tan Stp1 loss of function promotes {beta}-lactam resistance in S. aureus that is independent of classical genes [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-16T08:17:37-07:00 β-lactam resistance in Staphylococcus aureus limits treatment options. Stp1 and Stk1, a serine-threonine phosphatase and kinase respectively, mediate serine-threonine kinase (STK) signaling. Loss of function point mutations in stp1 were detected among laboratory passaged, β-lactam resistant S. aureus strains lacking mecA and blaZ, the major determinants of β-lactam resistance in the bacteria. Loss of Stp1 function facilitates β-lactam resistance of the bacteria. Full Article
tan ZN148 - a modular synthetic metallo-{beta}-lactamase inhibitor reverses carbapenem-resistance in Gram-negative pathogens in vivo [Experimental Therapeutics] By aac.asm.org Published On :: 2020-03-16T08:17:37-07:00 Carbapenem-resistant Gram-negative pathogens are a critical public health threat and there is an urgent need for new treatments. Carbapenemases (β-lactamases able to inactivate carbapenems) have been identified in both serine β-lactamase (SBL) and metallo β-lactamase (MBL) families. The recent introduction of SBL carbapenemase-inhibitors has provided alternative therapeutic options. Unfortunately, there are no approved inhibitors of MBL-mediated carbapenem-resistance and treatment options for infections caused by MBL-producing Gram-negatives are limited. Here, we present ZN148, a zinc-chelating MBL-inhibitor capable of restoring the bactericidal effect of meropenem and in vitro clinical susceptibility to carbapenems in >98% of a large international collection of MBL-producing clinical Enterobacterales strains (n=234). Moreover, ZN148 was able to potentiate the effect of meropenem against NDM-1-producing Klebsiella pneumoniae in a murine neutropenic peritonitis model. ZN148 showed no inhibition of the human zinc-containing enzyme glyoxylase II at 500 μM and no acute toxicity was observed in an in vivo mouse model with cumulative dosages up to 128 mg/kg. Biochemical analysis showed a time-dependent inhibition of MBLs by ZN148 and removal of zinc ions from the active site. Addition of exogenous zinc after ZN148 exposure only restored MBL activity by ~30%, suggesting an irreversible mechanism of inhibition. Mass-spectrometry and molecular modelling indicated potential oxidation of the active site Cys221 residue. Overall, these results demonstrate the therapeutic potential of a ZN148-carbapenem combination against MBL-producing Gram-negative pathogens and that ZN148 is a highly promising MBL inhibitor, capable of operating in a functional space not presently filled by any clinically approved compound. Full Article
tan The Als3 cell wall adhesin plays a critical role in human Serum amyloid A1 (SAA1)-induced cell death and aggregation in Candida albicans [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-23T08:47:35-07:00 Antimicrobial peptides and proteins play critical roles in the host defense against invading pathogens. We recently discovered that recombinantly expressed human and mouse serum amyloid A1 (rhSAA1 and rmSAA1) proteins have potent antifungal activities against the major human fungal pathogen Candida albicans. At high concentrations, rhSAA1 disrupts C. albicans membrane integrity and induces rapid fungal cell death. In the current study, we find that rhSAA1 promotes cell aggregation and targets the C. albicans cell wall adhesin Als3. Inactivation of ALS3 in C. albicans leads to a striking decrease in cell aggregation and cell death upon rhSAA1 treatment, suggesting that Als3 plays a critical role in SAA1 sensing. We further demonstrate that deletion of the transcriptional regulators controlling the expression of ALS3, such as AHR1, BCR1, and EFG1 in C. albicans results in similar effects to that of the als3/als3 mutant upon rhSAA1 treatment. Global gene expression profiling indicates that rhSAA1 has a discernible impact on the expression of cell wall- and metabolism-related genes, suggesting that rhSAA1 treatment could lead to a nutrient starvation effect on C. albicans cells. Full Article
tan Structure and molecular recognition mechanism of IMP-13 metallo-{beta}-lactamase [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-23T08:47:35-07:00 Multi-drug resistance among Gram-negative bacteria is a major global public health threat. Metallo-β-lactamases (MBLs) target the most widely-used antibiotic class, the β-lactams, including the most recent-generation carbapenems. Interspecies spread renders these enzymes a serious clinical threat and there are no clinically-available inhibitors. We present crystal structures of IMP-13, a structurally-uncharacterized MBL from Gram-negative Pseudomonas aerugionasa found in clinical outbreaks globally, and characterize the binding using solution NMR-spectroscopy and molecular-dynamics simulations. Crystal structures of apo IMP-13 and bound to four clinically-relevant carbapenem antibiotics (doripenem, ertapenem, imipenem and meropenem) are presented. Active site plasticity and the active-site loop, where a tryptophan residue stabilizes the antibiotic core scaffold, are essential to the substrate-binding mechanism. The conserved carbapenem scaffold plays the most significant role in IMP-13 binding, explaining the broad substrate specificity. The observed plasticity and substrate-locking mechanism provide opportunities for rational drug design of novel metallo-β-lactamase inhibitors, essential in the fight against antibiotic resistance. Full Article
tan Reconciling the potentially irreconcilable? Genotypic and phenotypic amoxicillin-clavulanate resistance in Escherichia coli [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-23T08:47:35-07:00 Resistance to amoxicillin-clavulanate, a widely used beta-lactam/beta-lactamase inhibitor combination antibiotic, is rising globally, yet susceptibility testing remains challenging. To test whether whole-genome sequencing (WGS) could provide a more reliable assessment of susceptibility than traditional methods, we predicted resistance from WGS for 976 E. coli bloodstream infection isolates from Oxfordshire, UK, comparing against phenotypes from the BD Phoenix (calibrated against EUCAST guidelines). 339/976 (35%) isolates were amoxicillin-clavulanate resistant. Predictions based solely on beta-lactamase presence/absence performed poorly (sensitivity 23% (78/339)) but improved when genetic features associated with penicillinase hyper-production (e.g. promoter mutations, copy number estimates) were considered (sensitivity 82% (277/339); p<0.0001). Most discrepancies occurred in isolates with peri-breakpoint MICs. We investigated two potential causes; the phenotypic reference and the binary resistant/susceptible classification. We performed reference standard, replicated phenotyping in a random stratified subsample of 261/976 (27%) isolates using agar dilution, following both EUCAST and CLSI guidelines, which use different clavulanate concentrations. As well as disagreeing with each other, neither agar dilution phenotype aligned perfectly with genetic features. A random-effects model investigating associations between genetic features and MICs showed that some genetic features had small, variable and additive effects, resulting in variable resistance classification. Using model fixed-effects to predict MICs for the non-agar dilution isolates, predicted MICs were in essential agreement (±1 doubling dilution) with observed (BD Phoenix) MICs for 691/715 (97%) isolates. This suggests amoxicillin-clavulanate resistance in E. coli is quantitative, rather than qualitative, explaining the poorly reproducible binary (resistant/susceptible) phenotypes and suboptimal concordance between different phenotypic methods and with WGS-based predictions. Full Article
tan Impact of KPC-production and high-level meropenem resistance on all-cause mortality of ventilator-associated pneumonia in association with Klebisella pneumoniae [Clinical Therapeutics] By aac.asm.org Published On :: 2020-03-23T08:47:35-07:00 Objectives: Carbapenemase-producing Enterobacterales and specifically KPC-producing Klebsiella pneumoniae (KPC-Kp) are rapidly spreading worldwide. The prognosis of ventilator-associated pneumonia (VAP) caused by KPC-producing Klebsiella pneumoniae (KPC-Kp) is not well known. Our study tries to assess whether ventilator-associated pneumonia caused by a KPC-Kp strain is associated with higher all-cause mortality than if caused by carbapenem-susceptible isolates.Study design and methods: This is a retrospective cohort study of patients with VAP due to K. pneumoniae from a 35-bed polyvalent Intensive Care Unit in a university hospital (> 40,000 annual admissions) between January 2012 and December 2016. Adjusted multivariate analysis was used to study the association of KPC-Kp with 30-day all-cause mortality (Cox regression).Results. We analyze 69 cases of K. pneumoniae VAP of which 39 were produced by a KPC-Kp strain with high-level resistance to meropenem (MIC > 16 mg/mL). All-cause mortality at 30 days was 41% in the KPC-Kp group (16/39) and 33.3% in the carbapenem-susceptible cases (10/30). KPC-Kp etiology was not associated with higher mortality when controlled for confounders (adjusted hazard ratio [lsqb]HR[rsqb] 1.25; 95% CI: 0.46–3.41). Adequate targeted therapy (HR 0.03; 95% CI: <0.01–0.23) was associated with all-cause mortality.Conclussion. Assuming the limitations due to the available sample size, the prognosis of VAP caused by KPC-Kp is similar to VAPs caused by carbapenem-susceptible K. pneumoniae when appropriate treatment is used. Full Article
tan Mutations in ArgS arginine-tRNA synthetase confer additional antibiotic-tolerance protection to ESBL-producing Burkholderia thailandensis [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-23T08:47:35-07:00 Highly conserved PenI-type class A β-lactamase in pathogenic members of Burkholderia can evolve to extended-spectrum β-lactamase (ESBL), which exhibits hydrolytic activity towards third-generation cephalosporins, while losing its activity towards the original penicillin substrates. We describe three single-amino-acid-substitution mutations in the ArgS arginine-tRNA synthetase that confer extra antibiotic tolerance protection to ESBL-producing Burkholderia thailandensis. This pathway can be exploited to evade antibiotic tolerance induction in developing therapeutic measures against Burkholderia species, targeting their essential aminoacyl-tRNA synthetases. Full Article
tan Metronidazole-Treated Porphyromonas gingivalis Persisters Invade Human Gingival Epithelial Cells and Perturb Innate Responses [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-23T08:47:35-07:00 Periodontitis as a biofilm-associated inflammatory disease is highly prevalent worldwide. It severely affects oral health and yet closely links to systemic diseases like diabetes and cardiovascular disease. Porphyromonas gingivalis as a ‘keystone' periodontopathogen drives the shift of microbe-host symbiosis to dysbiosis, and critically contributes to the pathogenesis of periodontitis. Persisters are a tiny subset of biofilm-associated microbes highly tolerant to lethal treatment of antimicrobials, and notably metronidazole-tolerant P. gingivalis persisters have recently been identified by our group. This study further explored the interactive profiles of metronidazole-treated P. gingivalis persisters (M-PgPs) with human gingival epithelial cells (HGECs). P. gingivalis cells (ATCC 33277) at stationary phase were treated with lethal dosage of metronidazole (100 μg/ml, 6 hours) for generating M-PgPs. The interaction of M-PgPs with HGECs was assessed by microscopy, flow cytometry, cytokine profiling and qPCR. We demonstrated that the overall morphology and ultra-cellular structure of M-PgPs remained unchanged. Importantly, M-PgPs maintained the capabilities to adhere to and invade into HGECs. Moreover, M-PgPs significantly suppressed pro-inflammatory cytokine expression in HGECs at a comparable level with the untreated P. gingivalis cells, through the thermo-sensitive components. The present study reveals that P. gingivalis persisters induced by lethal treatment of antibiotics could maintain their capabilities to adhere to and invade into human gingival epithelial cells, and perturb the innate host responses. Novel strategies and approaches need to be developed for tackling P. gingivalis and favourably modulating the dysregulated immuno-inflammatory responses for oral/periodontal health and general wellbeing. Full Article
tan Complex response of the CpxAR two-component system to {beta}-lactams on antibiotic resistance and envelop homeostasis in Enterobacteriaceae [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 The Cpx stress response is widespread among Enterobacteriaceae. We have previously reported a mutation in cpxA in a multidrug resistant strain of Klebsiella aerogenes isolated from a patient treated with imipenem. This mutation yields to a single amino acid substitution (Y144N) located in the periplasmic sensor domain of CpxA. In this work, we sought to characterize this mutation in Escherichia coli by using genetic and biochemical approaches. Here, we show that cpxAY144N is an activated allele that confers resistance to β-lactams and aminoglycosides in a CpxR-dependent manner, by regulating the expression of the OmpF porin and the AcrD efflux pump, respectively. We also demonstrate the intimate interconnection between Cpx system and peptidoglycan integrity on the expression of an exogenous AmpC β-lactamase by using imipenem as a cell wall active antibiotic or inactivation of penicillin-binding proteins. Moreover, our data indicate that the Y144N substitution abrogates the interaction between CpxA and CpxP and increase phosphotransfer activity on CpxR. Because the addition of a strong AmpC inducer such as imipenem is known to causes abnormal accumulation of muropeptides (disaccharide-pentapeptide, N-acetylglucosamyl-1,6-anhydro-N-acetylmuramyl-l-alanyl-d-glutamy-meso-diaminopimelic-acid-d-alanyl-d-alanine) in the periplasmic space, we propose these molecules activate the Cpx system by displacing CpxP from the sensor domain of CpxA. Altogether, these data could explain why large perturbations to peptidoglycan caused by imipenem lead to mutational activation of the Cpx system and bacterial adaptation through multidrug resistance. These results also validate the Cpx system, in particular the interaction between CpxA and CpxP, as a promising therapeutic target. Full Article
tan The Impact of Intrinsic Resistance Mechanisms on Potency of QPX7728, a New Ultra-Broad-Spectrum Beta-lactamase Inhibitor of Serine and Metallo Beta-Lactamases in Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii. [Mechanisms of Resis By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 QPX7728 is an ultra-broad-spectrum boronic acid beta-lactamase inhibitor that demonstrates inhibition of key serine and metallo beta-lactamases at a nano molar range in biochemical assays with purified enzymes. The broad-spectrum inhibitory activity of QPX7728 observed in biochemical experiments translates into enhancement of the potency of many beta-lactams against strains of target pathogens producing beta-lactamases. The impact of bacterial efflux and permeability on inhibitory potency were determined using isogenic panels of KPC-3 producing isogenic strains of K. pneumoniae and P. aeruginosa and OXA-23-producing strains of A. baumannii with various combinations of efflux and porin mutations. QPX7728 was minimally affected by multi-drug resistance efflux pumps in either Enterobacteriaceae, or in non-fermenters such as P. aeruginosa or A. baumannii. In P. aeruginosa, the potency of QPX7728 was further enhanced when the outer membrane is permeabilized. The potency of QPX7728 in P. aeruginosa is not affected by inactivation of the carbapenem porin OprD. While changes in OmpK36 (but not OmpK35) reduced the potency of QPX7728 (8-16-fold), QPX7728 (4 μg/ml) nevertheless completely reversed KPC-mediated meropenem resistance in strains with porin mutations, consistent with a lesser effect of these mutations on the potency of QPX7728 compared to other agents. The ultra-broad-spectrum beta-lactamase inhibition profile combined with enhancement of the activity of multiple beta-lactam antibiotics with varying sensitivity to the intrinsic resistance mechanisms of efflux and permeability indicate QPX7728 is a useful inhibitor for use with multiple beta-lactam antibiotics. Full Article
tan Proteomic changes of Klebsiella pneumoniae in response to colistin treatment and crrB mutation-mediated colistin resistance [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 Polymyxins are increasingly used as the critical last-resort therapeutic options for multidrug-resistant gram-negative bacteria. Unfortunately, polymyxin resistance has increased gradually for the last few years. Although studies on mechanisms of polymyxin are expanding, system-wide analyses of the underlying mechanism for polymyxin resistance and stress response are still lacking. To understand how Klebsiella pneumoniae adapt to colistin (polymyxin E) pressure, we carried out proteomic analysis of Klebsiella pneumoniae strain cultured with different concentrations of colistin. Our results showed that the proteomic responses to colistin treatment in Klebsiella pneumoniae involving several pathways, including (i) gluconeogenesis and TCA cycle; (ii) arginine biosynthesis; (iii) porphyrin and chlorophyll metabolism; and (iv) enterobactin biosynthesis. Interestingly, decreased abundance of class A β-lactamases including TEM, SHV-11, SHV-4 were observed in cells treated with colistin. Moreover, we also present comprehensive proteome atlases of paired polymyxin-susceptible and -resistant Klebsiella pneumoniae strains. The polymyxin-resistant strain Ci, a mutant of Klebsiella pneumoniae ATCC BAA 2146, showed missense mutation in crrB. The crrB mutant Ci, which displayed lipid A modification with 4-amino-4-deoxy-L-arabinose (L-Ara4N) and palmitoylation, showed striking increases of CrrAB, PmrAB, PhoPQ, ArnBCADT and PagP. We hypothesize that crrB mutations induce elevated expression of the arnBCADTEF operon and pagP via PmrAB and PhoPQ. Moreover, multidrug efflux pump KexD, which was induced by crrB mutation, also contributed to colistin resistance. Overall, our results demonstrated proteomic responses to colistin treatment and the mechanism of CrrB-mediate colistin resistance, which may further offer valuable information to manage polymyxin resistance. Full Article
tan Antimicrobial resistance in clinical Ureaplasma spp. and Mycoplasma hominis and structural mechanisms underlying the quinolone resistance [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-03-30T10:04:32-07:00 Antibiotic resistance is a global concern; however, data on antibiotic-resistant Ureaplasma spp. and Mycoplasma hominis are limited in comparison to similar data on other microbes. A total of 492 Ureaplasma spp. and 13 M. hominis strains obtained in Hangzhou, China, in 2018, were subjected to antimicrobial susceptibility testing for levofloxacin, moxifloxacin, erythromycin, clindamycin, and doxycycline using the broth microdilution method. The mechanisms underlying quinolone and macrolide resistance were determined. Meanwhile, a model of the topoisomerase IV complex bound to levofloxacin in wild-type Ureaplasma spp. was built to study the quinolone resistance mutations. For Ureaplasma spp., the levofloxacin, moxifloxacin and erythromycin resistance rates were 84.69%, 51.44% and 3.59% in U. parvum and 82.43%, 62.16% and 5.40% in U. urealyticum, respectively. Of the 13 M. hominis strains, 11 were resistant to both levofloxacin and moxifloxacin, and five strains showed clindamycin resistance. ParC S83L was the most prevalent mutation in levofloxacin-resistant Ureaplasma strains, followed by ParE R448K. The two mutations GyrA S153L and ParC S91I were commonly identified in quinolone-resistant M. hominis. A molecular dynamics-refined structure revealed that quinolone resistance-associated mutations inhibited the interaction and reduced affinity with gyrase or topoisomerase IV and quinolones. The novel mutations S21A in the L4 protein and G2654T and T2245C in 23S rRNA and ermB gene were identified in erythromycin-resistant Ureaplasma spp. Fluoroquinolone resistance in Ureaplasma spp. and Mycoplasma hominis remains high in China, the rational use of antibiotics needs to be further enhanced. Full Article
tan MgrB inactivation is responsible for acquired resistance to colistin in Enterobacter hormaechei subsp. steigerwaltii [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-06T08:49:26-07:00 Multidrug resistant strains belonging to the Enterobacter cloacae complex (ECC) group, and especially those belonging to clusters C-III, C-IV and C-VIII, have increasingly emerged as a leading cause of healthcare-associated infections, with colistin used as one of the last line of treatment. However, colistin-resistant ECC strains have emerged. The aim of this study was to prove that MgrB, the negative regulator of PhoP/PhoQ two-component regulatory system, is involved in colistin resistance in ECC of cluster C-VIII, formerly referred to as Enterobacter hormaechei subsp. steigerwaltii. An in vitro mutant (Eh22-Mut) was selected from a clinical isolate of Eh22. The sequencing analysis of its mgrB gene showed the presence of one nucleotide deletion leading to the formation of a truncated protein of six instead of 47 amino acids. Wild-type mgrB gene from Eh22, as well as that of a clinical strain of Klebsiella pneumoniae used as controls, were cloned and the corresponding recombinant plasmids were used for complementation assays. Results showed a fully restored susceptibility to colistin, and confirmed for the first time that mgrB gene expression plays a key role in acquired resistance to colistin in ECC strains. Full Article
tan Transferable Resistance Gene optrA in Enterococcus faecalis from Swine in Brazil [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-06T08:49:25-07:00 OptrA is an ATP-binding cassette (ABC)-F protein that confers resistance to oxazolidinones and phenicols, and can be either plasmid or chromosomally encoded. We isolated 13 Enterococcus faecalis strains possessing linezolid MIC ≥ 4 mg/L from nursery pigs in swine herds located across Brazil. Genome sequence comparison showed that these strains possess optrA in different genetic contexts occurring in 5 different E. faecalis sequence type backgrounds. The optrA gene invariably occurred in association with an araC regulator and a gene encoding a hypothetical protein. In some contexts, this genetic island was able to excise and form a covalently closed circle within the cell which appeared to occur in high abundance, and to be transmissible by co-resident plasmids. Full Article
tan Structural recognition of spectinomycin by resistance enzyme ANT(9) from Enterococcus faecalis [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-06T08:49:25-07:00 Spectinomycin is a ribosome-binding antibiotic that blocks the translocation step of translation. A prevalent resistance mechanism is the modification of the drug by aminoglycoside nucleotidyl transferase (ANT) enzymes of the spectinomycin-specific ANT (9) family or by the dual-specificity ANT(3") (9) family that also acts on streptomycin. We previously reported the structural mechanism of streptomycin modification by the ANT(3") (9) AadA from Salmonella enterica. ANT (9) from Enterococcus faecalis adenylates the 9-hydroxyl of spectinomycin. We here present the first structures of spectinomycin bound to an ANT enzyme. Structures were solved for ANT (9) in apo form, in complex with ATP, spectinomycin and magnesium or in complex with only spectinomycin. ANT (9) shows similar overall structure as AadA with an N-terminal nucleotidyltransferase domain and a C-terminal α-helical domain. Spectinomycin binds close to the entrance of the interdomain cleft, while ATP is buried at the bottom. Upon drug binding, the C-terminal domain rotates by 14 degrees to close the cleft, allowing contacts of both domains with the drug. Comparison with AadA shows that spectinomycin specificity is explained by a straight α5 helix and a shorter α5-α6 loop that would clash with the larger streptomycin substrate. In the active site, we observe two magnesium ions, one of them in a previously un-observed position that may activate the 9-hydroxyl for deprotonation by the catalytic base Glu-86. The observed binding mode for spectinomycin suggests that also spectinamides and aminomethyl spectinomycins, recent spectinomycin analogues with expansions in position 4 of the C ring, will be subjected to modification by ANT (9) and ANT(3") (9) enzymes. Full Article
tan Ceftazidime-avibactam resistance mediated by the N346Y substitution in various AmpC {beta}-lactamases [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-06T08:49:26-07:00 Chromosomal and plasmid-borne AmpC cephalosporinases are a major resistance mechanism to β-lactams in Enterobacteriaceae and Pseudomonas aeruginosa. The new β-lactamase inhibitor avibactam effectively inhibits class C enzymes and can fully restore ceftazidime susceptibility. The conserved amino acid residue Asn346 of AmpC cephalosporinases directly interacts with the avibactam sulfonate. Disruption of this interaction caused by the N346Y amino acid substitution in Citrobacter freundii AmpC was previously shown to confer resistance to the ceftazidime-avibactam combination (CAZ-AVI). The aim of this study was to phenotypically and biochemically characterize the consequences of the N346Y substitution in various AmpC backgrounds. Introduction of N346Y into Enterobacter cloacae AmpC (AmpCcloacae), plasmid-mediated DHA-1, and P. aeruginosa PDC-5, led to 270-, 12,000-, and 79-fold decreases in the inhibitory efficacy (k2/Ki) of avibactam, respectively. The kinetic parameters of AmpCcloacaeand DHA-1 for ceftazidime hydrolysis were moderately affected by the substitution. Accordingly, AmpCcloacaeand DHA-1 harboring N346Y conferred CAZ-AVI resistance (MIC of ceftazidime of 16 µg/ml in the presence of 4 µg/ml of avibactam). In contrast, production of PDC-5 N346Y was associated with a lower MIC (4 µg/ml) since this β-lactamase retained a higher inactivation efficacy by avibactam in comparison to AmpCcloacaeN346Y. For FOX-3, the I346Y substitution did not reduce the inactivation efficacy of avibactam and the substitution was highly deleterious for β-lactam hydrolysis, including ceftazidime, preventing CAZ-AVI resistance. Since AmpCcloacaeand DHA-1 display substantial sequence diversity, our results suggest that loss of hydrogen interaction between Asn346 and avibactam could be a common mechanism of acquisition of CAZ-AVI resistance. Full Article
tan Structural basis of reduced susceptibility to ceftazidime-avibactam and cefiderocol in Enterobacter cloacae due to AmpC R2 loop deletion [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-13T08:15:30-07:00 Ceftazidime–avibactam and cefiderocol are two of the latest generation β-lactam agents that possess expanded activity against highly drug-resistant bacteria, including carbapenem-resistant Enterobacterales. Here we show that structural changes in AmpC β-lactamases can confer reduced susceptibility to both agents. A multidrug-resistant Enterobacter cloacae clinical strain (Ent385) was found to be resistant to ceftazidime–avibactam and cefiderocol without prior exposure to either agent. The AmpC β-lactamase of Ent385 (AmpCEnt385) contained an alanine–proline deletion at positions 294–295 (A294_P295del) in the R2 loop. AmpCEnt385 conferred reduced susceptibility to ceftazidime–avibactam and cefiderocol when cloned into Escherichia coli TOP10. Purified AmpCEnt385 showed increased hydrolysis of ceftazidime and cefiderocol compared with AmpCEnt385Rev, in which the deletion was reverted. Comparisons of crystal structures of AmpCEnt385 and AmpCP99, the canonical AmpC of E. cloacae, revealed that the two-residue deletion in AmpCEnt385 induced drastic structural changes of the H-9 and H-10 helices and the R2 loop, which accounted for the increased hydrolysis of ceftazidime and cefiderocol. The potential for a single mutation in ampC to confer reduced susceptibility to both ceftazidime–avibactam and cefiderocol requires close monitoring.Importance Ceftazidime–avibactam and cefiderocol are newly approved β-lactam agents that possess broad spectrum activity against multidrug-resistant (MDR) Gram-negative bacteria. We show here that a two amino-acid deletion in the chromosomal AmpC β-lactamase, identified in a clinical strain of Enterobacter cloacae, confers reduced susceptibility to both agents. By crystallographic studies of free and drug-bound forms of enzyme, we demonstrate that this deletion in AmpC induces slanting of the H-9 helix that is directly connected with the R2 loop, and disappearance of the H-10 helix, is directly responsible for increased hydrolysis of ceftazidime and cefiderocol. These findings provide novel insights into how MDR Gram-negative bacteria may evolve their β-lactamases to survive selective pressure from these newly developed β-lactam agents. Full Article
tan A novel deletion mutation in pmrB contributes to concurrent colistin resistance in carbapenem resistant E. coli ST 405 of clinical origin [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-13T08:15:30-07:00 We report the first clinical Escherichia. coli strain EC3000 with concomitant chromosomal colistin and carbapenem resistance. A novel in-frame deletion, 6-11(RPISLR), in pmrB contributing to colistin resistance was verified using recombinant DNA techniques. Although decreased fitness compared to the wild-type (WT) strain or EC3000 revertant (chromosomal replacement of WT pmrB in EC3000), a portion of serially passaged EC3000 strains preserving colistin resistance without selective pressure raises the concern for further spread. Full Article
tan A genotype-phenotype correlation study of SHV {beta}-lactamases - new insight into SHV resistance profiles [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-13T08:15:31-07:00 The SHV β-lactamases (BLs) have undergone strong allele diversification that changed their substrate specificities. Based on 147 NCBI entries for SHV alleles, in silico mathematical models predicted five positions as relevant for the β-lactamase inhibitor (BLI) resistant (2br) phenotype, 12 as relevant for the extended-spectrum BL (ESBL) (2be) phenotype, and two positions were related to solely the narrow spectrum (2b) phenotype. These positions and additional 6 positions described in other studies (including one promoter mutation), were systematically substituted and investigated for their substrate specificities in a BL-free E. coli background, representing, to our knowledge, the most comprehensive substrate and substitution analysis for SHV alleles to date. An in vitro analysis confirmed the essentiality of the positions 238 and 179 for the 2be phenotype and 69 for the 2br phenotype. The substitutions E240K and E240R, which do not occur alone in known 2br SHV variants, led to a 2br phenotype, indicating a latent BLI-resistance potential of these substitutions. The substitutions M129V, A234G, S271I and R292Q conferred latent resistance to cefotaxime. In addition, 7 positions that were found to be not always associated with the ESBL phenotype resulted in increased resistance to ceftaroline. We also observed that coupling of a strong promoter (IS26) to a A146V mutant with the 2b phenotype resulted in a highly increased resistance to BLIs, cefepime and ceftaroline but not to 3rd generation cephalosporins, indicating that SHV enzymes represent an underestimated risk for empirical therapies that use piperacillin/tazobactam or cefepime to treat different infectious diseases caused by gram-negatives. Full Article
tan Epidemiological study on prevalence, serovar diversity, multi-drug resistance and CTX-M-type extended-spectrum {beta}-lactamases of Salmonella spp. from patients with diarrhea, food of animal origin, and pets in several provinces of China [Epidemiology an By aac.asm.org Published On :: 2020-04-20T08:36:46-07:00 A total of 2,283 Salmonella spp. isolates were recovered from 18,334 samples including patients with diarrhea, food of animal origin and pets across 5 provinces of China. The highest prevalence of Salmonella spp. was detected in chicken meats (39.3%, 486/1,237). Fifteen serogroups and 66 serovars were identified, with Typhimurium and Enteritidis being the most dominant. Most (85.5%, 1,952/2,283) isolates exhibited resistant to ≥ 1 antimicrobial and 56.4% were multi-drug resistant (MDR). A total of 222 isolates harbored extended-spectrum β-lactamases (ESBLs), 200 of which were CTX-M-type that were mostly detected from chicken meat and turtle fecal. Overall, eight blaCTX-M genes were identified, with blaCTX-M-65, blaCTX-M-123, blaCTX-M-14, blaCTX-M-79, and blaCTX-M-130 being the most prevalent. Totally, 166 of the 222 ESBL-producing isolates had amino acid substitutions in GyrA (S83Y, S83F, D87G, D87N, and D87Y) and ParC (and S80I), whilst the PMQR-encoding genes oqxA/B, qepA, and qnrB/S were detected in almost all isolates. Of the fifteen sequence types (STs) identified in the 222 ESBLs, ST17, ST11, ST34, and ST26 ranked among the top 5 in the number of isolates. Our study revealed considerable serovars diversity, high prevalence of co-occurrence of MDR determinants, including CTX-M-type ESBLs, QRDRs mutations and PMQR genes. This is the first report of CTX-M-130 Salmonella spp. from patients with diarrhea and QRDRs mutations from turtle fecal samples. Our study emphasizes the importance of actions, both in the health care settings and in the veterinary medicine sector, to control the dissemination of MDR, especially the CTX-M Salmonella spp. isolates. Full Article
tan The Emerging Role of {beta}-lactams in the Treatment of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections [Minireviews] By aac.asm.org Published On :: 2020-04-20T08:36:46-07:00 Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN/DAP that may meet an unmet therapeutic need for MRSA BSI. Ceftaroline (CPT), the only commercially available β-lactam in the United States with intrinsic in vitro activity against MRSA, has been increasingly studied in the setting of VAN and DAP failures. Novel combinations of first-line agents (VAN and DAP) with β-lactams have been the subject of many recent investigations due to in vitro findings such as the "see-saw effect", where β-lactam susceptibility may be improved in the presence of decreased glycopeptide and lipopeptide susceptibility. The combination of CPT and DAP, in particular, has become the focus of many scientific evaluations, due to intrinsic anti-MRSA activities and potent in vitro synergistic activity against various MRSA strains. This article reviews the available literature describing these innovative therapeutic approaches for MRSA BSI, focusing on preclinical and clinical studies, and evaluates the potential benefits and limitations of each strategy. Full Article
tan Genetic Mutations Associated with Isoniazid Resistance in Mycobacterium tuberculosis in Mongolia [Epidemiology and Surveillance] By aac.asm.org Published On :: 2020-04-20T08:36:47-07:00 Globally, mutations in the katG gene account for the majority of isoniazid-resistant strains of Mycobacterium tuberculosis. Buyankhishig et al analyzed a limited number of Mycobacterium tuberculosis strains in Mongolia and found that isoniazid resistance was mainly attributable to inhA mutations. The GenoType® MTBDRplus assay was performed for isolates collected in the First National Tuberculosis Prevalence Survey and the Third Anti-Tuberculosis Drug Resistance Survey to investigate genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis in Mongolia. Of the 409 isoniazid-resistant isolates detected by the GenoType® MTBDRplus assay, 127 (31.1%) were resistant to rifampicin, 294 (71.9%) had inhA mutations without katG mutations, 113 (27.6%) had katG mutations without inhA mutations, and two (0.5%) strains had mutations in both the inhA and katG genes. Of the 115 strains with any katG mutation, 114 (99.1%) had mutations in codon 315 (S315T). Of the 296 trains with any inhA mutation, 290 (98.0%) had a C–15T mutation. The proportion of isoniazid-resistant strains with katG mutations was 25.3% among new cases and 36.2% among retreatment cases (p=0.03), as well as 17.0% among rifampicin-susceptible strains and 52.8% among rifampicin-resistant strains (p<0.01). Rifampicin resistance was significantly associated with the katG mutation (adjusted odds ratio 5.36, 95% CI 3.3–8.67, p<0.001). Mutations in inhA predominated in isoniazid-resistant tuberculosis in Mongolia. However, the proportion of katG mutations in isolates from previously treated cases was higher than that among new cases, and that in cases with rifampicin resistance was higher than that in cases without rifampicin resistance. Full Article
tan Mutation of kvrA causes OmpK35/36 porin downregulation and reduced meropenem/vaborbactam susceptibility in KPC-producing Klebsiella pneumoniae. [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-20T08:36:46-07:00 Meropenem/vaborbactam resistance in Klebsiella pneumoniae is associated with loss of function mutations in the OmpK35 and OmpK36 porins. Here we identify two previously unknown loss of function mutations that confer cefuroxime resistance in K. pneumoniae. The proteins lost were NlpD and KvrA; the latter is a transcriptional repressor controlling capsule production. We demonstrate that KvrA loss reduces OmpK35 and OmpK36 porin production, which confers reduced susceptibility to meropenem/vaborbactam in a KPC-3 producing K. pneumoniae isolate. Full Article
tan Emergence of Mycobacterium leprae rifampicin resistance evaluated by whole-genome sequencing after 48 years of irregular treatment [Epidemiology and Surveillance] By aac.asm.org Published On :: 2020-04-27T08:14:57-07:00 A case of M. leprae rifampicin resistance after irregular anti-leprosy treatments since 1971 is reported. Whole-genome sequencing from four longitudinal samples indicated relapse due to acquired rifampicin resistance and not to reinfection with another strain. A putative compensatory mutation in rpoC was also detected. Clinical improvement was achieved using an alternative therapy. Full Article
tan Effect of the Lysin, Exebacase, on Cardiac Vegetation Progression in a Rabbit Model of Methicillin-Resistant Staphylococcus aureus (MRSA) Endocarditis as Determined by Echocardiography [Pharmacology] By aac.asm.org Published On :: 2020-04-27T08:14:56-07:00 Background: MRSA pose significant therapeutic challenges, related to their: frequency in clinical infections; innate virulence properties; and propensity for multi-antibiotic resistance. MRSA are among the most common causes of endovascular infections, including infective endocarditis (IE).Objective: To employ transthoracic echocardiography (TTE) to evaluate the effect of exebacase, a novel direct lytic agent, in experimental aortic valve MRSA IE.Study Design: TTE was utilized to evaluate the in vivo effect of exebacase on MRSA-infected vegetation progression when combined with daptomycin (vs daptomycin alone). Primary intravegetation outcomes were: maximum size; weights at sacrifice; and MRSA counts at infection baseline vs after 4 days of daptomycin treatment (alone or in addition to exebacase administered once on treatment Day 1).Results: A single dose of exebacase in addition to daptomycin cleared significantly more intravegetation MRSA than daptomycin alone. This was associated with a statistical trend toward reduced maximum vegetation size in the exebacase + daptomycin vs the daptomycin-alone therapy groups (p = 0.07). Also, mean vegetation weights in the exebacase-treated group were significantly lower vs daptomycin-alone (p < 0.0001). Maximum vegetation size by TTE correlated with vegetation weight (p = 0.005). In addition, intravegetation MRSA counts in the combination group were significantly lower vs untreated controls (p<0.0001) and the daptomycin-alone group (p<0.0001).Conclusion: This study suggests that exebacase has a salutary impact on MRSA-infected vegetation progression when combined with daptomycin, especially in terms of vegetation MRSA burden, size and weight. Moreover, TTE appears to be an efficient non-invasive tool to assess therapeutic efficacies in experimental MRSA IE. Full Article
tan PAGI-associated CrpP-like fluoroquinolone-modifying enzymes among Pseudomonas aeruginosa clinical isolates in Europe [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-27T08:14:56-07:00 Many transferable quinolone-resistance mechanisms have been already identified in Gram-negative bacteria. The plasmid-encoded 65 amino-acid long ciprofloxacin-modifying enzyme, namely CrpP, was recently identified in Pseudomonas aeruginosa. We analyzed a collection of 100 clonally-unrelated and multidrug-resistant P. aeruginosa clinical isolates among which 46 (46%) were found positive for crpP-like genes, encoding five CrpP variants conferring variable levels of reduced susceptibility to fluoroquinolones. Those crpP-like genes were chromosomally located, as part of PAGI-like pathogenicity genomic islands. Full Article
tan Experimentally engineered mutations in a ubiquitin hydrolase, UBP-1, modulate in vivo susceptibility to artemisinin and chloroquine in Plasmodium berghei. [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-27T08:14:56-07:00 As resistance to artemisinins (current frontline drugs in malaria treatment) emerges in south East Asia, there is an urgent need to identify the genetic determinants and understand the molecular mechanisms underpinning such resistance. Such insights could lead to prospective interventions to contain resistance and prevent the eventual spread to other malaria endemic regions. Artemisinin reduced susceptibility in South East Asia (SEA) has been primarily linked to mutations in P. falciparum Kelch-13, which is currently widely recognised as a molecular marker of artemisinin resistance. However, 2 mutations in a ubiquitin hydrolase, UBP-1, have been previously associated with artemisinin reduced susceptibility in a rodent model of malaria and some cases of UBP-1 mutation variants associating with artemisinin treatment failure have been reported in Africa and SEA. In this study, we have employed CRISPR-Cas9 genome editing and pre-emptive drug pressures to test these artemisinin susceptibility associated mutations in UBP-1 in P. berghei sensitive lines in vivo. Using these approaches, we have shown that the V2721F UBP-1 mutation results in reduced artemisinin susceptibility, while the V2752F mutation results in resistance to chloroquine and moderately impacts tolerance to artemisinins. Genetic reversal of the V2752F mutation restored chloroquine sensitivity in these mutant lines while simultaneous introduction of both mutations could not be achieved and appears to be lethal. Interestingly, these mutations carry a detrimental growth defect, which would possibly explain their lack of expansion in natural infection settings. Our work has provided independent experimental evidence on the role of UBP-1 in modulating parasite responses to artemisinin and chloroquine under in vivo conditions. Full Article
tan The emergence of fexA in mediating resistance to florfenicols in Campylobacter [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-05-04T08:49:24-07:00 Florfenicol belongs to a class of phenicol antimicrobials widely used as feed additives and for the treatment of respiratory infections. In recent years, increasing resistance to florfenicol has been reported in Campylobacter spp., the leading foodborne enteric pathogen causing diarrheal diseases worldwide. Here, we reported the identification of fexA, a novel mobile florfenicol resistance gene in Campylobacter. Of the 100 Campylobacter jejuni strains isolated from poultry in Zhejiang, China, nine of them were shown to be fexA positive, and their whole genome sequences were further determined by integration of Illumina short-read and MinION long-read sequencing. The fexA gene was found in the plasmid of one strain and chromosomes of eight strains, and its location was verified by S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting. Based on comparative analysis, the fexA gene was located within a region with the tet(L)-fexA-catA-tet(O) gene arrangement, demonstrated to be successfully transferrable among C. jejuni strains. Functional cloning indicated that acquisition of the single fexA gene significantly increased resistance to florfenicol, whereas its inactivation resulted in increased susceptibility to florfenicol in Campylobacter. Taken together, these results indicated that the emerging fexA resistance is horizontally transferable, which might greatly facilitate the adaptation of Campylobacter in food producing environments where florfenicols are frequently used. Full Article
tan Focusing the lens on the CAMERA concepts: Early combination {beta}-lactam and vancomycin therapy in methicillin-resistant Staphylococcus aureus bacteremia [Minireviews] By aac.asm.org Published On :: 2020-05-04T08:49:24-07:00 Methicillin-resistant Staphylococcus aureus (MRSA) has grown to become a major burden on healthcare systems. The cumulation of limited therapeutic options and worsened patient outcomes with persistent MRSA bacteremia has driven research in optimizing its initial management. The guidelines published by the Infectious Disease of America currently recommend combination therapy for refractory MRSA bacteremia, but the utility of combining antibiotics from the start of therapy is under investigation. The alternative strategy of early use of a β-lactam antibiotics in combination with vancomycin upon initial MRSA bacteremia detection has shown promise. While this concept has gained international attention, providers should give this strategy serious consideration prior to implementation. The objective of this review is to examine retrospective and prospective evidence for early combination with vancomycin and β-lactam antibiotics, as well as explore potential consequences of combination therapy. Full Article
tan Distribution of linezolid in tuberculosis lesions in patients with spinal multidrug-resistant tuberculosis [Pharmacology] By aac.asm.org Published On :: 2020-05-04T08:49:24-07:00 Linezolid has strong antimicrobial activity against the multidrug-resistant (MDR) strains of Mycobacterium tuberculosis. Little is known about the distribution of linezolid in tuberculosis (TB) lesions in patients with MDR-TB. The aim of this study is to evaluate the distribution of linezolid in TB lesions in patients with spinal MDR-TB. Nine patients with spinal MDR-TB were enrolled prospectively from August 2019 to February 2020. The patients received a linezolid-containing anti-TB treatment regimen and needed surgery for the removal of TB lesions. During the operation, nine blood samples, eight diseased bone tissue samples, seven pus samples and four granulation tissue samples were collected simultaneously and 2 h after the oral administration of 600 mg of linezolid. Linezolid concentrations in plasma, diseased bone tissue, pus, and granulation tissue samples were subjected to high-performance liquid chromatography–tandem mass spectrometry. At sample collection, the mean concentrations of linezolid in plasma, diseased bone tissue, pus, and granulation tissue samples of the nine patients were 11.14 ± 5.82, 5.94 ± 4.27, 11.09 ± 4.58, 14.08 ± 10.61 mg/L, respectively. The mean ratios of linezolid concentration in diseased bone/plasma, pus/plasma, and granulation/plasma were 53.84%, 91.69%, and 103.57%, respectively. The mean ratios of linezolid concentration in pus/plasma and granulation/plasma were higher than those in diseased bone/plasma, and the difference was statistically significant (t =-2.810, p = 0.015; t =-4.901, p = 0.001). In conclusion, linezolid had different concentration distributions in different types of TB infected tissues in patients with spinal MDR-TB. Full Article
tan Clinically relevant epithelial lining fluid concentrations of meropenem with ciprofloxacin provide synergistic killing and resistance suppression of hypermutable Pseudomonas aeruginosa in a dynamic biofilm model [Pharmacology] By aac.asm.org Published On :: 2020-05-04T08:49:24-07:00 Treatment of exacerbations of chronic Pseudomonas aeruginosa infections in patients with cystic fibrosis (CF) is highly challenging due to hypermutability, biofilm formation and an increased risk of resistance emergence. We evaluated the impact of ciprofloxacin and meropenem as monotherapy and in combination in the dynamic in vitro CDC biofilm reactor (CBR). Two hypermutable P. aeruginosa strains, PAOmutS (MICciprofloxacin 0.25 mg/L, MICmeropenem 2 mg/L) and CW44 (MICciprofloxacin 0.5 mg/L, MICmeropenem 4 mg/L), were investigated for 120h. Concentration-time profiles achievable in epithelial lining fluid (ELF) following FDA-approved doses were simulated in the CBR. Treatments were ciprofloxacin 0.4g every 8h as 1h-infusions (80% ELF penetration), meropenem 6 g/day as continuous infusion (CI; 30% and 60% ELF penetration) and their combinations. Counts of total and less-susceptible planktonic and biofilm bacteria and MICs were determined. Antibiotic concentrations were quantified by UHPLC-PDA. For both strains, all monotherapies failed with substantial regrowth and resistance of planktonic (≥8log10 CFU/mL) and biofilm (>8log10 CFU/cm2) bacteria at 120h (MICciprofloxacin up to 8 mg/L, MICmeropenem up to 64 mg/L). Both combination treatments demonstrated synergistic bacterial killing of planktonic and biofilm bacteria of both strains from ~48h onwards and suppressed regrowth to ≤4log10 CFU/mL and ≤6log10 CFU/cm2 at 120h. Overall, both combination treatments suppressed amplification of resistance of planktonic bacteria for both strains, and biofilm bacteria for CW44. The combination with meropenem at 60% ELF penetration also suppressed amplification of resistance of biofilm bacteria for PAOmutS. Thus, combination treatment demonstrated synergistic bacterial killing and resistance suppression against difficult-to-treat hypermutable P. aeruginosa strains. Full Article
tan Influence of CYP2C8, CYP3A4 and CYP3A5 host genotypes on early recurrence of Plasmodium vivax [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-05-04T08:49:24-07:00 CYP450 enzymes are involved in biotransformation of chloroquine (CQ), but the role of the different metabolism profiles of this drug has not been properly investigated in relation to P. vivax recurrences. To investigate the influence of CYPs genotypes associated with CQ-metabolism on early recurrence rates of P. vivax, a case-control study was carried out. Cases included patients presenting an early recurrence (CQ-recurrent), defined as recurrence during the first 28 days after initial infection, plasma concentrations of CQ plus desethylchloroquine (DCQ, the major CQ metabolite) higher than 100 ng/mL. A control (CQ-responsive) with no parasite recurrence over the follow-up was also included. CQ and DCQ plasma levels were measured on Day 28. CQ CYPs (CYP2C8, CYP3A4 and CYP3A5) genotypes were determined by real-time PCR. An ex vivo study was conducted to verify CQ and DCQ efficacy in P. vivax isolates. The frequency of alleles associated with normal and slow metabolism was similar between the cases and controls for CYP2C8 (OR=1.45, 95% CI=0.51-4.14, p=0.570), CYP3A4 (OR=2.38, 95% CI=0.92-6.19, p=0.105) and CYP3A5 (OR=4.17, 95% CI=0.79-22.04, p=1.038) genes. DCQ levels were higher than CQ, regardless of the genotype. Regarding the DCQ/CQ rate, there was no difference between groups or between those patients who had a normal or mutant genotype. DCQ and CQ showed similar efficacy ex vivo. CYPs genotypes had no influence on early recurrence rates. Similar efficacy of CQ and DCQ ex vivo could explain the absence of therapeutic failure, despite presence of alleles associated with slow metabolism. Full Article
tan Comparative Genomic Analysis of Third Generation Cephalosporin-Resistant Escherichia coli Harboring blaCMY-2-Positive IncI1 group, IncB/O/K/Z, and IncC Plasmids Isolated from Healthy Broilers in Japan. [Epidemiology and Surveillance] By aac.asm.org Published On :: 2020-05-04T08:49:24-07:00 The off-label use of third generation cephalosporin (3GC) during in ovo vaccination or vaccination of newly hatched chicks, was a common practice worldwide. CMY-2-producing Escherichia coli have been disseminated among broiler production. The objectives of this study were to determine the epidemiological linkage of blaCMY-2-positive plasmids among broilers both within and outside Japan because grandparent stock and parent stock were imported in Japan. We examined the whole genome sequences of 132 3GC-resistant E. coli isolates collected from healthy broilers during 2002-2014. The predominant 3GC-resistance gene was blaCMY-2, which was detected in the plasmids of 87 (65.9%) isolates. The main plasmid replicon types were IncI1-I (n=21; 24.1%), IncI (n=12; 13.8%), IncB/O/K/Z (n=28; 32.2%), and IncC (n=22; 25.3%). Those plasmids were subjected to gene clustering and network analyses and plasmid multi-locus sequence typing (pMLST). The chromosomal DNA of isolates was subjected to MLST and single nucleotide variant (SNV)-based phylogenetic analysis.MLST and SNV-based phylogenetic analysis revealed high diversity of E. coli isolates. ST429 harboring blaCMY-2-positive IncB/O/K/Z was closely related to isolates from broiler in Germany harboring blaCMY-2-positive IncB/O/K/Z. pST55-IncI and pST12-IncI1-I and pST3-IncC were prevalent in western Japan. pST12-IncI1-I and pST3-IncC were closely related to those detected in E. coli isolates from chicken in American continent, whereas 26 IncB/O/K/Z were related to those in Europe. These data will be useful to reveal the whole picture of transmission of CMY-2-producing bacteria in and out of Japan. Full Article
tan Fin24.com | Stock markets rally on virus hopes, but oil tanks By www.fin24.com Published On :: Mon, 27 Apr 2020 15:31:18 +0200 Equity markets have rallied Monday as countries eased coronavirus lockdown measures, but oil prices tumbled as a supply glut offset output cuts. Full Article
tan 'They don’t understand what love is' By feedproxy.google.com Published On :: Sun, 18 Aug 2019 15:12:17 +0000 Noy shares her journey of experiencing God's love for herself and forgiving the community that persecuted her family. Full Article
tan Fin24.com | Don't get a nasty surprise! How to understand insurance jargon By www.fin24.com Published On :: Mon, 09 Dec 2019 23:37:47 +0200 Are you sure you know what the "insurance speak" in your policy means? Full Article
tan Fin24.com | 12 tips for taxpayers to better understand section 12J investments By www.fin24.com Published On :: Thu, 20 Feb 2020 16:18:53 +0200 By the end of February, most taxpayers are looking for every opportunity to reduce their tax liabilities. Full Article
tan Futsal EURO play-offs: how they stand By www.uefa.com Published On :: Tue, 12 Sep 2017 22:10:00 GMT Serbia and Hungary secured narrow wins in the first legs of their play-offs while debut-chasing France and Georgia both found themselves pegged back. The second legs are on 26 September. Full Article general
tan 'They don’t understand what love is' By feedproxy.google.com Published On :: Sun, 18 Aug 2019 15:12:17 +0000 Noy shares her journey of experiencing God's love for herself and forgiving the community that persecuted her family. Full Article
tan 3 Ways to Translate Conversations in Real Time With Google Assistant By www.pcmag.com Published On :: Google Translate is not the only app that can help you converse with someone speaking a different language. Here's how to translate real-time conversations with the Google Assistant. Full Article
tan How to Capture Important Data With Scanning and OCR Apps By www.pcmag.com Published On :: With the best scanning and OCR apps, you can save whiteboard text, business cards, and important documents so that you can not only read them, but also edit them. Full Article
tan David Smith: VE Day and World In A Day can bring us together when we're socially distant By www.heraldscotland.com Published On :: Sat, 09 May 2020 05:00:00 +0100 I was just sitting down to write this week's column when the Red Arrows flew right over my head. Full Article
tan Delivery Room Management of Extremely Low Birth Weight Infants: Spontaneous Breathing or Intubation? By pediatrics.aappublications.org Published On :: 1999-05-01 Wolfgang LindnerMay 1, 1999; 103:961-967ARTICLES Full Article
tan Save Big on HP Tango, Sprocket Printer Bundle Today By www.pcmag.com Published On :: Designed to work primarily with mobile devices, the Tango is one of the first printers to feature voice control. The portable Sprocket, meanwhile, lets you print photos from your phone. Full Article
tan Penn State Brandywine recognizes outstanding student leaders By news.psu.edu Published On :: Thu, 07 May 2020 15:40 -0400 Penn State Brandywine students who have impacted the campus through their leadership and service have been honored with student leadership awards. The annual awards program highlights the achievements of students involved with clubs, student government and campus programs Full Article
tan Ten student teams compete for $25,000 prize pool in the Nittany AI Challenge By news.psu.edu Published On :: Wed, 15 Apr 2020 08:41 -0400 Ten student teams will be funded to use AI for Good to build and submit a minimum viable product in the Nittany AI Challenge for a chance to compete for a portion of a $25,000 prize pool. Students were invited to submit their ideas to improve the world by providing solutions for problems within the areas of education, health, humanitarian challenges, sustainability and climate change. Full Article
tan NYPD arrested more people of color for social distancing and other charges: Data By abcnews.go.com Published On :: Sat, 09 May 2020 09:03:11 -0400 The Brooklyn District Attorney released data to show the disparities in arrests. The NYPD released data to show the demographics of summonses. Full Article US
tan Instead of Standardized Testing, Consider Portfolio Assessment By feedproxy.google.com Published On :: Mon, 29 Apr 2019 00:00:00 +0000 Since learning is so nuanced, so too should be the means in which we assess it. Let's offer students the opportunity to be seen as whole people who can demonstrate different skills and knowledge in a plethora of ways over a period of time. Full Article Assessment+and+testing
tan Deb and Stan Latta named 2020 Distinguished Service Award recipients By news.psu.edu Published On :: Wed, 06 May 2020 12:25 -0400 For their longstanding support of the Center for the Performing Arts and the Penn State community, Deb and Stan Latta have been named the center’s 2020 Distinguished Service Award recipients. Full Article
tan New Kensington family of ‘Nittany Neighbors’ support each other during pandemic By news.psu.edu Published On :: Tue, 21 Apr 2020 15:24 -0400 The Nittany Neighbors program created at Penn State New Kensington in response to the coronavirus pandemic is testament to the fact that, as campus director of student affairs Theresa Bonk said, "we are a family, and like any family, we take care of our own." Full Article