en

Offshore cargo rack for use in transferring loads between a marine vessel and an offshore platform

A cargo rack for transferring loads between a marine vessel and an offshore marine platform provides a frame having a front, a rear, and upper and lower end portions. The lower end of the frame has a perimeter beam base, a raised floor and a pair of open-ended parallel fork tine tubes that communicate with the perimeter beam at the front and rear of the frame. The frame includes a plurality of fixed side walls extending upwardly from the perimeter beam. A plurality of gates are movably mounted on the frame, each gate being movable between open and closed positions, the gates enabling a forklift to place loads on the floor. The frame has vertically extending positioning beams that segment the floor into a plurality of load-holding positions. Each load holding position has positioning beams that laterally hold a load module in position on the floor.




en

Apparatus and method for applying an underlayment layer to trucking cargo

An apparatus and method for applying an underlayment layer to trucking cargo are provided. The underlayment layer may be formed into a roll with a rod disposed therethrough. The roll may be supported by a frame. The roll can be configured to move vertically with respect to the ground. A trailer carrying trucking cargo can be stationed beneath the frame. The underlayment layer may unwound and dispensed from the roll. In order to drape the trucking cargo with the underlayment layer, the roll may be moved horizontally over the frame in addition to or alternatively to having the trucking cargo driven horizontally with respect to the roll.




en

Bimodal clock generator

An apparatus relates generally to a clock generator is disclosed. The clock generator is coupled to receive an input clock signal and further coupled to provide an output clock signal. An address and control register is coupled to receive an address signal and the output clock signal. An access generator is coupled to receive the output clock signal. The clock generator includes: an input node coupled to receive the input clock signal; at least one pulse generator coupled to the input node to receive the input clock signal and further coupled to provide a clock control signal; and a control gate coupled to the input node to receive the input signal and further coupled to the at least one pulse generator to receive the clock control signal. The clock control signal is provided in a non-toggling state for a high-frequency mode and in a toggling state for a low-frequency mode.




en

High frequency synchronizer

Techniques for resolving a metastable state in a synchronizer are described herein. In one embodiment, a circuit for resolving a metastable state in a synchronizer comprises a signal delay circuit coupled to a node of the synchronizer, wherein the signal delay circuit is configured to delay a data signal at the node to produce a delayed data signal, and a transmission circuit coupled to the signal delay circuit, wherein the transmission circuit is configured to couple the delayed data signal to the node after a delay from a first edge of a clock signal.




en

Methods for operating a memory interface circuit including calibration for CAS latency compensation in a plurality of byte lanes

A method for quickly calibrating a memory interface circuit from time to time in conjunction with operation of a functional circuit is described. The method uses controlling the memory interface circuit with respect to read data capture for byte lanes, including controlling CAS latency compensation for the byte lanes. In the method control settings for controlling CAS latency compensation are determined and set according to a dynamic calibration procedure performed from time to time in conjunction with functional operation of a circuit system containing one or more memory devices connected to the memory interface circuit. In the method, determining and setting the control settings for controlling CAS latency compensation is performed independently and parallely in each of the byte lanes.




en

Driving circuit with zero current shutdown and a driving method thereof

Methods and circuits related to a driving circuit with zero current shutdown are disclosed. In one embodiment, a driving circuit with zero current shutdown can include: a linear regulating circuit that receives an input voltage source, and outputs an output voltage; a start-up circuit having a threshold voltage, the start-up circuit receiving an external enable signal; a first power switch receiving both the output voltage of the linear regulating circuit and the external enable signal, and that generates an internal enable signal, the internal enable signal being configured to drive a logic circuit; when the external enable signal is lower than a threshold voltage, the driving circuit is not effective; when the external enable signal is higher than the threshold voltage, the start-up circuit outputs a first current; and where the output voltage at the first output terminal is generated by the linear regulating circuit based on the first current.




en

System and methods for generating unclonable security keys in integrated circuits

A system and methods that generates a physical unclonable function (“PUF”) security key for an integrated circuit (“IC”) through use of equivalent resistance variations in the power distribution system (“PDS”) to mitigate the vulnerability of security keys to threats including cloning, misappropriation and unauthorized use.




en

Intelligent current drive for bus lines

An intelligent current drive is disclosed that couples an active current source to a bus line to increase the rate of pull-up and decouples the active current source from the bus line prior to reaching the desired pull-up voltage.




en

Heterogeneous programmable device and configuration software adapted therefor

A method of configuring a programmable integrated circuit device with a user logic design includes analyzing the user logic design to identify unidirectional logic paths within the user logic design and cyclic logic paths within the user logic design, assigning the cyclic logic paths to logic in a first portion of the programmable integrated circuit device that operates at a first data rate, assigning the unidirectional logic paths to logic in a second portion of the programmable integrated circuit device that operates at a second data rate lower than the first data rate, and pipelining the unidirectional data paths in the second portion of the programmable integrated circuit device to compensate for the lower second data rate. A programmable integrated circuit device adapted to carry out such method may have logic regions operating at different rates, including logic regions with programmably selectable data rates.




en

Method for downloading a configuration file in a programmable circuit, and apparatus comprising said component

The present invention relates to a method for downloading a binary configuration file in a programmable circuit implemented in a device. The device comprises at least one central processing unit, a plurality of connectors, and a programmable circuit enabling all or a part of the signals received by said connectors to be processed and transmitted to at least one other circuit of the device. The device analyzes the signals present on the connectors in order to define what other devices are connected and whether the connections are operational. Then, a configuration file is selected from among a set of configuration files according to the operational connections and is downloaded from a memory of the device into the programmable circuit. The invention also relates to a device having a component programmed according to the method previously described.




en

Sequential state elements in triple-mode redundant (TMR) state machines

The disclosure relates generally to triple-redundant sequential state (TRSS) machines formed as integrated circuits on a semiconductor substrate, such as CMOS, and computerized methods and systems of designing the triple-redundant sequential state machines. Of particular focus in this disclosure are sequential state elements (SSEs) used to sample and hold bit states. The sampling and holding of bits states are synchronized by a clock signal thereby allowing for pipelining in the TRSS machines. In particular, the clock signal may oscillate between a first clock state and a second clock state to synchronize the operation of the SSE according to the timing provided by the clock states. The SSEs has a self-correcting mechanism to protect against radiation induced soft errors. The SSE may be provided in a pipeline circuit of a TRSS machine to receive and store a bit state of bit signal generated by combinational circuits within the pipeline circuit.




en

Placement of storage cells on an integrated circuit

A method for configuring the placement of a plurality of storage cells on an integrated circuit includes grouping the plurality of storage cells into a plurality of words, where each of the plurality of words is protected by an error control mechanism. The method also includes placing each of the storage cells on the integrated circuit such that a distance between any two of the storage cells belonging to one of the plurality of words is greater than a minimum distance. The minimum distance is configured such that a probability of any of the plurality of words experiencing multiple radiation induced errors is below a threshold value.




en

Operational time extension

An integrated circuit (IC) with a novel configurable routing fabric is provided. The configurable routing fabric has signal paths that propagate signals between user registers on user clock cycles. Each signal path includes a set of configurable storage elements and a set of configurable logic elements. Each configurable storage element in the path is reconfigurable on every sub-cycle of the user clock cycle to either store an incoming signal or to pass the incoming signal transparently.




en

Single ended configurable multi-mode driver

Embodiments of the invention are generally directed to a single-ended configurable multi-mode driver. An embodiment of an apparatus includes an input to receive an input signal, an output to transmit a driven signal generated from the input signal on a communication channel, a mechanism for independently configuring a termination resistance of the driver apparatus, and a mechanism for independently configuring a voltage swing of the driven signal without modifying a supply voltage for the apparatus.




en

Oscillation frequency adjusting circuit

According to one embodiment, a first oscillator has an oscillation frequency that is changed depending on a temperature. A second oscillator has different temperature characteristics from the first oscillator. An on-chip heater heats the first oscillator and the second oscillator. A counter counts a first oscillation signal of the first oscillator. An ADPLL generates a third oscillation signal on the basis of a second oscillation signal of the second oscillator and corrects the frequency of the third oscillation signal on the basis of a count value of the counter.




en

Single differential-inductor VCO with implicit common-mode resonance

A circuit for a single differential-inductor oscillator with common-mode resonance may include a tank circuit formed by coupling a first inductor with a pair of first capacitors; a cross-coupled transistor pair coupled to the tank circuit; and one or more second capacitors coupled to the tank circuit and the cross-coupled transistors. The single differential-inductor oscillator may be configured such that a common mode (CM) resonance frequency (FCM) associated with the single differential-inductor oscillator is at twice a differential resonance frequency (FD) associated with the single differential-inductor oscillator.




en

Circuit for measuring the resonant frequency of nanoresonators

The present disclosure relates to nanoresonator oscillators or NEMS (nanoelectromechanical system) oscillators. A circuit for measuring the oscillation frequency of a resonator is provided, comprising a first phase-locked feedback loop locking the frequency of a controlled oscillator at the resonant frequency of the resonator, this first loop comprising a first phase comparator. Furthermore, a second feedback loop is provided which searches for and stores the loop phase shift introduced by the resonator and its amplification circuit when they are locked at resonance by the first loop. The first and the second loops operate during a calibration phase. A third self-oscillation loop is set up during an operation phase. It directly links the output of the controllable phase shifter to the input of the resonator. The phase shifter receives the phase-shift control stored by the second loop.




en

Resonator element, resonator, electronic device, electronic apparatus, and mobile object

A resonator element includes a substrate including a first principal surface and a second principal surface respectively forming an obverse surface and a reverse surface of the substrate, and vibrating in a thickness-shear vibration mode, a first excitation electrode disposed on the first principal surface, and a second excitation electrode disposed on the second principal surface, and being larger than the first excitation electrode in a plan view, the first excitation electrode is disposed so as to fit into an outer edge of the second excitation electrode in the plan view, and the energy trap confficient M fulfills 15.5≦M≦36.7.




en

Resonator element, resonator, electronic device, electronic apparatus, and mobile object

A resonator element includes a substrate vibrating in a thickness-shear vibration mode, a first excitation electrode disposed on one principal surface of the substrate, and has a shape obtained by cutting out four corners of a quadrangle, and a second excitation electrode disposed on the other principal surface of the substrate, and a ratio (S2/S1) between the area S1 of the quadrangle and the area S2 of the first excitation electrode fulfills 87.7%≦(S2/S1)




en

Oscillating device, oscillating element and electronic apparatus

An oscillating device includes a temperature compensated oscillator that compensates a frequency temperature characteristic in a temperature compensation range including apart of a first temperature range, and a temperature control circuit that includes a heater and controls a temperature of a quartz crystal resonator of the temperature compensated oscillator into a second temperature range included in the temperature compensation range. Further, the temperature compensation range of the temperature compensated oscillator may include a part of the first temperature range in which compensation can be performed by first-order approximation.




en

Current reused stacked ring oscillator and injection locked divider, injection locked multiplier

A phase locked loop includes a voltage controlled oscillator and a frequency divider or frequency multiplier. The voltage controlled oscillator and the frequency divider/multiplier are coupled together in a stacked configuration. A drive current is supplied to the voltage controlled oscillator. The drive current passes from the voltage controlled oscillator to the frequency divider/multiplier, thereby driving the frequency divider/multiplier with the same drive current that was supplied to the voltage controlled oscillator.




en

Self-feedback random generator and method thereof

A self-feedback random generator comprises a digital-to-analog converter, a digital oscillator, a frequency-modulating unit and a first D-type flip-flop. The digital-to-analog converter receives a digital random-code signal and the digital random-code signal is converted to corresponding analog random signal. The frequency-modulating unit modulates frequency of first digital oscillating signal so as to increase random of frequency of first digital oscillating signal according to voltage value of the analog random signal, and accordingly outputs a second digital oscillating signal. The first D-type flip-flop receives the second digital oscillating signal and a clock signal, and reads the second digital oscillating signal through utilizing the clock signal so as to outputs the digital random-code signal, wherein frequency of the clock signal is smaller than frequency of the first digital oscillating signal, and random of frequency of the second digital oscillating signal corresponds to random of the digital random-code signal.




en

Oscillator for generating a signal comprising a terahertz-order frequency using the beat of two optical waves

The invention concerns an oscillator generating a wave composed of a frequency of on the order of terahertz from a beat of two optical waves generated by a dual-frequency optical source. The oscillator includes a modulator the transfer function of which is non-linear for generating harmonics with a frequency of less than one terahertz for each of the optical waves generated by the dual-frequency optical source, an optical detector able to detect at least one harmonic for each of the optical waves generated by the dual-frequency optical source and transforming the harmonics detected into an electrical signal, a phase comparator for comparing the electrical signal with a reference electrical signal, and a module for controlling at least one element of the dual-frequency optical source with a signal obtained from the signal resulting from the comparison.




en

Oven controlled crystal oscillator and manufacturing method thereof

The present invention discloses an Oven Controlled Crystal Oscillator and a manufacturing method thereof. The Oven Controlled Crystal Oscillator comprises a thermostatic bath, a heating device, a PCB and a signal generating element, where the signal generating element is used for generating a signal of a certain frequency, the heating device, the PCB and the signal generating element are mounted in the thermostatic bath, the signal generating element is mounted in a groove formed on one side of the PCB, while the heating device is mounted against the other side of the PCB that is opposite to the groove. The signal generating element may be a passive crystal resonator or an active crystal oscillator. The Oven Controlled Crystal Oscillator according to the invention is advantageous for a small volume and a high temperature control precision.




en

Quantum interference device, atomic oscillator, and moving object

An atomic oscillator includes: a gas cell which includes two window portions having a light transmissive property and in which metal atoms are sealed; a light emitting portion that emits excitation light to excite the metal atoms in the gas cell; a light detecting portion that detects the excitation light transmitted through the gas cell; a heater that generates heat; and a connection member that thermally connects the heater and each window portion of the gas cell to each other.




en

Circuit and method for generating oscillating signals

An oscillator module includes a first MOS transistor and a capacitor. The capacitor is coupled between a gate and source of the first MOS transistor. The drain of the first MOS transistor receives a first bias current and generates an oscillating output signal. A switching circuit operates in response to the oscillating output signal to selective charge and discharge the capacitor. A current sourcing circuit is configured to generate the bias current. The current sourcing circuit includes a second MOS transistor which has an identical layout to the first MOS transistor and receives a second bias current. A resistor is coupled between a gate and source of the second MOS transistor. The current sourcing circuit further includes a current mirror having an input configured to receive a reference current passing through the resistor and generate the first and second bias currents.




en

Digital system and method of estimating quasi-harmonic signal non-energy parameters using a digital Phase Locked Loop

The present invention proposes a digital system and method of measuring (estimating) non-energy parameters of the signal (phase, frequency and frequency rate) received in additive mixture with Gaussian noise. The first embodiment of the measuring system consists of a PLL system tracking variable signal frequency, a block of NCO full phase computation (OFPC), a block of signal phase primary estimation (SPPE) and a first type adaptive filter filtering the signal from the output of SPPE. The second embodiment of the invention has no block SPPE, and NCO full phase is fed to the input of a second type adaptive filter. The present invention can be used in receivers of various navigation systems, such as GPS, GLONASS and GALILEO, which provide precise measurements of signal phase at different rates of frequency change, as well as systems using digital PLLs for speed measurements.




en

Crystal-less clock generator and operation method thereof

A crystal-less clock generator (CLCG) and an operation method thereof are provided. The CLCG includes a first oscillation circuit, a second oscillation circuit, and a control circuit. The first oscillation circuit is controlled by a control signal for generating an output clock signal of the CLCG. The second oscillation circuit generates a reference clock signal. The control circuit is coupled to the first oscillation circuit for receiving the output clock signal and coupled to the second oscillation circuit for receiving the reference clock signal. The control circuit is used to generate the control signal for the first oscillation circuit according to the relationship between the output clock signal and the reference clock signal.




en

Voltage controlled oscillator with a large frequency range and a low gain

A system is disclosed for a voltage controlled oscillator (“VCO”) having a large frequency range and a low gain. Passive or active circuitry is introduced between at least one VCO cell in the voltage controlled oscillator and the voltage source for the VCO cell which reduces a gain value for the VCO to maintain stability of the system.




en

Method for operating control equipment of a resonance circuit and control equipment

The invention relates to a method for operating control equipment (1) of a resonance circuit (2), wherein the control equipment (1) comprises at least two circuit elements (8, 9) connected in series, in particular each comprising a recovery diode (13, 14) connected in parallel, between which a connection (6) of the resonance circuit (2) is connected. According to the invention, the circuit elements (8, 9) are actuated as a function of the voltage detected at the connection (6). The invention further relates to control equipment (1) of a resonance circuit (2).




en

Temperature compensation method and crystal oscillator

Embodiments of the present invention provide a temperature compensation method and a crystal oscillator, where the crystal oscillator includes a crystal oscillation circuit unit, a temperature sensor unit, an oscillation controlling unit, a relative temperature calculating unit, and a temperature compensating unit. The temperature sensor unit measures a measured temperature of the crystal oscillation circuit unit; the relative temperature calculating unit obtains a temperature difference between the measured temperature and a reference temperature; the temperature compensating unit obtains a temperature compensation value corresponding to the temperature difference from a temperature-frequency curve; and the oscillation controlling unit generates a frequency control signal, according to a frequency tracked by a communications AFC device and the temperature compensation value, thereby controlling a frequency of the crystal oscillation circuit unit to work on the tracked frequency.




en

Digital phase locked loop having insensitive jitter characteristic for operating circumstances

Disclosed are a phase locked loop (PLL) of a digital scheme and a method thereof. More specifically, disclosed are a digital phase locked loop having a time-to-digital converter (TDC), a digital loop filter (DLF), and a digitally controlled oscillator (DCO), and that is designed to have a constant jitter characteristic at all times even though an operating condition of a circuit varies according to a process, voltage, temperature (PVT) change, and a method thereof.




en

Current output control device, current output control method, digitally controlled oscillator, digital PLL, frequency synthesizer, digital FLL, and semiconductor device

A current output control device is provided that includes: a current cell array section including plural current cell circuits that are each connected in parallel between a first terminal (power source) and a second terminal (ground) that connect between the first terminal and the second terminal in by operation ON so as to increase control current flowing between the first terminal and the second terminal; and a code conversion section (decoder) that generates signals (row codes, column codes) to ON/OFF control current cells so as to change the number of current cells that connect the first terminal and the second terminal according to change in an externally input code and that inputs the generated signals to the current cell array section.




en

Variability and aging sensor for integrated circuits

A ring-oscillator-based on-chip sensor (OCS) includes a substrate having a semiconductor surface upon which the OCS is formed. The OCS includes an odd number of digital logic stages formed in and on the semiconductor surface including a first stage and a last stage each including at least one NOR gate including a first gate stack and/or a NAND gate including a second gate stack. A feedback connection is from an output of the last stage to an input of the first stage. At least one discharge path including at least a first p-channel metal-oxide semiconductor (PMOS) device is coupled between the first gate stack and a ground pad, and/or at least one charge path including at least a first n-channel metal-oxide semiconductor (NMOS) device is coupled between the second gate stack a power supply pad.




en

Method for varying oscillation frequency of high frequency oscillator

The switching element is provided in a state of being electromagnetically coupled to the cavity resonator of the high frequency oscillator; the bias voltage applying terminal is connected to one electrode of the switching element; another electrode of the switching element is electrically connected to the cavity resonator (the anode shell in FIG. 1); the metal plate having a size enough for reflecting an electric wave to be transmitted before and after the switching element in a high-frequency manner is provided at any one end of the switching element; and by applying a bias voltage to the switching element and varying that, a reactance of the switching element is changed and a resonance frequency of the cavity resonator is varied. By this method, an oscillation frequency can be varied greatly relative to a small change in a bias voltage.




en

Vibration element, vibrator, oscillator, electronic apparatus, and moving object

A vibration element includes a piezoelectric substrate including a vibrating section and a thick section having a thickness larger than that of the vibrating section. The thick section includes a first thick section provided along a first outer edge of the vibrating section, a second thick section provided along a second outer edge, and a third thick section provided along another first outer edge. An inclined outer edge section that intersects with each of an X axis and a Z' axis is provided in a tip section of the piezoelectric substrate.




en

Thickness shear mode resonator sensors and methods of forming a plurality of resonator sensors

Arrays of resonator sensors include an active wafer array comprising a plurality of active wafers, a first end cap array coupled to a first side of the active wafer array, and a second end cap array coupled to a second side of the active wafer array. Thickness shear mode resonator sensors may include an active wafer coupled to a first end cap and a second end cap. Methods of forming a plurality of resonator sensors include forming a plurality of active wafer locations and separating the active wafer locations to form a plurality of discrete resonator sensors. Thickness shear mode resonator sensors may be produced by such methods.




en

Direct acting solenoid actuator

A solenoid actuator comprising an armature member that engages a spool including a spool cap on an end of the spool that is axially movable relative to the spool. A bore in the spool allows fluid to flow from a control port to the spool cap, such that pressure is established in the spool cap. The pressure established in the spool cap acts on the spool with a force directly proportional to the control pressure and the fluid-contacting area inside the spool cap.




en

Solenoid valve having air tap structure

A solenoid valve includes a plunger, an actuating device, and an air tap assembly. The plunger is connected to the actuating device. The air tap assembly is secured to the actuating device and has a cavity. The air tap assembly includes a main body, and first and second tubes. The first tube protrudes from the main body and defines a first through hole. The main body defines a second through hole communicated with the first through hole and the cavity. The second tube defines a third through hole. The main body defines a fourth through hole extended from the third through hole and a fifth through hole extended from the fourth through hole to the cavity. The fifth and second through holes are parallel. The plunger head is used to seal the second and fifth through holes.




en

Assembly structure of electronic control unit and coil assembly of solenoid valve for electronic brake system

An assembly structure of an electronic control unit and a coil assembly of a solenoid valve for an electronic brake system connected to the electronic control unit having a printed circuit board and applying power to the solenoid valve. The coil assembly is penetrated to allow an upper portion of the solenoid valve to be fitted thereinto, and includes a cylindrical bobbin provided with a coil and a coil case. The electronic control unit is provided with a housing having an insertion groove and joined to the hydraulic control unit, the printed circuit board being disposed spaced apart from the coil assembly, and the housing is provided with an elastic member having one end contacting the printed circuit board and the other end contacting the coil case. The elastic member is configured with a coil spring to produce different elastic forces.




en

Switching valve having a valve element movable in a housing

The invention provides a switching valve having a valve element which is movable in a housing, an actuating apparatus acting on the valve element in a first direction and a spring apparatus charging the valve element in a second direction. According to the invention, the first and second directions are in opposition and the spring apparatus has a progressive spring characteristic.




en

Flush adaptor for use with a valve fitment assembly for cleaning of the assembly

A flush adaptor for use with a valve fitment assembly for dispensing liquids from a container; wherein the flush adaptor comprises an outer ring-collar; a flange with an edge molded to the bottom of the outer ring-collar; an interior ring-collar adjacent to the outer ring-collar; a ridge molded in the interior ring-collar; a seat molded onto the interior ring-collar and a pin molded into the interior ring-collar which keeps the valve in an open position; and a hollow tube molded into the adaptor to allow the flow of liquid through the adaptor and into the fitment assembly; whereby the flush adaptor allows for cleaning of the assembly and any tubes connected thereto.




en

Power-efficient actuator assemblies and methods of manufacture

Power-efficient actuator apparatus and methods. In one exemplary embodiment, the actuator assembly utilizes a shape memory alloy (SMA) filament driven by an electronic power source to induce movement in the underlying assembly to actuate a load (e.g., water valve). In addition, a circuit board is included which allows the actuator assembly to be readily incorporated or retrofit into a wide range of systems such that the signal characteristics of the supply line can, among other applications, be conditioned in order to protect the SMA filament. Furthermore, the circuit board can also readily be adapted for use with “green” power sources such as photovoltaic systems and the like. Methods for manufacturing and utilizing the aforementioned actuator assembly are also disclosed.




en

Direct acting solenoid actuator

A direct acting solenoid actuator includes an armature and associated push pin that are suspended from certain fixed solenoid components, such as a pole piece and/or flux sleeve, by a fully floating cage of rolling elements. The fixed solenoid component may comprise a pole piece and/or a flux sleeve. The pole piece may include stops to limit movement of the cage of rolling elements in the axial direction.




en

Water valve with supported opening function

Water valves and methods of regulating fluid flow for low ambient pressure water sources that reduce the amount of filtration needed for valve mechanisms operating in the water source.




en

Solenoid valve, in particular for slip-controlled motor vehicle braking systems

A solenoid valve, the magnet armature of which is designed to be movable relative to a first valve-closing element, for which purpose the first valve-closing element is accommodated telescopically in a coupling element attached to the magnet armature, wherein the coupling element is guided along the inner wall of a guide sleeve inserted in the valve housing in order to align the magnet armature precisely with the first valve-closing element in the direction of a second valve-closing element which is likewise accommodated in the guide sleeve.




en

Valve having reduced operating force and enhanced throttling capability

A flow control valve element has a generally spherical ball. An inlet is formed in the ball. An outlet is also formed in the ball, the outlet opposing the inlet. A hollowed-out portion extends between the inlet and the outlet. A pair of opposing flats are formed in the ball, the flats each having a first flat portion formed in an external portion of the ball and an opposing second flat portion formed in the hollowed-out portion of the ball.




en

Method for operating a processing system, in which product units having different product characteristics are processed

A method for operating a processing system, in which product units of different formats are processed. The processing system contains a plurality of processing devices that are arranged one after the other in a processing line. In the event of a format changeover, certain component arrangements arranged in the processing system must be adapted to the new product format. In the event of an upcoming format change, a gap in the conveyed goods is generated while the conveying operation is maintained, wherein the gap in the conveyed goods runs through the processing system along the processing devices. As soon as the gap in the conveyed goods runs through a component arrangement to be adapted to the new format, the format is changed over at the component arrangement while the gap in the conveyed goods runs through the component arrangement.




en

Image forming apparatus with alignment unit

An image forming apparatus may include an image forming unit, a stacking unit, a control unit, and an alignment unit. The image forming unit forms an image on a recording material having a type. The stacking unit stacks the recording material on which the image formation is formed by the image forming unit. The control unit sets a predetermined number of sheets to a number that corresponds to the type of the recording material. The alignment unit aligns the recording material if the predetermined number of sheets of the recording material is stacked by the stacking unit.




en

Initiating an alignment correction cycle

In an embodiment, a processor-readable medium stores code representing instructions that when executed by a processor cause the processor to receive sheet length data for two paper sheets of a same standard dimension passing consecutively through a printing device. The processor calculates a length difference between the two paper sheets, and when the length difference exceeds a two-sheet threshold, it initiates an alignment correction cycle in a paper finishing device.