cat

SCAttNet: Semantic Segmentation Network with Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images. (arXiv:1912.09121v2 [cs.CV] UPDATED)

High-resolution remote sensing images (HRRSIs) contain substantial ground object information, such as texture, shape, and spatial location. Semantic segmentation, which is an important task for element extraction, has been widely used in processing mass HRRSIs. However, HRRSIs often exhibit large intraclass variance and small interclass variance due to the diversity and complexity of ground objects, thereby bringing great challenges to a semantic segmentation task. In this paper, we propose a new end-to-end semantic segmentation network, which integrates lightweight spatial and channel attention modules that can refine features adaptively. We compare our method with several classic methods on the ISPRS Vaihingen and Potsdam datasets. Experimental results show that our method can achieve better semantic segmentation results. The source codes are available at https://github.com/lehaifeng/SCAttNet.




cat

The Mapillary Traffic Sign Dataset for Detection and Classification on a Global Scale. (arXiv:1909.04422v2 [cs.CV] UPDATED)

Traffic signs are essential map features globally in the era of autonomous driving and smart cities. To develop accurate and robust algorithms for traffic sign detection and classification, a large-scale and diverse benchmark dataset is required. In this paper, we introduce a traffic sign benchmark dataset of 100K street-level images around the world that encapsulates diverse scenes, wide coverage of geographical locations, and varying weather and lighting conditions and covers more than 300 manually annotated traffic sign classes. The dataset includes 52K images that are fully annotated and 48K images that are partially annotated. This is the largest and the most diverse traffic sign dataset consisting of images from all over world with fine-grained annotations of traffic sign classes. We have run extensive experiments to establish strong baselines for both the detection and the classification tasks. In addition, we have verified that the diversity of this dataset enables effective transfer learning for existing large-scale benchmark datasets on traffic sign detection and classification. The dataset is freely available for academic research: https://www.mapillary.com/dataset/trafficsign.




cat

A Fast and Accurate Algorithm for Spherical Harmonic Analysis on HEALPix Grids with Applications to the Cosmic Microwave Background Radiation. (arXiv:1904.10514v4 [math.NA] UPDATED)

The Hierarchical Equal Area isoLatitude Pixelation (HEALPix) scheme is used extensively in astrophysics for data collection and analysis on the sphere. The scheme was originally designed for studying the Cosmic Microwave Background (CMB) radiation, which represents the first light to travel during the early stages of the universe's development and gives the strongest evidence for the Big Bang theory to date. Refined analysis of the CMB angular power spectrum can lead to revolutionary developments in understanding the nature of dark matter and dark energy. In this paper, we present a new method for performing spherical harmonic analysis for HEALPix data, which is a central component to computing and analyzing the angular power spectrum of the massive CMB data sets. The method uses a novel combination of a non-uniform fast Fourier transform, the double Fourier sphere method, and Slevinsky's fast spherical harmonic transform (Slevinsky, 2019). For a HEALPix grid with $N$ pixels (points), the computational complexity of the method is $mathcal{O}(Nlog^2 N)$, with an initial set-up cost of $mathcal{O}(N^{3/2}log N)$. This compares favorably with $mathcal{O}(N^{3/2})$ runtime complexity of the current methods available in the HEALPix software when multiple maps need to be analyzed at the same time. Using numerical experiments, we demonstrate that the new method also appears to provide better accuracy over the entire angular power spectrum of synthetic data when compared to the current methods, with a convergence rate at least two times higher.




cat

Keeping out the Masses: Understanding the Popularity and Implications of Internet Paywalls. (arXiv:1903.01406v4 [cs.CY] UPDATED)

Funding the production of quality online content is a pressing problem for content producers. The most common funding method, online advertising, is rife with well-known performance and privacy harms, and an intractable subject-agent conflict: many users do not want to see advertisements, depriving the site of needed funding.

Because of these negative aspects of advertisement-based funding, paywalls are an increasingly popular alternative for websites. This shift to a "pay-for-access" web is one that has potentially huge implications for the web and society. Instead of a system where information (nominally) flows freely, paywalls create a web where high quality information is available to fewer and fewer people, leaving the rest of the web users with less information, that might be also less accurate and of lower quality. Despite the potential significance of a move from an "advertising-but-open" web to a "paywalled" web, we find this issue understudied.

This work addresses this gap in our understanding by measuring how widely paywalls have been adopted, what kinds of sites use paywalls, and the distribution of policies enforced by paywalls. A partial list of our findings include that (i) paywall use is accelerating (2x more paywalls every 6 months), (ii) paywall adoption differs by country (e.g. 18.75% in US, 12.69% in Australia), (iii) paywalls change how users interact with sites (e.g. higher bounce rates, less incoming links), (iv) the median cost of an annual paywall access is $108 per site, and (v) paywalls are in general trivial to circumvent.

Finally, we present the design of a novel, automated system for detecting whether a site uses a paywall, through the combination of runtime browser instrumentation and repeated programmatic interactions with the site. We intend this classifier to augment future, longitudinal measurements of paywall use and behavior.




cat

ErdH{o}s-P'osa property of chordless cycles and its applications. (arXiv:1711.00667v3 [math.CO] UPDATED)

A chordless cycle, or equivalently a hole, in a graph $G$ is an induced subgraph of $G$ which is a cycle of length at least $4$. We prove that the ErdH{o}s-P'osa property holds for chordless cycles, which resolves the major open question concerning the ErdH{o}s-P'osa property. Our proof for chordless cycles is constructive: in polynomial time, one can find either $k+1$ vertex-disjoint chordless cycles, or $c_1k^2 log k+c_2$ vertices hitting every chordless cycle for some constants $c_1$ and $c_2$. It immediately implies an approximation algorithm of factor $mathcal{O}(sf{opt}log {sf opt})$ for Chordal Vertex Deletion. We complement our main result by showing that chordless cycles of length at least $ell$ for any fixed $ellge 5$ do not have the ErdH{o}s-P'osa property.




cat

A Local Spectral Exterior Calculus for the Sphere and Application to the Shallow Water Equations. (arXiv:2005.03598v1 [math.NA])

We introduce $Psimathrm{ec}$, a local spectral exterior calculus for the two-sphere $S^2$. $Psimathrm{ec}$ provides a discretization of Cartan's exterior calculus on $S^2$ formed by spherical differential $r$-form wavelets. These are well localized in space and frequency and provide (Stevenson) frames for the homogeneous Sobolev spaces $dot{H}^{-r+1}( Omega_{ u}^{r} , S^2 )$ of differential $r$-forms. At the same time, they satisfy important properties of the exterior calculus, such as the de Rahm complex and the Hodge-Helmholtz decomposition. Through this, $Psimathrm{ec}$ is tailored towards structure preserving discretizations that can adapt to solutions with varying regularity. The construction of $Psimathrm{ec}$ is based on a novel spherical wavelet frame for $L_2(S^2)$ that we obtain by introducing scalable reproducing kernel frames. These extend scalable frames to weighted sampling expansions and provide an alternative to quadrature rules for the discretization of needlet-like scale-discrete wavelets. We verify the practicality of $Psimathrm{ec}$ for numerical computations using the rotating shallow water equations. Our numerical results demonstrate that a $Psimathrm{ec}$-based discretization of the equations attains accuracy comparable to those of spectral methods while using a representation that is well localized in space and frequency.




cat

Efficient Exact Verification of Binarized Neural Networks. (arXiv:2005.03597v1 [cs.AI])

We present a new system, EEV, for verifying binarized neural networks (BNNs). We formulate BNN verification as a Boolean satisfiability problem (SAT) with reified cardinality constraints of the form $y = (x_1 + cdots + x_n le b)$, where $x_i$ and $y$ are Boolean variables possibly with negation and $b$ is an integer constant. We also identify two properties, specifically balanced weight sparsity and lower cardinality bounds, that reduce the verification complexity of BNNs. EEV contains both a SAT solver enhanced to handle reified cardinality constraints natively and novel training strategies designed to reduce verification complexity by delivering networks with improved sparsity properties and cardinality bounds. We demonstrate the effectiveness of EEV by presenting the first exact verification results for $ell_{infty}$-bounded adversarial robustness of nontrivial convolutional BNNs on the MNIST and CIFAR10 datasets. Our results also show that, depending on the dataset and network architecture, our techniques verify BNNs between a factor of ten to ten thousand times faster than the best previous exact verification techniques for either binarized or real-valued networks.




cat

Checking Qualitative Liveness Properties of Replicated Systems with Stochastic Scheduling. (arXiv:2005.03555v1 [cs.LO])

We present a sound and complete method for the verification of qualitative liveness properties of replicated systems under stochastic scheduling. These are systems consisting of a finite-state program, executed by an unknown number of indistinguishable agents, where the next agent to make a move is determined by the result of a random experiment. We show that if a property of such a system holds, then there is always a witness in the shape of a Presburger stage graph: a finite graph whose nodes are Presburger-definable sets of configurations. Due to the high complexity of the verification problem (non-elementary), we introduce an incomplete procedure for the construction of Presburger stage graphs, and implement it on top of an SMT solver. The procedure makes extensive use of the theory of well-quasi-orders, and of the structural theory of Petri nets and vector addition systems. We apply our results to a set of benchmarks, in particular to a large collection of population protocols, a model of distributed computation extensively studied by the distributed computing community.




cat

Computing with bricks and mortar: Classification of waveforms with a doped concrete blocks. (arXiv:2005.03498v1 [cs.ET])

We present results showing the capability of concrete-based information processing substrate in the signal classification task in accordance with in materio computing paradigm. As the Reservoir Computing is a suitable model for describing embedded in materio computation, we propose that this type of presented basic construction unit can be used as a source for "reservoir of states" necessary for simple tuning of the readout layer. In that perspective, buildings constructed from computing concrete could function as a highly parallel information processor for smart architecture. We present an electrical characterization of the set of samples with different additive concentrations followed by a dynamical analysis of selected specimens showing fingerprints of memfractive properties. Moreover, on the basis of obtained parameters, classification of the signal waveform shapes can be performed in scenarios explicitly tuned for a given device terminal.




cat

Detection and Feeder Identification of the High Impedance Fault at Distribution Networks Based on Synchronous Waveform Distortions. (arXiv:2005.03411v1 [eess.SY])

Diagnosis of high impedance fault (HIF) is a challenge for nowadays distribution network protections. The fault current of a HIF is much lower than that of a normal load, and fault feature is significantly affected by fault scenarios. A detection and feeder identification algorithm for HIFs is proposed in this paper, based on the high-resolution and synchronous waveform data. In the algorithm, an interval slope is defined to describe the waveform distortions, which guarantees a uniform feature description under various HIF nonlinearities and noise interferences. For three typical types of network neutrals, i.e.,isolated neutral, resonant neutral, and low-resistor-earthed neutral, differences of the distorted components between the zero-sequence currents of healthy and faulty feeders are mathematically deduced, respectively. As a result, the proposed criterion, which is based on the distortion relationships between zero-sequence currents of feeders and the zero-sequence voltage at the substation, is theoretically supported. 28 HIFs grounded to various materials are tested in a 10kV distribution networkwith three neutral types, and are utilized to verify the effectiveness of the proposed algorithm.




cat

Wavelet Integrated CNNs for Noise-Robust Image Classification. (arXiv:2005.03337v1 [cs.CV])

Convolutional Neural Networks (CNNs) are generally prone to noise interruptions, i.e., small image noise can cause drastic changes in the output. To suppress the noise effect to the final predication, we enhance CNNs by replacing max-pooling, strided-convolution, and average-pooling with Discrete Wavelet Transform (DWT). We present general DWT and Inverse DWT (IDWT) layers applicable to various wavelets like Haar, Daubechies, and Cohen, etc., and design wavelet integrated CNNs (WaveCNets) using these layers for image classification. In WaveCNets, feature maps are decomposed into the low-frequency and high-frequency components during the down-sampling. The low-frequency component stores main information including the basic object structures, which is transmitted into the subsequent layers to extract robust high-level features. The high-frequency components, containing most of the data noise, are dropped during inference to improve the noise-robustness of the WaveCNets. Our experimental results on ImageNet and ImageNet-C (the noisy version of ImageNet) show that WaveCNets, the wavelet integrated versions of VGG, ResNets, and DenseNet, achieve higher accuracy and better noise-robustness than their vanilla versions.




cat

Crop Aggregating for short utterances speaker verification using raw waveforms. (arXiv:2005.03329v1 [eess.AS])

Most studies on speaker verification systems focus on long-duration utterances, which are composed of sufficient phonetic information. However, the performances of these systems are known to degrade when short-duration utterances are inputted due to the lack of phonetic information as compared to the long utterances. In this paper, we propose a method that compensates for the performance degradation of speaker verification for short utterances, referred to as "crop aggregating". The proposed method adopts an ensemble-based design to improve the stability and accuracy of speaker verification systems. The proposed method segments an input utterance into several short utterances and then aggregates the segment embeddings extracted from the segmented inputs to compose a speaker embedding. Then, this method simultaneously trains the segment embeddings and the aggregated speaker embedding. In addition, we also modified the teacher-student learning method for the proposed method. Experimental results on different input duration using the VoxCeleb1 test set demonstrate that the proposed technique improves speaker verification performance by about 45.37% relatively compared to the baseline system with 1-second test utterance condition.




cat

Specification and Automated Analysis of Inter-Parameter Dependencies in Web APIs. (arXiv:2005.03320v1 [cs.SE])

Web services often impose inter-parameter dependencies that restrict the way in which two or more input parameters can be combined to form valid calls to the service. Unfortunately, current specification languages for web services like the OpenAPI Specification (OAS) provide no support for the formal description of such dependencies, which makes it hardly possible to automatically discover and interact with services without human intervention. In this article, we present an approach for the specification and automated analysis of inter-parameter dependencies in web APIs. We first present a domain-specific language, called Inter-parameter Dependency Language (IDL), for the specification of dependencies among input parameters in web services. Then, we propose a mapping to translate an IDL document into a constraint satisfaction problem (CSP), enabling the automated analysis of IDL specifications using standard CSP-based reasoning operations. Specifically, we present a catalogue of nine analysis operations on IDL documents allowing to compute, for example, whether a given request satisfies all the dependencies of the service. Finally, we present a tool suite including an editor, a parser, an OAS extension, a constraint programming-aided library, and a test suite supporting IDL specifications and their analyses. Together, these contributions pave the way for a new range of specification-driven applications in areas such as code generation and testing.




cat

Deep Learning based Person Re-identification. (arXiv:2005.03293v1 [cs.CV])

Automated person re-identification in a multi-camera surveillance setup is very important for effective tracking and monitoring crowd movement. In the recent years, few deep learning based re-identification approaches have been developed which are quite accurate but time-intensive, and hence not very suitable for practical purposes. In this paper, we propose an efficient hierarchical re-identification approach in which color histogram based comparison is first employed to find the closest matches in the gallery set, and next deep feature based comparison is carried out using Siamese network. Reduction in search space after the first level of matching helps in achieving a fast response time as well as improving the accuracy of prediction by the Siamese network by eliminating vastly dissimilar elements. A silhouette part-based feature extraction scheme is adopted in each level of hierarchy to preserve the relative locations of the different body structures and make the appearance descriptors more discriminating in nature. The proposed approach has been evaluated on five public data sets and also a new data set captured by our team in our laboratory. Results reveal that it outperforms most state-of-the-art approaches in terms of overall accuracy.




cat

YANG2UML: Bijective Transformation and Simplification of YANG to UML. (arXiv:2005.03292v1 [cs.SE])

Software Defined Networking is currently revolutionizing computer networking by decoupling the network control (control plane) from the forwarding functions (data plane) enabling the network control to become directly programmable and the underlying infrastructure to be abstracted for applications and network services. Next to the well-known OpenFlow protocol, the XML-based NETCONF protocol is also an important means for exchanging configuration information from a management platform and is nowadays even part of OpenFlow. In combination with NETCONF, YANG is the corresponding protocol that defines the associated data structures supporting virtually all network configuration protocols. YANG itself is a semantically rich language, which -- in order to facilitate familiarization with the relevant subject -- is often visualized to involve other experts or developers and to support them by their daily work (writing applications which make use of YANG). In order to support this process, this paper presents an novel approach to optimize and simplify YANG data models to assist further discussions with the management and implementations (especially of interfaces) to reduce complexity. Therefore, we have defined a bidirectional mapping of YANG to UML and developed a tool that renders the created UML diagrams. This combines the benefits to use the formal language YANG with automatically maintained UML diagrams to involve other experts or developers, closing the gap between technically improved data models and their human readability.




cat

Continuous maximal covering location problems with interconnected facilities. (arXiv:2005.03274v1 [math.OC])

In this paper we analyze a continuous version of the maximal covering location problem, in which the facilities are required to be interconnected by means of a graph structure in which two facilities are allowed to be linked if a given distance is not exceed. We provide a mathematical programming framework for the problem and different resolution strategies. First, we propose a Mixed Integer Non Linear Programming formulation, and derive properties of the problem that allow us to project the continuous variables out avoiding the nonlinear constraints, resulting in an equivalent pure integer programming formulation. Since the number of constraints in the integer programming formulation is large and the constraints are, in general, difficult to handle, we propose two branch-&-cut approaches that avoid the complete enumeration of the constraints resulting in more efficient procedures. We report the results of an extensive battery of computational experiments comparing the performance of the different approaches.




cat

Adaptive Feature Selection Guided Deep Forest for COVID-19 Classification with Chest CT. (arXiv:2005.03264v1 [eess.IV])

Chest computed tomography (CT) becomes an effective tool to assist the diagnosis of coronavirus disease-19 (COVID-19). Due to the outbreak of COVID-19 worldwide, using the computed-aided diagnosis technique for COVID-19 classification based on CT images could largely alleviate the burden of clinicians. In this paper, we propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images. Specifically, we first extract location-specific features from CT images. Then, in order to capture the high-level representation of these features with the relatively small-scale data, we leverage a deep forest model to learn high-level representation of the features. Moreover, we propose a feature selection method based on the trained deep forest model to reduce the redundancy of features, where the feature selection could be adaptively incorporated with the COVID-19 classification model. We evaluated our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP). The accuracy (ACC), sensitivity (SEN), specificity (SPE) and AUC achieved by our method are 91.79%, 93.05%, 89.95% and 96.35%, respectively. Experimental results on the COVID-19 dataset suggest that the proposed AFS-DF achieves superior performance in COVID-19 vs. CAP classification, compared with 4 widely used machine learning methods.




cat

Multi-Target Deep Learning for Algal Detection and Classification. (arXiv:2005.03232v1 [cs.CV])

Water quality has a direct impact on industry, agriculture, and public health. Algae species are common indicators of water quality. It is because algal communities are sensitive to changes in their habitats, giving valuable knowledge on variations in water quality. However, water quality analysis requires professional inspection of algal detection and classification under microscopes, which is very time-consuming and tedious. In this paper, we propose a novel multi-target deep learning framework for algal detection and classification. Extensive experiments were carried out on a large-scale colored microscopic algal dataset. Experimental results demonstrate that the proposed method leads to the promising performance on algal detection, class identification and genus identification.




cat

End-to-End Domain Adaptive Attention Network for Cross-Domain Person Re-Identification. (arXiv:2005.03222v1 [cs.CV])

Person re-identification (re-ID) remains challenging in a real-world scenario, as it requires a trained network to generalise to totally unseen target data in the presence of variations across domains. Recently, generative adversarial models have been widely adopted to enhance the diversity of training data. These approaches, however, often fail to generalise to other domains, as existing generative person re-identification models have a disconnect between the generative component and the discriminative feature learning stage. To address the on-going challenges regarding model generalisation, we propose an end-to-end domain adaptive attention network to jointly translate images between domains and learn discriminative re-id features in a single framework. To address the domain gap challenge, we introduce an attention module for image translation from source to target domains without affecting the identity of a person. More specifically, attention is directed to the background instead of the entire image of the person, ensuring identifying characteristics of the subject are preserved. The proposed joint learning network results in a significant performance improvement over state-of-the-art methods on several benchmark datasets.




cat

A Gentle Introduction to Quantum Computing Algorithms with Applications to Universal Prediction. (arXiv:2005.03137v1 [quant-ph])

In this technical report we give an elementary introduction to Quantum Computing for non-physicists. In this introduction we describe in detail some of the foundational Quantum Algorithms including: the Deutsch-Jozsa Algorithm, Shor's Algorithm, Grocer Search, and Quantum Counting Algorithm and briefly the Harrow-Lloyd Algorithm. Additionally we give an introduction to Solomonoff Induction, a theoretically optimal method for prediction. We then attempt to use Quantum computing to find better algorithms for the approximation of Solomonoff Induction. This is done by using techniques from other Quantum computing algorithms to achieve a speedup in computing the speed prior, which is an approximation of Solomonoff's prior, a key part of Solomonoff Induction. The major limiting factors are that the probabilities being computed are often so small that without a sufficient (often large) amount of trials, the error may be larger than the result. If a substantial speedup in the computation of an approximation of Solomonoff Induction can be achieved through quantum computing, then this can be applied to the field of intelligent agents as a key part of an approximation of the agent AIXI.




cat

Catch Me If You Can: Using Power Analysis to Identify HPC Activity. (arXiv:2005.03135v1 [cs.CR])

Monitoring users on large computing platforms such as high performance computing (HPC) and cloud computing systems is non-trivial. Utilities such as process viewers provide limited insight into what users are running, due to granularity limitation, and other sources of data, such as system call tracing, can impose significant operational overhead. However, despite technical and procedural measures, instances of users abusing valuable HPC resources for personal gains have been documented in the past cite{hpcbitmine}, and systems that are open to large numbers of loosely-verified users from around the world are at risk of abuse. In this paper, we show how electrical power consumption data from an HPC platform can be used to identify what programs are executed. The intuition is that during execution, programs exhibit various patterns of CPU and memory activity. These patterns are reflected in the power consumption of the system and can be used to identify programs running. We test our approach on an HPC rack at Lawrence Berkeley National Laboratory using a variety of scientific benchmarks. Among other interesting observations, our results show that by monitoring the power consumption of an HPC rack, it is possible to identify if particular programs are running with precision up to and recall of 95\% even in noisy scenarios.




cat

Evaluation, Tuning and Interpretation of Neural Networks for Meteorological Applications. (arXiv:2005.03126v1 [physics.ao-ph])

Neural networks have opened up many new opportunities to utilize remotely sensed images in meteorology. Common applications include image classification, e.g., to determine whether an image contains a tropical cyclone, and image translation, e.g., to emulate radar imagery for satellites that only have passive channels. However, there are yet many open questions regarding the use of neural networks in meteorology, such as best practices for evaluation, tuning and interpretation. This article highlights several strategies and practical considerations for neural network development that have not yet received much attention in the meteorological community, such as the concept of effective receptive fields, underutilized meteorological performance measures, and methods for NN interpretation, such as synthetic experiments and layer-wise relevance propagation. We also consider the process of neural network interpretation as a whole, recognizing it as an iterative scientist-driven discovery process, and breaking it down into individual steps that researchers can take. Finally, while most work on neural network interpretation in meteorology has so far focused on networks for image classification tasks, we expand the focus to also include networks for image translation.




cat

Constrained de Bruijn Codes: Properties, Enumeration, Constructions, and Applications. (arXiv:2005.03102v1 [cs.IT])

The de Bruijn graph, its sequences, and their various generalizations, have found many applications in information theory, including many new ones in the last decade. In this paper, motivated by a coding problem for emerging memory technologies, a set of sequences which generalize sequences in the de Bruijn graph are defined. These sequences can be also defined and viewed as constrained sequences. Hence, they will be called constrained de Bruijn sequences and a set of such sequences will be called a constrained de Bruijn code. Several properties and alternative definitions for such codes are examined and they are analyzed as generalized sequences in the de Bruijn graph (and its generalization) and as constrained sequences. Various enumeration techniques are used to compute the total number of sequences for any given set of parameters. A construction method of such codes from the theory of shift-register sequences is proposed. Finally, we show how these constrained de Bruijn sequences and codes can be applied in constructions of codes for correcting synchronization errors in the $ell$-symbol read channel and in the racetrack memory channel. For this purpose, these codes are superior in their size on previously known codes.




cat

Optimal Location of Cellular Base Station via Convex Optimization. (arXiv:2005.03099v1 [cs.IT])

An optimal base station (BS) location depends on the traffic (user) distribution, propagation pathloss and many system parameters, which renders its analytical study difficult so that numerical algorithms are widely used instead. In this paper, the problem is studied analytically. First, it is formulated as a convex optimization problem to minimize the total BS transmit power subject to quality-of-service (QoS) constraints, which also account for fairness among users. Due to its convex nature, Karush-Kuhn-Tucker (KKT) conditions are used to characterize a globally-optimum location as a convex combination of user locations, where convex weights depend on user parameters, pathloss exponent and overall geometry of the problem. Based on this characterization, a number of closed-form solutions are obtained. In particular, the optimum BS location is the mean of user locations in the case of free-space propagation and identical user parameters. If the user set is symmetric (as defined in the paper), the optimal BS location is independent of pathloss exponent, which is not the case in general. The analytical results show the impact of propagation conditions as well as system and user parameters on optimal BS location and can be used to develop design guidelines.




cat

Heterogeneous Facility Location Games. (arXiv:2005.03095v1 [cs.GT])

We study heterogeneous $k$-facility location games. In this model there are $k$ facilities where each facility serves a different purpose. Thus, the preferences of the agents over the facilities can vary arbitrarily. Our goal is to design strategy proof mechanisms that place the facilities in a way to maximize the minimum utility among the agents. For $k=1$, if the agents' locations are known, we prove that the mechanism that places the facility on an optimal location is strategy proof. For $k geq 2$, we prove that there is no optimal strategy proof mechanism, deterministic or randomized, even when $k=2$ there are only two agents with known locations, and the facilities have to be placed on a line segment. We derive inapproximability bounds for deterministic and randomized strategy proof mechanisms. Finally, we focus on the line segment and provide strategy proof mechanisms that achieve constant approximation. All of our mechanisms are simple and communication efficient. As a byproduct we show that some of our mechanisms can be used to achieve constant factor approximations for other objectives as the social welfare and the happiness.




cat

Line Artefact Quantification in Lung Ultrasound Images of COVID-19 Patients via Non-Convex Regularisation. (arXiv:2005.03080v1 [eess.IV])

In this paper, we present a novel method for line artefacts quantification in lung ultrasound (LUS) images of COVID-19 patients. We formulate this as a non-convex regularisation problem involving a sparsity-enforcing, Cauchy-based penalty function, and the inverse Radon transform. We employ a simple local maxima detection technique in the Radon transform domain, associated with known clinical definitions of line artefacts. Despite being non-convex, the proposed method has guaranteed convergence via a proximal splitting algorithm and accurately identifies both horizontal and vertical line artefacts in LUS images. In order to reduce the number of false and missed detection, our method includes a two-stage validation mechanism, which is performed in both Radon and image domains. We evaluate the performance of the proposed method in comparison to the current state-of-the-art B-line identification method and show a considerable performance gain with 87% correctly detected B-lines in LUS images of nine COVID-19 patients. In addition, owing to its fast convergence, which takes around 12 seconds for a given frame, our proposed method is readily applicable for processing LUS image sequences.




cat

Categorical Vector Space Semantics for Lambek Calculus with a Relevant Modality. (arXiv:2005.03074v1 [cs.CL])

We develop a categorical compositional distributional semantics for Lambek Calculus with a Relevant Modality !L*, which has a limited edition of the contraction and permutation rules. The categorical part of the semantics is a monoidal biclosed category with a coalgebra modality, very similar to the structure of a Differential Category. We instantiate this category to finite dimensional vector spaces and linear maps via "quantisation" functors and work with three concrete interpretations of the coalgebra modality. We apply the model to construct categorical and concrete semantic interpretations for the motivating example of !L*: the derivation of a phrase with a parasitic gap. The effectiveness of the concrete interpretations are evaluated via a disambiguation task, on an extension of a sentence disambiguation dataset to parasitic gap phrase one, using BERT, Word2Vec, and FastText vectors and Relational tensors.




cat

Category Page Design Examples: 6 Category Page Inspirations

Dozens of people find your business when looking for a type of product but aren’t sure which product fits their needs best. With a well-designed and organized category page, you’ll help people browse products easier and find what they want. To help you get inspired, let’s take a look at some excellent category page design […]

The post Category Page Design Examples: 6 Category Page Inspirations appeared first on WebFX Blog.




cat

Education

Summer Camps 2020 ACT/SAT Prep Camp Students can use their free time this summer to get ready to take the ACT or SAT test with educational staff at Gonzaga Prep.…




cat

Best of Broadway announces its 2020-21 season for Spokane, featuring Cats, fiddlers and, finally, Hamilton

We've known that Hamilton was going to be part of the 2020-21 STCU Best of Broadway season for a while, but now we finally know the exact dates, as well as the rest of the featured shows for the season. Granted, the whole world has changed since WestCoast Entertainment announced Hamilton was coming to town back when they announced their 2019-20 season — a season that's been roiled, along with the rest of our lives, by the coronavirus pandemic.…



  • Arts & Culture

cat

Jill Ann Smith approaches her wide-ranging pursuits with passion and dedication

What do Arabian horses, women veterans, ceramics and the food industry have in common?…



  • Family & Parenting

cat

Catalyst for living radical polymerization and polymerization method

A nonmetallic compound having an ionic bond with a halide ion is used as a catalyst for living radical polymerization. Even if a radical initiator is not used, a monomer can be subjected to a radical polymerization to obtain a polymer having narrow molecular weight distribution. The cost of the living radical polymerization can be remarkably reduced, and it is made possible to prevent adverse effects of using a radical initiator (such as side reactions). The present invention is significantly more environmentally friendly and economically excellent than conventional living radical polymerization methods, due to advantages such as low toxicity of the catalyst, low amount of the catalyst necessary, high solubility of the catalyst, mild reaction conditions, and no coloration/no odor, etc. The catalyst can be applied to various monomers and enables synthesis of high molecular weight polymers.




cat

Techniques for evaluation, building and/or retraining of a classification model

Techniques for evaluation and/or retraining of a classification model built using labeled training data. In some aspects, a classification model having a first set of weights is retrained by using unlabeled input to reweight the labeled training data to have a second set of weights, and by retraining the classification model using the labeled training data weighted according to the second set of weights. In some aspects, a classification model is evaluated by building a similarity model that represents similarities between unlabeled input and the labeled training data and using the similarity model to evaluate the labeled training data to identify a subset of the plurality of items of labeled training data that is more similar to the unlabeled input than a remainder of the labeled training data.




cat

Determining a dynamic user profile indicative of a user behavior context with a mobile device

Methods, apparatuses and articles of manufacture for use in a mobile device to determine whether a dynamic user profile is to transition from a first state to a second state based, at least in part, on one or more sensed indicators. The dynamic user profile may be indicative of one or more current inferable user behavior contexts for a user co-located with the mobile device. The mobile device may transition a dynamic user profile from a first state to a second state, in response to a determination that the dynamic user profile is to transition from the first state to the second state, and operatively affect one or more functions performed, at least in part, by the mobile device based, at least in part, on the transition of the dynamic user profile to the second state.




cat

Method for generating visual mapping of knowledge information from parsing of text inputs for subjects and predicates

A method for performing relational analysis of parsed input is employed to create a visual map of knowledge information. A title, header or subject line for an input item of information is parsed into syntactical components of at least a subject component and any predicate component(s) relationally linked as topic and subtopics. A search of topics and subtopics is carried out for each parsed component. If a match is found, then the parsed component is taken as a chosen topic/subtopic label. If no match is found, then the parsed component is formatted as a new entry in the knowledge map. A translation function for translating topics and subtopics from an original language into one or more target languages is enabled by user request or indicated user preference for display on a generated visual map of knowledge information.




cat

Automatic chemical assay classification using a space enhancing proximity

A computer implemented method for automatic chemical assay classification, the method comprising steps the computer is programmed to perform, the steps comprising: receiving a plurality of sets of parameters, each one of the received sets of parameters characterizing a respective assay of a chemical reaction, calculating a space enhancing proximity among points representative of assays of qualitatively identical chemical reactions, and representing each one of at least two of the received sets of parameters as a respective point in the calculated space, and dividing the points in the calculated space into a number of groups, according to proximity among the points in the calculated space, each group pertaining to a respective chemical reaction, thereby classifying the assays.




cat

Catalytic processes for preparing estolide base oils

Provided herein are processes for preparing estolides and estolide base oils from fatty acid reactants utilizing catalysts. Further provided herein are processes for preparing carboxylic esters from at least one carboxylic acid reactant and at least one olefin.




cat

ZnO nanoparticle catalysts for use in transesterification and esterification reactions and method of making

A method of forming a product from an oil feedstock, such as a biodiesel product, and a heterogeneous catalyst system used to form said product is disclosed. This catalyst system, which has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock, may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system is comprised of a mixture of zinc oxide and a second metal oxide. The zinc oxide includes a mixture of amorphous zinc oxide and zinc oxide nanocrystals, the zinc nanocrystals having a mean grain size between about 20 and 80 nanometers with at least one of the nanocrystals including a mesopore having a diameter of about 5 to 15 nanometers. Preferably, the second metal oxide is a lanthanum oxide, the lanthanum oxide being selected as one from the group of La2CO5, LaOOH, and combinations or mixtures thereof.




cat

Cationic polyglyceryl compositions and compounds

Provided are polyglyceryl compositions comprising one or more polyglyceryl compounds having: (a) a node structure comprising at least three contiguous glyceryl remnant units; (b) one or more cationic groups each linked to the node structure by an independently selected linking group; and (c) one or more hydrophobic moieties each independently (i) linked to the node structure by a linking group, or (ii) constituting a portion of one of the one or more cationic groups, wherein the composition has an average degree of polymerization determined by hydroxyl value testing (DPOH) of from about 3 to about 20. Also provided are polyglyceryl compounds which may compose such compositions, and uses of the polyglyceryl compositions and compounds.




cat

Multifunctional mesoporous silica catalyst

The present invention provides bifunctional silica mesoporous materials, including mesoporous silica nanoparticles (“MSN”), having pores modified with diarylammonium triflate and perfluoroaryl moieties, that are useful for the acid-catalyzed esterification of organic acids with organic alcohols.




cat

Continuous transesterification method

The invention relates to a continuous method for producing esters, in which at least one polyol ester of formula (I) (R1—COO)mR2 (I), where R1 represents hydrogen or an optionally substituted hydrocarbon group containing 1 to 50 carbon atoms, R2 represents an optionally substituted hydrocarbon group containing 2 to 10 carbon atoms, and m represents a number from 2 to 10 and is smaller than or equal to the number of carbon atoms in R2, is reacted with at least one monohydric alcohol of formula (II) R3—OH (II), where R3 represents an optionally substituted hydrocarbon group containing 1 to 30 C atoms, using microwave radiation in a reaction tube, the longitudinal axis of which extends in the direction of propagation of the microwaves of a single-mode microwave applicator, so as to obtain at least one ester of formula (III) R1—COO—R3 (III), where R1 and R3 have the meanings indicated above.




cat

Mixture of an amine alkoxylate ester and a quaternary ammonium compound as a collector for minerals containing silicate

The invention relates to the use of a composition of A) at least one quaternary ammonia compound comprising at least one organic radical bonded to the ammonia nitrogen atom and optionally comprising heteroatoms and having 1 to 36 carbon atoms, and B) at least one amine alkoxylate ester of formula (1) or a salt thereof, where A, B are, independently of each other, a C2- through C5-alkylene radical R1, a C8- through C24-alkyl radical or alkenyl radical R2, R3, R4 independent of each other, H, or a C8- through C24-acyl radical, with the stipulation that at least one of the radicals R2, R3 or R4 stands for a C8- through C24-acyl radical, and x, y, z, independently of each other, stand for a whole number from 0 through 50, with the stipulation that x+y+z is a whole number from 1 through 100, in quantities of 10 through 5000 g/tonne of ore as a collector in silicate floation.




cat

Process for the preparation of fatty acid alkyl esters (biodiesel) from triglyceride oils using eco-friendly solid base catalysts

This invention relates to an improved process for the preparation of green fatty acid methyl esters (FAME; commonly called as biodiesel) from different triglyceride oils using mixed metal oxides derived from layered double hydroxides (referred here as LDHs) as reusable solid heterogeneous base catalysts. This process uses very low alcohohoil molar ratio and catalyst and/or products are easily separable after the reaction through simple physical processes. The properties of thus obtained biodiesel meet the standard biodiesel values and can directly be used as transport fuel.




cat

Purification of triglyceride oil from microbial sources using short path distillation

Disclosed is a process for reducing the amount of sterol in a sterol-containing microbial oil composition, including distilling, under short path distillation conditions, a sterol-containing microbial oil wherein said distillation produces a distillate fraction containing the sterol and a triacylglycerol-containing fraction having a reduced amount of the sterol when compared to the amount of sterol in the sterol-containing microbial oil composition that has not been subjected to short path distillation.




cat

Composite material for structural applications

Composite material that contain epoxy resin which is toughened and strengthened with thermoplastic materials and a blend of insoluble particles. The uncured matrix resins include an epoxy resin component, a soluble thermoplastic component, a curing agent and an insoluble particulate component composed of elastic particles and rigid particles. The uncured resin matrix is combined with a fibrous reinforcement and cured/molded to form composite materials that may be used for structural applications, such as primary structures in aircraft.




cat

Compatibilized polypropylene heterophasic copolymer and polylactic acid blends for injection molding applications

Injection molded articles and process of forming the same are described herein. The processes generally include providing a polyolefin including one or more propylene heterophasic copolymers, the polyolefin having an ethylene content of at least 10 wt. % based on the total weight of the polyolefin; contacting the polyolefin with a polylactic acid and a reactive modifier to form a compatiblized polymeric blend, wherein the reactive modifier is produced by contacting a polypropylene, a multifunctional acrylate comonomer, and an initiator under conditions suitable for the formation of a glycidyl methacrylate grafted polypropylene (PP-g-GMA) having a grafting yield in a range from 1 wt. % to 15 wt. %; and injection molding the compatibilized polymeric blend into an article.




cat

Additive combination for sealants applications

The present invention pertains to an additive combination comprising at least two sterically hindered amines, at least one further stabilizer, a dispersing agent and a plasticizer. The present invention also pertains to a composition comprising an organic material susceptible to degradation by light, oxygen and/or heat, and the additive combination and to the use and the process for stabilizing organic material against degradation by light, oxygen and/or heat by the additive combination.




cat

Catalyst compositions and process for preparing polyolefins

Catalyst compositions comprising metallocene complexes having polymerisable olefinic groups substituent on an organic group containing a cyclopentadienyl nucleus may be used for the preparation of polyolefins. The catalyst compositions may be in the form of polymers comprising the metallocene complex and may be suitably supported on inorganic supports. Polymers having a broad range of density and melt indices as well as low hexane extractables and excellent powder morphology and flowability may be obtained by use of the catalyst compositions. Preferred metallocene complexes are zirconium complexes in which the polymerisable olefinic group is vinyl.




cat

Bridged bis-fluorenyl metallocenes, process for the preparation thereof and use thereof in catalysts for the polymerization of olefins

Metallocene compounds having two fluorenyl ligands bridged with a single silicon or germanium atom, said atom having two substituent groups containing a total of at least four carbon atoms, are useful as catalyst components for the polymerization of olefins. Particularly, it is possible to prepare high molecular weight atactic polypropylene with improved yields with respect to the known catalysts.




cat

Preparation of addition polymerization catalysts

Metal complexes useful as components of addition polymerization catalysts are prepared by oxidizing Group 4 or Lanthanide metal containing complexes using an organic halide oxidizing agent in a unique one electron oxidation.