal hTMCM transport. Deletion of the C. glutamicum gene NCgl2764 (Rv0224c in M. tuberculosis) abolished acetyltrehalose monocorynomycolate (AcTMCM) synthesis, leading to accumulation of hTMCM in the inner membrane and delaying its conversion to trehalose dihydroxycorynomycolate (h2TDCM). Complementation with NCgl2764 normalized turnover of hTMCM to h2TDCM. In contrast, complementation with NCgl2764 derivatives mutated at residues essential for methyltransferase activity failed to rectify the defect, suggesting that NCgl2764/Rv0224c encodes a methyltransferase, designated here as MtrP. Comprehensive analyses of the individual mtrP and tmaT mutants and of a double mutant revealed strikingly similar changes across several lipid classes compared with WT bacteria. These findings indicate that both MtrP and TmaT have nonredundant roles in regulating AcTMCM synthesis, revealing additional complexity in the regulation of trehalose mycolate transport in the Corynebacterineae. Full Article
met The mRNA levels of heat shock factor 1 are regulated by thermogenic signals via the cAMP-dependent transcription factor ATF3 [Metabolism] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Heat shock factor 1 (HSF1) regulates cellular adaptation to challenges such as heat shock and oxidative and proteotoxic stresses. We have recently reported a previously unappreciated role for HSF1 in the regulation of energy metabolism in fat tissues; however, whether HSF1 is differentially expressed in adipose depots and how its levels are regulated in fat tissues remain unclear. Here, we show that HSF1 levels are higher in brown and subcutaneous fat tissues than in those in the visceral depot and that HSF1 is more abundant in differentiated, thermogenic adipocytes. Gene expression experiments indicated that HSF1 is transcriptionally regulated in fat by agents that modulate cAMP levels, by cold exposure, and by pharmacological stimulation of β-adrenergic signaling. An in silico promoter analysis helped identify a putative response element for activating transcription factor 3 (ATF3) at −258 to −250 base pairs from the HSF1 transcriptional start site, and electrophoretic mobility shift and ChIP assays confirmed ATF3 binding to this sequence. Furthermore, functional assays disclosed that ATF3 is necessary and sufficient for HSF1 regulation. Detailed gene expression analysis revealed that ATF3 is one of the most highly induced ATFs in thermogenic tissues of mice exposed to cold temperatures or treated with the β-adrenergic receptor agonist CL316,243 and that its expression is induced by modulators of cAMP levels in isolated adipocytes. To the best of our knowledge, our results show for the first time that HSF1 is transcriptionally controlled by ATF3 in response to classic stimuli that promote heat generation in thermogenic tissues. Full Article
met Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence [Molecular Biophysics] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 The rapid emergence and dissemination of methicillin-resistant Staphylococcus aureus (MRSA) strains poses a major threat to public health. MRSA possesses an arsenal of secreted host-damaging virulence factors that mediate pathogenicity and blunt immune defenses. Panton–Valentine leukocidin (PVL) and α-toxin are exotoxins that create lytic pores in the host cell membrane. They are recognized as being important for the development of invasive MRSA infections and are thus potential targets for antivirulence therapies. Here, we report the high-resolution X-ray crystal structures of both PVL and α-toxin in their soluble, monomeric, and oligomeric membrane-inserted pore states in complex with n-tetradecylphosphocholine (C14PC). The structures revealed two evolutionarily conserved phosphatidylcholine-binding mechanisms and their roles in modulating host cell attachment, oligomer assembly, and membrane perforation. Moreover, we demonstrate that the soluble C14PC compound protects primary human immune cells in vitro against cytolysis by PVL and α-toxin and hence may serve as the basis for the development of an antivirulence agent for managing MRSA infections. Full Article
met AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice [Metabolism] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Fatty acid esters of hydroxy fatty acids (FAHFAs) are a newly discovered class of signaling lipids with anti-inflammatory and anti-diabetic properties. However, the endogenous regulation of FAHFAs remains a pressing but unanswered question. Here, using MS-based FAHFA hydrolysis assays, LC-MS–based lipidomics analyses, and activity-based protein profiling, we found that androgen-induced gene 1 (AIG1) and androgen-dependent TFPI-regulating protein (ADTRP), two threonine hydrolases, control FAHFA levels in vivo in both genetic and pharmacologic mouse models. Tissues from mice lacking ADTRP (Adtrp-KO), or both AIG1 and ADTRP (DKO) had higher concentrations of FAHFAs particularly isomers with the ester bond at the 9th carbon due to decreased FAHFA hydrolysis activity. The levels of other lipid classes were unaltered indicating that AIG1 and ADTRP specifically hydrolyze FAHFAs. Complementing these genetic studies, we also identified a dual AIG1/ADTRP inhibitor, ABD-110207, which is active in vivo. Acute treatment of WT mice with ABD-110207 resulted in elevated FAHFA levels, further supporting the notion that AIG1 and ADTRP activity control endogenous FAHFA levels. However, loss of AIG1/ADTRP did not mimic the changes associated with pharmacologically administered FAHFAs on extent of upregulation of FAHFA levels, glucose tolerance, or insulin sensitivity in mice, indicating that therapeutic strategies should weigh more on FAHFA administration. Together, these findings identify AIG1 and ADTRP as the first endogenous FAHFA hydrolases identified and provide critical genetic and chemical tools for further characterization of these enzymes and endogenous FAHFAs to unravel their physiological functions and roles in health and disease. Full Article
met Glucose availability but not changes in pancreatic hormones sensitizes hepatic AMPK activity during nutritional transition in rodents [Metabolism] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 The cellular energy sensor AMP-activated protein kinase (AMPK) is a metabolic regulator that mediates adaptation to nutritional variations to maintain a proper energy balance in cells. We show here that suckling-weaning and fasting-refeeding transitions in rodents are associated with changes in AMPK activation and the cellular energy state in the liver. These nutritional transitions were characterized by a metabolic switch from lipid to glucose utilization, orchestrated by modifications in glucose levels and the glucagon/insulin ratio in the bloodstream. We therefore investigated the respective roles of glucose and pancreatic hormones on AMPK activation in mouse primary hepatocytes. We found that glucose starvation transiently activates AMPK, whereas changes in glucagon and insulin levels had no impact on AMPK. Challenge of hepatocytes with metformin-induced metabolic stress strengthened both AMPK activation and cellular energy depletion under limited-glucose conditions, whereas neither glucagon nor insulin altered AMPK activation. Although both insulin and glucagon induced AMPKα phosphorylation at its Ser485/491 residue, they did not affect its activity. Finally, the decrease in cellular ATP levels in response to an energy stress was additionally exacerbated under fasting conditions and by AMPK deficiency in hepatocytes, revealing metabolic inflexibility and emphasizing the importance of AMPK for maintaining hepatic energy charge. Our results suggest that nutritional changes (i.e. glucose availability), rather than the related hormonal changes (i.e. the glucagon/insulin ratio), sensitize AMPK activation to the energetic stress induced by the dietary transition during fasting. This effect is critical for preserving the cellular energy state in the liver. Full Article
met Meteorological dev't plan welcomed By www.news.gov.hk Published On :: Wed, 29 Apr 2020 00:00:00 +0800 The Hong Kong Special Administrative Region Government today welcomed the promulgation of the Meteorological Development Plan for the Guangdong-Hong Kong-Macao Greater Bay Area (2020-2035) by the China Meteorological Administration. In a statement, the Hong Kong SAR Government said the promulgation of the plan would further strengthen meteorological co-operation among Guangdong, Hong Kong and Macau in areas such as data sharing, scientific research and innovation, and training of meteorological personnel. Such co-operation would in turn enhance the meteorological services in the three places, it added. The relevant co-operation initiatives will benefit the Hong Kong Observatory (HKO) in its development of fine-scale meteorological monitoring, warning and forecasting services, and will further enhance Hong Kong's capability in forecasting extreme weather events, the statement said, adding the HKO will take forward the initiatives in collaboration with the relevant authorities in Guangdong and Macau. The full text of the meteorological plan is available on the China Meteorological Administration's website. It can also be accessed via the Hong Kong SAR Government's Greater Bay Area and HKO websites. Full Article
met About the cover: The Fine–Petrović Polygons and the Newton–Puiseux Method for Algebraic Ordinary Differential Equations By www.ams.org Published On :: Fri, 13 Mar 2020 16:19 EDT Vladimir Dragović and Irina Goryuchkina Bull. Amer. Math. Soc. 57 (2020), 293-299. Abstract, references and article information Full Article
met Hausdorff Dimension, Lagrange and Markov Dynamical Spectra for Geometric Lorenz Attractors By www.ams.org Published On :: Fri, 13 Mar 2020 16:19 EDT Carlos Gustavo T. Moreira, Maria José Pacifico and Sergio Romaña Ibarra Bull. Amer. Math. Soc. 57 (2018), 269-292. Abstract, references and article information Full Article
met Hong Kong Special Administrative Region Government, Meteorological Development Plan for the Guangdong-Hong Kong-Macao Greater Bay Area (2020-2035), Meteorological Plan, China Meteorological Administration By www.hko.gov.hk Published On :: The Hong Kong Special Administrative Region (HKSAR) Government welcomes the promulgation of the Meteorological Development Plan ... Full Article I
met Cool Met Stuff, composition of air, main gases, climate change, global warming, carbon dioxide concentration, fraction, atmosphere By www.hko.gov.hk Published On :: Do you know which main gases are contained in the composition of air? Under climate change and global warming, carbon dioxide ... Full Article I
met Cool Met Stuff, rainstorms, Hong Kong, summer, loss of property, casualties, reviews, extreme torrential rain By www.hko.gov.hk Published On :: Every summer, rainstorms occur in Hong Kong occasionally, leading to loss of property or even casualties. Full Article I
met Hidden symmetry found in chemical kinetic equations By www.eurekalert.org Published On :: Fri, 01 May 2020 00:00:00 EDT (Rice University) Rice University researchers have discovered a hidden symmetry in the chemical kinetic equations scientists have long used to model and study many of the chemical processes essential for life. Full Article
met A radar for plastic: High-resolution map of 1 kilometer grids to track plastic emissions in seas By www.eurekalert.org Published On :: Thu, 07 May 2020 00:00:00 EDT (Tokyo University of Science) Plastic waste often ends up in river bodies and oceans, posing a serious threat to the marine ecosystem. To prevent the accumulation of plastic debris, we must find out where plastic emission is prevalent. To this end, scientists in Japan have come up with a new method to track plastic emissions from inland areas to sea. This method is useful to identify the 'hotspots' of plastic emission and can even help to implement appropriate measures to avoid plastic pollution. Full Article
met Deformed skulls in an ancient cemetery reveal a multicultural community in transition By www.eurekalert.org Published On :: Wed, 29 Apr 2020 00:00:00 EDT (PLOS) The ancient cemetery of Mözs-Icsei d?l? in present-day Hungary holds clues to a unique community formation during the beginnings of Europe's Migration Period, according to a study published April 29, 2020 in the open-access journal PLOS ONE by Corina Knipper from the Curt-Engelhorn-Center for Archaeometry, Germany, István Koncz, Tivadar Vida from the Eötvös Loránd University, Budapest, Hungary and colleagues. Full Article
met Technologies to extract, purify critical rare earth metals could be a 'game changer' By www.eurekalert.org Published On :: Wed, 06 May 2020 00:00:00 EDT (Purdue University) New environmentally friendly technologies promise to be 'game changers' in the rare earth metals field and enable the US to create a more stable and reliable domestic source of these essential metals. Purdue University patented extraction and purifying processes using ligand-assisted chromatography are shown to remove and purify such metals from coal ash, recycled magnets and raw ore safely, efficiently and with virtually no detrimental environmental impact. Full Article
met Glucose Metabolism and Regulation: Beyond Insulin and Glucagon By spectrum.diabetesjournals.org Published On :: 2004-07-01 Stephen L. AronoffJul 1, 2004; 17:183-190Feature Articles Full Article
met Kylie Cosmetics By www8.gsb.columbia.edu Published On :: Fri, 28 Feb 2020 16:01:47 +0000 Can Kylie Cosmetics move beyond its famous founder to achieve long-term success? Full Article
met Glucocerebrosidases catalyze a transgalactosylation reaction that yields a newly-identified brain sterol metabolite, galactosylated cholesterol [Glycobiology and Extracellular Matrices] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 β-Glucocerebrosidase (GBA) hydrolyzes glucosylceramide (GlcCer) to generate ceramide. Previously, we demonstrated that lysosomal GBA1 and nonlysosomal GBA2 possess not only GlcCer hydrolase activity, but also transglucosylation activity to transfer the glucose residue from GlcCer to cholesterol to form β-cholesterylglucoside (β-GlcChol) in vitro. β-GlcChol is a member of sterylglycosides present in diverse species. How GBA1 and GBA2 mediate β-GlcChol metabolism in the brain is unknown. Here, we purified and characterized sterylglycosides from rodent and fish brains. Although glucose is thought to be the sole carbohydrate component of sterylglycosides in vertebrates, structural analysis of rat brain sterylglycosides revealed the presence of galactosylated cholesterol (β-GalChol), in addition to β-GlcChol. Analyses of brain tissues from GBA2-deficient mice and GBA1- and/or GBA2-deficient Japanese rice fish (Oryzias latipes) revealed that GBA1 and GBA2 are responsible for β-GlcChol degradation and formation, respectively, and that both GBA1 and GBA2 are responsible for β-GalChol formation. Liquid chromatography–tandem MS revealed that β-GlcChol and β-GalChol are present throughout development from embryo to adult in the mouse brain. We found that β-GalChol expression depends on galactosylceramide (GalCer), and developmental onset of β-GalChol biosynthesis appeared to be during myelination. We also found that β-GlcChol and β-GalChol are secreted from neurons and glial cells in association with exosomes. In vitro enzyme assays confirmed that GBA1 and GBA2 have transgalactosylation activity to transfer the galactose residue from GalCer to cholesterol to form β-GalChol. This is the first report of the existence of β-GalChol in vertebrates and how β-GlcChol and β-GalChol are formed in the brain. Full Article
met Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPAR{alpha}-regulated genes [Lipids] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2−/−) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2−/− mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2−/− mice and a total of 91 in female Fatp2−/− mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator–activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2−/− liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities. Full Article
met MtrP, a putative methyltransferase in Corynebacteria, is required for optimal membrane transport of trehalose mycolates [Lipids] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Pathogenic bacteria of the genera Mycobacterium and Corynebacterium cause severe human diseases such as tuberculosis (Mycobacterium tuberculosis) and diphtheria (Corynebacterium diphtheriae). The cells of these species are surrounded by protective cell walls rich in long-chain mycolic acids. These fatty acids are conjugated to the disaccharide trehalose on the cytoplasmic side of the bacterial cell membrane. They are then transported across the membrane to the periplasm where they act as donors for other reactions. We have previously shown that transient acetylation of the glycolipid trehalose monohydroxycorynomycolate (hTMCM) enables its efficient transport to the periplasm in Corynebacterium glutamicum and that acetylation is mediated by the membrane protein TmaT. Here, we show that a putative methyltransferase, encoded at the same genetic locus as TmaT, is also required for optimal hTMCM transport. Deletion of the C. glutamicum gene NCgl2764 (Rv0224c in M. tuberculosis) abolished acetyltrehalose monocorynomycolate (AcTMCM) synthesis, leading to accumulation of hTMCM in the inner membrane and delaying its conversion to trehalose dihydroxycorynomycolate (h2TDCM). Complementation with NCgl2764 normalized turnover of hTMCM to h2TDCM. In contrast, complementation with NCgl2764 derivatives mutated at residues essential for methyltransferase activity failed to rectify the defect, suggesting that NCgl2764/Rv0224c encodes a methyltransferase, designated here as MtrP. Comprehensive analyses of the individual mtrP and tmaT mutants and of a double mutant revealed strikingly similar changes across several lipid classes compared with WT bacteria. These findings indicate that both MtrP and TmaT have nonredundant roles in regulating AcTMCM synthesis, revealing additional complexity in the regulation of trehalose mycolate transport in the Corynebacterineae. Full Article
met AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice [Metabolism] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Fatty acid esters of hydroxy fatty acids (FAHFAs) are a newly discovered class of signaling lipids with anti-inflammatory and anti-diabetic properties. However, the endogenous regulation of FAHFAs remains a pressing but unanswered question. Here, using MS-based FAHFA hydrolysis assays, LC-MS–based lipidomics analyses, and activity-based protein profiling, we found that androgen-induced gene 1 (AIG1) and androgen-dependent TFPI-regulating protein (ADTRP), two threonine hydrolases, control FAHFA levels in vivo in both genetic and pharmacologic mouse models. Tissues from mice lacking ADTRP (Adtrp-KO), or both AIG1 and ADTRP (DKO) had higher concentrations of FAHFAs particularly isomers with the ester bond at the 9th carbon due to decreased FAHFA hydrolysis activity. The levels of other lipid classes were unaltered indicating that AIG1 and ADTRP specifically hydrolyze FAHFAs. Complementing these genetic studies, we also identified a dual AIG1/ADTRP inhibitor, ABD-110207, which is active in vivo. Acute treatment of WT mice with ABD-110207 resulted in elevated FAHFA levels, further supporting the notion that AIG1 and ADTRP activity control endogenous FAHFA levels. However, loss of AIG1/ADTRP did not mimic the changes associated with pharmacologically administered FAHFAs on extent of upregulation of FAHFA levels, glucose tolerance, or insulin sensitivity in mice, indicating that therapeutic strategies should weigh more on FAHFA administration. Together, these findings identify AIG1 and ADTRP as the first endogenous FAHFA hydrolases identified and provide critical genetic and chemical tools for further characterization of these enzymes and endogenous FAHFAs to unravel their physiological functions and roles in health and disease. Full Article
met A Quantitative Tri-fluorescent Yeast Two-hybrid System: From Flow Cytometry to In cellula Affinities By feedproxy.google.com Published On :: 2020-04-01 David CluetApr 1, 2020; 19:701-715Technological Innovation and Resources Full Article
met Integrative Metabolic Pathway Analysis Reveals Novel Therapeutic Targets in Osteoarthritis By feedproxy.google.com Published On :: 2020-04-01 Beatriz RochaApr 1, 2020; 19:574-588Research Full Article
met A cross-linking mass spectrometry approach defines protein interactions in yeast mitochondria By feedproxy.google.com Published On :: 2020-04-24 Andreas LindenApr 24, 2020; 0:RA120.002028v1-mcp.RA120.002028Research Full Article
met Discovery of a Redox Thiol Switch: Implications for Cellular Energy Metabolism By feedproxy.google.com Published On :: 2020-05-01 Xing-Huang GaoMay 1, 2020; 19:852-870Research Full Article
met Selection of features with consistent profiles improves relative protein quantification in mass spectrometry experiments By feedproxy.google.com Published On :: 2020-03-31 Tsung-Heng TsaiMar 31, 2020; 0:RA119.001792v1-mcp.RA119.001792Research Full Article
met DEqMS: a method for accurate variance estimation in differential protein expression analysis By feedproxy.google.com Published On :: 2020-03-23 Yafeng ZhuMar 23, 2020; 0:TIR119.001646v1-mcp.TIR119.001646Technological Innovation and Resources Full Article
met Improving Identification of In-organello Protein-Protein Interactions Using an Affinity-enrichable, Isotopically Coded, and Mass Spectrometry-cleavable Chemical Crosslinker By feedproxy.google.com Published On :: 2020-04-01 Karl A. T. MakepeaceApr 1, 2020; 19:624-639Research Full Article
met A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients By feedproxy.google.com Published On :: 2020-04-01 Dorte B. Bekker-JensenApr 1, 2020; 19:716-729Technological Innovation and Resources Full Article
met Head-to-head comparison of 68Ga-DOTA-JR11 and 68Ga-DOTATATE PET/CT in patients with metastatic, well-differentiated neuroendocrine tumors: a prospective study By jnm.snmjournals.org Published On :: 2019-11-01T13:36:37-07:00 Purpose: 68Ga-DOTA-JR11 is an antagonist for somatostatin receptor used in neuroendocrine imaging. The purpose of this study is to compare 68Ga-DOTA-JR11 and 68Ga-DOTATATE PET/CT in patients with metastatic, well-differentiated neuroendocrine tumors. Methods: Patients with histologically-proven, metastatic and/or unresectable, well-differentiated neuroendocrine tumors were prospectively recruited in this study. They received an intravenous injection of 68Ga-DOTATATE (4.0 ± 1.3 mCi) on the first day and 68Ga-DOTA-JR11 (4.0 ± 1.4 mCi) on the second day. Whole-body PET/CT scans were performed at 40 to 60 minutes after injection on the same scanner. Physiologic uptake of normal organs, lesion numbers, and lesion uptake were compared. Results: Twenty-nine patients were prospectively enrolled in the study. The SUVmax of the spleen, renal cortex, adrenal glands, pituitary glands, stomach wall, normal liver parenchyma, small intestine, pancreas, and bone marrow were significantly lower on 68Ga-DOTA-JR11 than on 68Ga-DOTATATE PET/CT (P<0.001). 68Ga-DOTA-JR11 detected significantly more liver lesions (539 vs. 356, P = 0.002), but fewer bone lesions (156 vs. 374, P = 0.031, Figure 3) than 68Ga-DOTATATE. The tumor-to-background ratio of liver lesions was significantly higher on 68Ga-DOTA-JR11 (7.6 ± 5.1 vs. 3.4 ± 2.0, P<0.001). 68Ga-DOTA-JR11 and 68Ga-DOTATATE PET/CT showed comparable results for primary tumors and lymph node metastases based on either patient-based or lesion-based comparison. Conclusion: 68Ga-DOTA-JR11 performs better in the detection ability and TBR of liver metastases. However, 68Ga-DOTATATE outperforms 68Ga-DOTA-JR11 in the detection of bone metastases. The differential affinity of different metastatic sites provides key information for patient selection in imaging and peptide receptor radionuclide therapy. Full Article
met Evaluation of dosimetry, quantitative methods and test-retest variability of 18F-PI-2620 PET for the assessment of tau deposits in the human brain By jnm.snmjournals.org Published On :: 2019-11-11T12:55:20-08:00 18F-PI-2620 is a next generation tau positron emission tomography (PET)-tracer that has demonstrated ability to image the spatial distribution of suspected tau pathology. The objective of this study was to assess the tracer biodistribution, dosimetry and quantitative methods of 18F-PI-2620 in the human brain. Full kinetic modelling approaches to quantify tau load were investigated. Non-invasive kinetic modeling approaches and semi-quantitative methods were evaluated against the full tracer kinetics. Finally, the reproducibility of PET measurements from test and retest scans was assessed. Methods: Three healthy controls (HC) and 4 Alzheimer disease (AD) subjects underwent two dynamic PET scans including arterial sampling. Distribution volume ratio (DVR) was estimated using full tracer kinetics (2 Tissue Compartment (2TC) models, Logan Graphical Analysis (LGA)) and non-invasive kinetic models (Non-Invasive Logan Graphical Analysis (NI-LGA) and the multilinear reference tissue model (MRTM2)). Standardized uptake value ratio (SUVR) was determined at different imaging windows after injection. Correlation between DVR and SUVR, effect size (Cohen’s d) and test-retest variability (TRV) were evaluated. Additionally, 6 HC subjects received one tracer administration and underwent whole-body PET for dosimetry calculation. Organ doses and the whole-body effective dose were calculated using OLINDA 2.0. Results: Strong correlation was found across different kinetic models (R2 >0.97) and between DVR(2TC) and SUVRs between 30 to 90 min with R2>0.95. Secular equilibrium was reached around 40 min post injection (p.i.) in most regions and subjects. The TRV and effect size for the SUVR across different regions was similar at 30-60 min (TRV=3.8%, d=3.80), 45-75 min (TRV=4.3%, d=3.77) and 60-90 min (TRV=4.9%, d=3.73) and increased at later time points. Elimination was via the hepatobiliary and urinary system. The whole-body effective dose was determined to be 33.3±2.1 μSv/MBq for an adult female and 33.1±1.4 μSv/MBq for an adult male with a 1.5 hour urinary bladder voiding interval. Conclusion: 18F-PI-2620 exhibits fast kinetics, suitable dosimetry and low TRV. DVR measured using the 2TC model with arterial sampling correlated strongly with DVR measured by NI-LGA, MRTM2 and SUVR. SUVR can be used for 18F-PI-2620 PET quantification of tau deposits avoiding arterial blood sampling. Static 18F-PI-2620 PET scans between 45-75min p.i. provide excellent quantification accuracy, large effect size and low TRV. Full Article
met Long term follow-up and outcomes of re-treatment in an expanded 50 patient single-center phase II prospective trial of Lutetium-177 (177Lu) PSMA-617 theranostics in metastatic castrate-resistant prostate cancer By jnm.snmjournals.org Published On :: 2019-11-22T10:43:33-08:00 Objectives: Lutetium-177 (177Lu)-PSMA-617 (LuPSMA) is a radioligand with high affinity for prostate specific membrane antigen (PSMA) enabling targeted beta-irradiation of prostate cancer. We have previously reported favorable activity with low toxicity in a prospective phase II trial involving 30 men with metastatic castrate-resistant prostate cancer (mCRPC). We now report their longer-term outcomes including a 20 patient extension cohort and outcomes of subsequent systemic treatments following completion of trial therapy. Methods: 50 patients with PSMA-avid mCRPC who had progressed after standard therapies received up to 4 cycles of LuPSMA every 6 weeks. Endpoints included PSA response (PCWG2), toxicity (CTCAE v4.03), imaging response, patient-reported health-related quality of life (QoL), progression-free and overall survival. We also describe, as a novel finding, outcomes of men who subsequently progressed and had further systemic therapies, including LuPSMA. Results: 75 men were screened to identify 50 patients eligible for treatment. Adverse prognostic features of the cohort included short median PSA doubling time (2.3 months) and extensive prior treatment including prior docetaxel (84%), cabazitaxel (48%), and abiraterone and/or enzalutamide (90%). The mean administered radioactivity was 7.5 GBq/cycle. PSA decline ≥ 50% was achieved in 32 of 50 patients (64%, 95% CI 50-77%), including 22 patients (44%, 95% CI 30-59%) with ≥ 80% decrease. Of 27 patients with measurable soft tissue disease, 15 (56%) achieved an objective response by RECIST 1.1. The most common toxicities attributed to LuPSMA were self-limiting G1-2 dry mouth (66%), transient G1-2 nausea (48%), G3-4 thrombocytopenia (10%) and G3 anemia (10%). Brief pain inventory severity and interference scores decreased at all time points including at the 3 month follow-up with a decrease of -1.2 (95% CI -0.5 to -1.9, P = 0.001) and 1.0 (95% CI -0.2 to -0.18, P = 0.013), respectively. At a median follow-up of 31.4 months, median OS was 13.3 months (95% CI 10.5-18.7) with a significantly longer survival of 18.4 months (95% CI 13.8-23.8) in patients achieving a PSA decline ≥ 50%. At progression following prior response, further LuPSMA was administered to 15 (30%) patients (median 2 cycles commencing 359 days from enrolment) with PSA decline ≥ 50% in 11 patients (73%). 4 of 21 patients (19%) receiving other systemic therapies upon progression experienced PSA decline ≥ 50%. There were no unexpected adverse events with LuPSMA re-treatment. Conclusion: This expanded 50 patient cohort of men with extensive prior therapy confirms our earlier report of high response rates, low toxicity and improved QoL with LuPSMA radioligand therapy. Upon progression, re-challenge LuPSMA demonstrated higher response rates than other systemic therapies. Full Article
met Label-free Visualization of Early Cancer Hepatic Micrometastasis and Intraoperative Image-guided Surgery by Photoacoustic Imaging By jnm.snmjournals.org Published On :: 2019-12-05T10:37:41-08:00 Objectives: The detection of cancer micrometastasis for early diagnosis and treatment poses a great challenge for conventional imaging techniques. The aim of study is to evaluate the performance of photoacoustic imaging (PAI) in detecting hepatic micrometastases from melanoma in a very early stage and perform tumor resection by intraoperative photoacoustic image-guidance. Methods: In vivo studies were performed by following protocols approved by the Ethical Committee for Animal Research at Xiamen University. First, a B16 melanoma hepatic metastasis mouse model (n = 10) was established to study the development of micrometastases in vivo. Next, the hepatic metastasis mice models were imaged by scalable PAI instrument, ultrasound, 9.4 T high-resolution magnetic resonance imaging (MRI), positron emission tomography/computed tomography (PET/CT), and bioluminescence imaging. Photoacoustic images acquired with optical wavelengths spanning from 680 to 850 nm were spectrally unmixed by using a linear least-squares method to differentiate various components. Differences in the signal-to-background ratios among different modalities were determined with the two-tailed paired t test. The diagnosis results were assessed with histologic examinations. Excised liver samples from patients diagnosed with hepatic cancer were also examined to identify tumor boundary. In vivo metastatic melanoma removal in surgery was precisely guided by the portable PAI system. Results: PAI achieved as small as ~400 µm hepatic melanoma detection at a depth up to 7 mm in vivo, which could early detect small melanoma compared with ultrasound and MRI in mouse models. The signal ratio of tumor-to-liver acquired with PAI in micrometastases at 8 days (4.2 ± 0.2, n = 6) and 14 days (9.2 ± 0.4, n = 5) were significantly higher than those obtained with PET/CT (1.8 ± 0.1, n = 5 and 4.5 ± 0.2, n = 5, P <0.001 for both). Functional PAI provided dynamic oxygen saturation changes during tumor growth. The limit of detection was measured to be approximately 219 cells per microliter in vitro. We successfully performed intraoperative photoacoustic image-guided surgery in vivo using the rapid portable PAI system. Conclusion: Our findings offer a rapid and effective tool to noninvasively detect micrometastases and guide intraoperative resection as a complementary clinical imaging application. Full Article
met Radiation Dosimetry in 177Lu-PSMA-617 Therapy Using a Single Post-treatment SPECT/CT: A Novel Methodology to Generate Time- and Tissue-specific Dose Factors By jnm.snmjournals.org Published On :: 2019-12-05T10:37:41-08:00 Calculation of radiation dosimetry in targeted nuclear medicine therapies is traditionally resource-intensive requiring multiple post-therapy SPECT acquisitions. An alternative approach is to take advantage of existing pharmacokinetic data from these smaller cohorts to enable dose computation from a single post-treatment scan in a manner that may be applied to a much broader patient population. Methods: In this work, a technical description for simplified dose estimation is presented and applied to assessment of 177Lu-PSMA-617 therapy (Prostate-Specific Membrane Antigen) for metastatic prostate cancer. By normalizing existing time-activity curves to a single measurement time, it is possible to calculate a mean and range of time-integrated activity values which relate to radiation absorbed dose. To assist with accurate pharmacokinetic modelling of the training cohort, a method for contour-guided image registration was developed. Results: Tissue-specific dose conversion factors for common post-treatment imaging times are reported along with a characterization of added uncertainty in comparison to a traditional serial imaging protocol. Single time point dose factors for tumor were determined to be 11.0, 12.1, 13.6, and 15.2 Gy per MBq/mL at image times of 24, 48, 72, and 96 hours, respectively. For normal tissues, parotid gland factors were 6.7, 9.4, 13.3, and 19.3 Gy per MBq/mL and kidneys were 7.1, 10.3, 15.0, and 22.0 Gy per MBq/mL at those times. Tumor dose estimates were most accurate using delayed scanning at times beyond 72 hours. Dose to healthy tissues is best characterized by scanning patients in the first two days of treatment owing to the larger degree of tracer clearance in this early phase. Conclusion: The work demonstrates a means for efficient dose estimation in 177Lu-PSMA-617 therapy. By providing methods to simplify and potentially automate radiation dosimetry we hope to accelerate the understanding of radiobiology and development of dose-response models in this unique therapeutic context. Full Article
met 11C-Methionine PET Identifies Astroglia Involvement in Heart-Brain Inflammation Networking after Acute Myocardial Infarction By jnm.snmjournals.org Published On :: 2019-12-05T10:37:41-08:00 Acute myocardial infarction (MI) triggers a local and systemic inflammatory response. We recently showed microglia involvement using TSPO imaging. Here, we evaluate whether 11C-methionine provides further insights into heart-brain inflammation networking. Methods: Male Bl6N mice underwent permanent coronary artery ligation followed by 11C-methionine PET at 3 and 7 days (n = 3). In subgroups, leukocyte homing was blocked by integrin antibodies (n = 5). The cellular substrate for PET signal was identified using brain section immunostaining. Results: 11C-methionine uptake peaked in the MI region at d3 (5.9±0.9vs 2.4±0.5 %ID/cc), decreasing to control level by d7 (4.3±0.6 %ID/cc). Brain uptake was proportional to cardiac uptake (r=0.47,p<0.05), peaking also at d3 (2.9±0.4vs 2.4±0.3 %ID/cc) and returning to baseline at d7 (2.3±0.4 %ID/cc). Integrin blockade reduced uptake at every time point. Immunostaining at d3 revealed co-localization of the L-type amino acid transporter with GFAP-positive astrocytes but not CD68-positive microglia. Conclusion: PET imaging with 11C-methionine specifically identifies an astrocyte component, enabling further dissection of the heart-brain axis in post MI inflammation. Full Article
met Inflammation-based index and 68Ga-DOTATOC PET-derived uptake and volumetric parameters predict outcome in neuroendocrine tumor patients treated with 90Y-DOTATOC By jnm.snmjournals.org Published On :: 2019-12-05T10:37:41-08:00 We performed post-hoc analyses on the utility of pre-therapeutic and early interim 68Ga-DOTA-Tyr3-octreotide (68Ga-DOTATOC) positron emission tomography (PET) tumor uptake and volumetric parameters and a recently proposed biomarker, the inflammation-based index (IBI), for peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumor (NET) patients treated with 90Y-DOTATOC in the setting of a prospective phase II trial. Methods: Forty-three NET patients received up to four cycles of 1.85 GBq/m²/cycle 90Y-DOTATOC with a maximal kidney biologic effective dose of 37 Gy. All patients underwent a 68Ga-DOTATOC PET/computed tomography (CT) at baseline and seven weeks after the first PRRT cycle. 68Ga-DOTATOC-avid tumor lesions were semi-automatically delineated using a customized standardized uptake value (SUV) threshold-based approach. PRRT response was assessed on CT using RECIST 1.1. Results: Median progression-free survival (PFS) and overall survival (OS) were 13.9 and 22.3 months, respectively. An SUVmean higher than 13.7 (75th percentile (P75)) was associated with better survival (hazard ratio (HR) 0.45; P = 0.024), whereas a 68Ga-DOTATOC-avid tumor volume higher than 578 ml (P75) was associated with worse OS (HR 2.18; P = 0.037). Elevated baseline IBI was associated with worse OS (HR 3.90; P = 0.001). Multivariate analysis corroborated independent associations between OS and SUVmean (P = 0.016) and IBI (P = 0.015). No significant correlations with PFS were found. A composite score based on SUVmean and IBI allowed to further stratify patients in three categories with significantly different survival. On early interim PET, a decrease in SUVmean of more than 17% (P75) was associated with worse survival (HR 2.29; P = 0.024). Conclusion: Normal baseline IBI and high 68Ga-DOTATOC tumor uptake predict better outcome in NET patients treated with 90Y-DOTATOC. This can be used for treatment personalization. Interim 68Ga-DOTATOC PET does not provide information for treatment personalization. Full Article
met Imaging P-glycoprotein Induction at the Blood-Brain Barrier of a Beta-Amyloidosis Mouse Model with 11C-Metoclopramide PET By jnm.snmjournals.org Published On :: 2019-12-05T10:37:41-08:00 P-glycoprotein (ABCB1) plays an important role at the blood-brain barrier (BBB) in promoting the clearance of neurotoxic beta-amyloid (Aß) peptides from the brain into the blood. ABCB1 expression and activity were found to be decreased in the brains of Alzheimer disease (AD) patients. Treatment with drugs which induce cerebral ABCB1 activity may be a promising approach to delay the build-up of Aß deposits in the brain by enhancing the clearance of Aß peptides from the brain. The aim of this study was to investigate whether PET with the weak ABCB1 substrate radiotracer 11C-metoclopramide can measure ABCB1 induction at the BBB in a beta-amyloidosis mouse model (APP/PS1-21 mice) and in wild-type mice. Methods: Groups of wild-type and APP/PS1-21 mice aged 50 or 170 days underwent 11C-metoclopramide baseline PET scans or scans after intraperitoneal treatment with the rodent pregnane X receptor (PXR) activator 5-pregnen-3β-ol-20-one-16α-carbonitrile (PCN, 25 mg/kg) or its vehicle over 7 days. At the end of the PET scans, brains were harvested for immunohistochemical analysis of ABCB1 and Aß levels. In separate groups of mice, radiolabeled metabolites of 11C-metoclopramide were determined in plasma and brain at 15 min after radiotracer injection. As an outcome parameter of cerebral ABCB1 activity, the elimination slope of radioactivity washout from the brain (kE,brain) was calculated. Results: PCN treatment resulted in an increased clearance of radioactivity from the brain as reflected by significant increases in kE,brain (from +26% to +54% relative to baseline). Immunohistochemical analysis confirmed ABCB1 induction in the brains of PCN-treated APP/PS1-21 mice with a concomitant decrease in Aß levels. There was a significant positive correlation between kE,brain values and ABCB1 levels in the brain. In wild-type mice, a significant age-related decrease in kE,brain values was found. Metabolite analysis showed that the majority of radioactivity in the brain was composed of unmetabolized 11C-metoclopramide in all animal groups. Conclusion: 11C-metoclopramide can measure ABCB1 induction in the mouse brain without the need to consider an arterial input function and may find potential application in AD patients to non-invasively evaluate strategies to enhance the clearance properties of the BBB. Full Article
met 18F-fluorodexyglucose Position Emission Tomography identifies altered brain metabolism in patients with Cri du Chat syndrome By jnm.snmjournals.org Published On :: 2019-12-13T13:35:10-08:00 Cri-Du-Chat Syndrome (CdCs) is a rare genetic disease caused by a deletion in the short arm of chromosome 5 (5p) with a variable clinical spectrum. To date no study in literature has ever investigated the alterations of brain glucose metabolism in these subjects by means of [18F]fluoro-2-deoxy-d-glucose Positron Emission Tomography/Computed Tomography (18F-FDG PET/CT). The aims of this study were to detect difference in brain FDG metabolism in patients affected by CdCs with different clinical presentations and identify possible "brain metabolic phenotypes" of this syndrome. Methods: 6 patients (age: 5 M and 1 F, age range: 10-27) with CdCs were assessed for presence of cognitive and behavioral symptoms with a battery of neuropsychological tests and then classified as patient with a severe or mild phenotype. Then, patients underwent a brain 18F-FDG PET/CT scan. PET/CT findings were compared to a control group, matched for age and sex, by using statistical parametric mapping (SPM). Association of different clinical phenotypes and 18F-FDG PET/CT findings was investigated. Results: Four patients presented a severe phenotype, whereas 2 patients demonstrated mild phenotype. SPM single subject and group analysis compared to the control cohort revealed a significant hypometabolism in the left temporal lobe (BAs 20, 36 and 38), in the right frontal subcallosal gyrus (BA 34) and caudate body, and in the cerebellar tonsils (p<0.001). Hypermetabolism (P = 0.001) was revealed in the right superior and precentral frontal gyrus (BA 6) in patient group compared to the control cohort. In SPM single subject analysis the hypermetabolic areas were detected only in patients with a severe phenotype. Conclusion: This study revealed different patterns of brain glucose metabolism in patients with severe and mild phenotype compared to control subjects. In particular, the hypermetabolic abnormalities in the brain, evaluated by18F-FDG PET/CT, seem to correlate with the severe phenotype in patients with CdCs. Full Article
met Radiation dosimetry and biodistribution of 68Ga-FAPI-46 PET imaging in cancer patients By jnm.snmjournals.org Published On :: 2019-12-13T13:35:10-08:00 Background: Targeting cancer-associated fibroblasts (CAFs) has become an attractive goal for diagnostic imaging and therapy as they can constitute as much as 90% of tumor mass. The serine protease fibroblast activation protein (FAP) is overexpressed selectively in CAFs, drawing interest in FAP as a stromal target. The quinoline-based FAP-inhibitor PET tracer, 68Ga-FAPI-04, has been previously shown to yield high tumor-to-background ratios (TBR) in patients with various cancers. Recent developments towards an improved compound for therapeutic application have identified FAPI-46 as a promising agent due to a longer tumor retention time in comparison with FAPI-04. Here we present a PET biodistribution and radiation dosimetry study of 68Ga-FAPI-46 in cancer patients. Methods: Six patients with different cancers underwent serial 68Ga-FAPI-46 PET/CT scans at three time points following radiotracer injection: 10 minutes, 1 hour, and 3 hours. The source organs consisted of the kidneys, bladder, liver, heart, spleen, bone marrow, uterus, and body remainder. OLINDA/EXM v.1.1 software was used to fit and integrate the kinetic organ activity data to yield total body and organ time-integrated activity coefficients/residence times and finally organ absorbed doses. Standardized uptake values (SUV) and TBR were generated from the contoured tumor and source organ volumes. Spherical volumes in muscle and blood pool were also obtained for TBR (Tumor SUVmax / Organ SUVmean). Results: At all timepoints, the highest organ SUVmax was observed in the liver. Tumor and organ mean SUVs decreased whereas TBRs in all organs but the uterus increased with time. The highest TBRs at 3 hours were observed with the bone marrow (31.1), muscle (22.8), heart (19.1), and spleen (19.0). Organs with the highest effective doses were the bladder wall (2.41E-03 mSv/MBq), followed by ovaries (1.15E-03 mSv/MBq) and red marrow (8.49E-04mSv/MBq). The average effective total body dose was 7.80E-03 mSv/MBq. Thus for administration of 200 MBq 68Ga-FAPI-46 the effective total body dose is 1.56 mSv ± 0.26 mSv, in addition to approximately 3.7 mSv from one low-dose CT scan done for attenuation correction. Conclusion: 68Ga-FAPI-46 PET/CT has a favorable dosimetry profile with an estimated whole body dose of 5.3 mSv for an administration of 200 MBq (5.4 mCi) of 68Ga-FAPI-46 (1.56± 0.26 mSv from the PET tracer and 3.7 mSv from one low-dose CT scan). The biodistribution study showed high TBRs increasing over time, suggesting high diagnostic performance and favorable tracer kinetics for potential therapeutic applications. Full Article
met What You See Is Not What You Get - On the Accuracy of Voxel-Based Dosimetry in Molecular Radiotherapy By jnm.snmjournals.org Published On :: 2019-12-20T13:25:42-08:00 Due to improvements in quantitative SPECT/CT, voxel-based dosimetry for radionuclide therapies has aroused growing interest as it promises the visualization of absorbed doses at a voxel level. In this work, SPECT/CT-based voxel-based dosimetry of a 3D printed 2-compartment kidney phantom was performed, and the resulting absorbed dose distributions were examined. Additionally, the potential of the PETPVC partial-volume correction tool was investigated. Methods: Both kidney compartments (70% cortex, 30% medulla) were filled with different activity concentrations and SPECT/CT imaging was performed. The images were reconstructed using varying reconstruction settings (iterations, subsets, and post-filtering). Based on these activity concentration maps, absorbed dose distributions were calculated with pre-calculated 177Lu voxel S values and an empirical kidney half-life. An additional set of absorbed doses was calculated after applying PETPVC for partial-volume correction of the SPECT reconstructions. Results: SPECT/CT imaging blurs the two discrete sub-organ absorbed dose values into a continuous distribution. While this effect is slightly improved by applying more iterations, it is enhanced by additional post-filtering. By applying PETPVC, the absorbed dose values are separated into 2 peaks. Although this leads to a better agreement between SPECT/CT-based and nominal values, considerable discrepancies remain. In contrast to the calculated nominal absorbed doses of 7.8/1.6 Gy (cortex/medulla), SPECT/CT-based voxel-level dosimetry resulted in mean absorbed doses ranging from 3.0-6.6 Gy (cortex) and 2.7-5.1 Gy (medulla). PETPVC led to improved ranges of 6.1-8.9 Gy (cortex) and 2.1-5.4 Gy (medulla). Conclusion: Our study shows that 177Lu quantitative SPECT/CT imaging leads to voxel-based dose distributions largely differing from the real organ distribution. SPECT/CT imaging and reconstruction deficiencies might directly translate into unrealistic absorbed dose distributions, thus questioning the reliability of SPECT-based voxel-level dosimetry. Therefore, SPECT/CT reconstructions should be adapted to ensure an accurate quantification of the underlying activity and, therefore, absorbed dose in a volume-of-interest of the expected object size (e.g. organs, organ sub-structures, lesions or voxels). As an example, PETPVC largely improves the match between SPECT/CT-based and nominal dose distributions. In conclusion, the concept of voxel-based dosimetry should be treated with caution. Specifically, it should be kept in mind that the absorbed dose distribution is mainly a convolved version of the underlying SPECT reconstruction. Full Article
met Positron lymphography via intracervical 18F-FDG injection for pre-surgical lymphatic mapping in cervical and endometrial malignancies By jnm.snmjournals.org Published On :: 2020-01-10T04:59:09-08:00 Rationale: The presence of metastasis in local lymph nodes (LNs) is a key factor influencing choice of therapy and prognosis in cervical and endometrial cancers; therefore, the exploration of sentinel LNs (SLNs) is highly important. Currently, however, SLN mapping requires LN biopsy for pathologic evaluation, since there are no clinical imaging approaches that can identify tumor-positive LNs in early stages. Staging lymphadenectomy poses risks, such as leg lymphedema or lymphocyst formation. Furthermore, in 80% to 90% of patients, the explored LNs are ultimately tumor free, meaning the vast majority of patients are unnecessarily subjected to lymphadenectomy. Methods: Current lymphoscintigraphy methods only identify the anatomic location of the SLNs but do not provide information on their tumor status. There are no non-invasive methods to reliably identify metastases in LNs before surgery. We have developed positron lymphography (PLG), a method to detect tumor-positive LNs, where 18F-fluoro-2-deoxy-D-glucose (18F-FDG) is injected interstitially into the uterine cervix the day of surgery, and its rapid transport through the lymphatic vessels to the SLN is then visualized with dynamic positron emission tomography/computed tomography (PET/CT). We previously showed that PLG was able to identify metastatic LNs in animal models. Here, we present the first results from our pilot clinical trial (clinical trials identifier NCT02285192) in 23 patients with uterine or cervical cancer. On the morning of surgery, 18F-FDG was injected into the cervix, followed by an immediate dynamic PET/CT scan of the pelvis and a delayed 1-h whole body scan. Results: There were 3 (15%) node-positive cases on final pathologic analysis, and all LNs (including one with a focus of only 80 tumor cells) were identified by PLG except one node with an 11-mm micrometastasis. There were 2 (10%) false-positive cases with PLG, in which final pathology of the corresponding SLNs was negative for tumor. Methods: Current lymphoscintigraphy methods only identify the anatomic location of the SLNs but do not provide information on their tumor status. There are no non-invasive methods to reliably identify metastases in LNs before surgery. We have developed positron lymphography (PLG), a method to detect tumor-positive LNs, where 18F-fluoro-2-deoxy-D-glucose (18F-FDG) is injected interstitially into the uterine cervix the day of surgery, and its rapid transport through the lymphatic vessels to the SLN is then visualized with dynamic positron emission tomography/computed tomography (PET/CT). We previously showed that PLG was able to identify metastatic LNs in animal models. Here, we present the first results from our pilot clinical trial (clinical trials identifier NCT02285192) in 23 patients with uterine or cervical cancer. On the morning of surgery, 18F-FDG was injected into the cervix, followed by an immediate dynamic PET/CT scan of the pelvis and a delayed 1-h whole body scan. Results: There were 3 (15%) node-positive cases on final pathologic analysis, and all LNs (including one with a focus of only 80 tumor cells) were identified by PLG, except for one node with an 11-mm micrometastasis. There were 2 (10%) false-positive cases with PLG, in which final pathology of the corresponding SLNs was negative for tumor. Conclusion: This first-in-human study of PLG in women with uterine and cervical cancer demonstrates its feasibility and its ability to identify patients with nodal metastases, and warrants further evaluation in additional studies. Full Article
met Repeatability of Quantitative 18F-DCFPyL PET/CT Measurements in Metastatic Prostate Cancer. By jnm.snmjournals.org Published On :: 2020-01-10T04:59:09-08:00 Quantitative evaluation of radiolabeled Prostate-Specific Membrane Antigen (PSMA) PET scans may be used to monitor treatment response in patients with prostate cancer (PCa). To interpret longitudinal differences in PSMA uptake, the intrinsic variability of tracer uptake in PCa lesions needs to be defined. The aim of this study was to investigate the repeatability of quantitative 18F-DCFPyL (a second generation 18F-PSMA-ligand) PET/CT measurements in patients with PCa. Methods: Twelve patients with metastatic PCa were prospectively included, of which 2 were excluded from final analyses. Patients received two whole-body 18F-DCFPyL PET/CT scans (median dose 317 MBq; uptake time 120 min), within median 4 days (range 1-11 days). After semi-automatic (isocontour-based) tumor delineation, the following lesion-based metrics were derived: Tumor-to-Blood ratio (TBRmean, TBRpeak, and TBRmax), Standardized Uptake Value (SUVmean, SUVpeak, SUVmax, normalized to bodyweight), tumor volume, and total lesion tracer uptake (TLU). Additionally, patient-based Total Tumor Volume (sum of PSMA-positive tumor volumes; TTV) and Total Tumor Burden (sum of all lesion TLUs; TTB) were derived. Repeatability was analyzed using repeatability coefficients (RC) and intra-class correlations (ICC). Additionally, the effect of point spread function (PSF) image reconstruction on the repeatability of uptake metrics was evaluated. Results: In total, 36 18F-DCFPyL PET positive lesions were analyzed (up to 5 lesions per patient). RCs of TBRmean, TBRpeak, and TBRmax were 31.8%, 31.7%, and 37.3%, respectively. For SUVmean, SUVpeak, SUVmax the RCs were 24.4%, 25.3% and 31.0%, respectively. All ICC were ≥0.97. Tumor volume delineations were well repeatable, with RC 28.1% for individual lesion volumes and RC 17.0% for TTV. TTB had a RC of 23.2% and 33.4%, when based on SUVmean and TBRmean, respectively. Small lesions (<4.2mL) had worse repeatability for volume measurements. The repeatability of SUVpeak, TLU, and all patient-level metrics were not affected by PSF-reconstruction. Conclusion: 18F-DCFPyL uptake measurements are well repeatable and can be used for clinical validation in future treatment response assessment studies. Patient-based TTV may be preferred for multicenter studies since its repeatability was both high and robust to different image reconstructions. Full Article
met Will SPECT/CT Cameras soon be able to display Absorbed Doses? Dosimetry from Single Activity Concentration Measurements. By jnm.snmjournals.org Published On :: 2020-01-10T04:59:09-08:00 Full Article
met Early prostate-specific antigen changes and clinical outcome following 177Lu-PSMA radionuclide treatment in patients with metastatic castration-resistant prostate cancer By jnm.snmjournals.org Published On :: 2020-02-28T13:52:17-08:00 Background: Prostate-specific antigen (PSA) is widely used to monitor treatment response in patients with metastatic castration-resistant prostate cancer (mCRPC). However, PSA measurements are considered only after 12 wk of treatment. We aimed to evaluate the prognostic value of early PSA changes following 177Lu-labelled prostate specific membrane antigen (LuPSMA) radionuclide treatment in mCRPC patients. Methods: Men who were treated under a compassionate access program with LuPSMA at our institution and had available PSA values at baseline, at 6 wk after treatment initiation were included in this retrospective analysis. Patients were assigned to three groups based on PSA changes: 1) response: ≥30% decline, 2) progression: ≥25% increase and 3) stable: <30% decline and <25% increase. The co-primary endpoints were overall survival and imaging-based progression-free survival. The secondary end points were PSA changes at 12 wk and PSA flare-up. Results: We identified 124 eligible patients with PSA values at 6 wk. A ≥30% decline in PSA at 6 wk was associated with longer overall survival (median 16.7 mo; 95%CI 14.4–19.0) compared with patients with stable PSA (median: 11.8 mo; 95%CI 8.6–15.1; P = 0.007) and progression (median: 6.5 mo; 95%CI 5.2–7.8; p<0.001). Patients with ≥30% decline in PSA at 6 wk also had a reduced risk of imaging-based progression compared with patients with stable PSA (HR: 0.60; 95%CI 0.38–0.94; P = 0.02), while patients with PSA progression had a higher risk of imaging-based progression compared with those showing stable PSA (HR: 3.18; 95%CI 1.95–5.21; p<0.001). The percentage changes of PSA at 6 wk and 12 wk were highly associated (r=0.90; p<0.001). 29 of 31 (94%) patients who experienced early PSA progression at 6 wk achieved biochemical progression at 12 wk. Overall, only 1 of 36 (3%) patients with PSA progression at 6 wk achieved any PSA decline at 12 wk (1% of the entire cohort). Limitations of the study included its retrospective nature and the single center experience. Conclusion: PSA changes at 6 wk after LuPSMA initiation are an early indicator of long-term clinical outcome. Patients progressing by PSA after 6 wk of treatment could benefit from a very early treatment switch decision. PSA flare-up during LuPSMA treatment is very uncommon. Prospective studies are now warranted to validate our findings and potentially inform clinicians earlier on the effectiveness of LuPSMA. Full Article
met Biokinetics of Radiolabeled Monoclonal Antibody BC8: Differences in Biodistribution and Dosimetry among Hematologic Malignancies. By jnm.snmjournals.org Published On :: 2020-03-13T14:12:30-07:00 We reviewed 111In-DOTA-anti-CD45 antibody (BC8) imaging and bone marrow biopsy measurements to ascertain biodistribution and biokinetics of the radiolabeled antibody and to investigate differences based on type of hematologic malignancy. Methods: Serial whole-body scintigraphic images (4 time-points) were obtained after infusion of the 111In-DOTA-BC8 (176-406 MBq) in 52 adult patients with hematologic malignancies (lymphoma, multiple myeloma, acute myeloid leukemia and myelodysplastic syndrome). Counts were obtained for the regions of interest for spleen, liver, kidneys, testicles (in males), and two marrow sites (acetabulum and sacrum) and correction for attenuation and background was made. Bone marrow biopsies were obtained 14-24 hours post-infusion and percent of administered activity was determined. Radiation absorbed doses were calculated. Results: Initial uptake in liver averaged 32% ± 8.4% (S.D.) of administered activity (52 patients), which cleared monoexponentially with biological half-time of 293 ± 157 hours (33 patients) or did not clear (19 patients). Initial uptake in spleen averaged 22% ± 12% and cleared with a biological half-time 271 ± 185 hours (36 patients) or longer (6 patients). Initial uptake in kidney averaged 2.4% ± 2.0% and cleared with a biological half-time of 243 ± 144 hours (27 patients) or longer (9 patients). Initial uptake in red marrow averaged 23% ± 11% and cleared with half-times of 215 ± 107 hours (43 patients) or longer (5 patients). Whole-body retention half-times averaged 198 ± 75 hours. Splenic uptake was higher in the AML/MDS group when compared to the lymphoma group (p ≤ 0.05) and to the multiple myeloma group (p ≤ 0.10). Liver represented the dose-limiting organ. For liver uptake, no significant differences were observed between the three malignancy groups. Average calculated radiation absorbed doses per unit administered activity for a therapy infusions of 90Y-DOTA-BC8 were for red marrow: 470 ± 260 cGy/MBq, liver 1100 ± 330 cGy/MBq, spleen 4120 ± 1950 cGy/MBq, total body 7520 ± 20 cGy/MBq, osteogenic cells 290 ± 200 cGy/MBq, and kidneys 240 ± 200 cGy/MBqR. Conclusion: 111In-DOTA-BC8 had long retention time in liver, spleen, kidneys, and red marrow, and the highest absorbed doses were calculated for spleen and liver. Few differences were observed by malignancy type. The exception was greater splenic uptake among leukemia/MDS group when compared to lymphoma and multiple myeloma groups. Full Article
met OpenDose: open access resources for nuclear medicine dosimetry By jnm.snmjournals.org Published On :: 2020-03-13T14:12:30-07:00 Background: Radiopharmaceutical dosimetry depends on the localization in space and time of radioactive sources and requires the estimation of the amount of energy emitted by the sources deposited within targets. In particular, when computing resources are not accessible, this task can be carried out using precomputed tables of Specific Absorbed Fractions (SAFs) or S values based on dosimetric models. The OpenDose collaboration aims to generate and make freely available a range of dosimetric data and tools. Methods: OpenDose brings together resources and expertise from 18 international teams to produce and compare traceable dosimetric data using 6 of the most popular Monte Carlo codes in radiation transport (EGSnrc/EGS++, FLUKA, GATE, Geant4, MCNP/MCNPX and PENELOPE). SAFs are uploaded, together with their associated statistical uncertainties, in a relational database. S values are then calculated from mono-energetic SAFs, based on the radioisotope decay data presented in the International Commission on Radiological Protection (ICRP) publication 107. Results: The OpenDose collaboration produced SAFs for all source regions and targets combinations of the two ICRP 110 adult reference models. SAFs computed from the different Monte Carlo codes were in good agreement at all energies, with standard deviations below individual statistical uncertainties. Calculated S values were in good agreement with OLINDA 2 (commercial) and IDAC 2.1 (free) software. A dedicated website (www.opendose.org) has been developed to provide easy and open access to all data. Conclusion: The OpenDose website allows the display and download of SAFs and the corresponding S values for 1252 radionuclides. The OpenDose collaboration, open to new research teams, will extend data production to other dosimetric models and implement new free features, such as online dosimetric tools and patient-specific absorbed dose calculation software, together with educational resources. Full Article