ni A new experimental setup for combined fast differential scanning calorimetry and X-ray photon correlation spectroscopy By journals.iucr.org Published On :: 2024-04-24 Synchrotron-radiation-based techniques are a powerful tool for the investigation of materials. In particular, the availability of highly brilliant sources has opened the possibility to develop techniques sensitive to dynamics at the atomic scale such as X-ray photon correlation spectroscopy (XPCS). XPCS is particularly relevant in the study of glasses, which have been often investigated at the macroscopic scale by, for example, differential scanning calorimetry. Here, we show how to adapt a Flash calorimeter to combine XPCS and calorimetric scans. This setup paves the way to novel experiments requiring dynamical and thermodynamic information, ranging from the study of the crystallization kinetics to the study of the glass transition in systems that can be vitrified thanks to the high cooling rates reachable with an ultrafast calorimeter. Full Article text
ni Teaching about the birth of synchrotron light: the role of Frascati and a missed opportunity By journals.iucr.org Published On :: 2024-05-21 The users of synchrotron light are now tens of thousands throughout the world. Paradoxically, many of them do not know much about the early history of their domain. This is regrettable, since education about the initial developments makes it easier to fully understand synchrotron radiation and effectively use its amazing features. Scarcely known, in particular, is the key role of scientists working in Frascati, Italy. Partly based on his personal experiences, the author reports here relevant aspects of this story, including a pioneering French–Italian experiment that started in the early 1960s, and the Frascati contributions in the 1970s and 1980s to the birth of synchrotron light research. Finally, the unwise strategic decisions that prevented Italy from achieving absolute leadership in this domain – in spite of its unique initial advantages – are analyzed. Full Article text
ni 3D imaging of magnetic domains in Nd2Fe14B using scanning hard X-ray nanotomography By journals.iucr.org Published On :: 2024-05-21 Nanoscale structural and electronic heterogeneities are prevalent in condensed matter physics. Investigating these heterogeneities in 3D has become an important task for understanding material properties. To provide a tool to unravel the connection between nanoscale heterogeneity and macroscopic emergent properties in magnetic materials, scanning transmission X-ray microscopy (STXM) is combined with X-ray magnetic circular dichroism. A vector tomography algorithm has been developed to reconstruct the full 3D magnetic vector field without any prior noise assumptions or knowledge about the sample. Two tomographic scans around the vertical axis are acquired on single-crystalline Nd2Fe14B pillars tilted at two different angles, with 2D STXM projections recorded using a focused 120 nm X-ray beam with left and right circular polarization. Image alignment and iterative registration have been implemented based on the 2D STXM projections for the two tilts. Dichroic projections obtained from difference images are used for the tomographic reconstruction to obtain the 3D magnetization distribution at the nanoscale. Full Article text
ni Hard X-ray operation of X-ray gas monitors at the European XFEL By journals.iucr.org Published On :: 2024-06-05 X-ray gas monitors (XGMs) are operated at the European XFEL for non-invasive single-shot pulse energy measurements and average beam-position monitoring. The underlying measurement principle is the photo-ionization of rare gas atoms at low gas pressures and the detection of the photo-ions and photo-electrons created. These are essential for tuning and sustaining self-amplified spontaneous emission (SASE) operation, machine radiation safety, and sorting single-shot experimental data according to pulse energy. In this paper, the first results from XGM operation at photon energies up to 30 keV are presented, which are far beyond the original specification of this device. Here, the Huge Aperture MultiPlier (HAMP) is used for single-shot pulse energy measurements since the standard X-ray gas monitor detectors (XGMDs) do not provide a sufficient signal-to-noise ratio, even at the highest operating gas pressures. A single-shot correlation coefficient of 0.98 is measured between consecutive XGMs operated with HAMP, which is as good as measuring with the standard XGMD detectors. An intra-train non-linearity of the HAMP signal is discovered, and operation parameters to mitigate this effect are studied. The upper repetition rate limit of HAMP operation at 2.25 MHz is also determined. Finally, the possibilities and limits for future XGM operation at photon energies up to 50 keV are discussed. Full Article text
ni X-ray phase-contrast tomography of cells manipulated with an optical stretcher By journals.iucr.org Published On :: 2024-06-11 X-rays can penetrate deeply into biological cells and thus allow for examination of their internal structures with high spatial resolution. In this study, X-ray phase-contrast imaging and tomography is combined with an X-ray-compatible optical stretcher and microfluidic sample delivery. Using this setup, individual cells can be kept in suspension while they are examined with the X-ray beam at a synchrotron. From the recorded holograms, 2D phase shift images that are proportional to the projected local electron density of the investigated cell can be calculated. From the tomographic reconstruction of multiple such projections the 3D electron density can be obtained. The cells can thus be studied in a hydrated or even living state, thus avoiding artifacts from freezing, drying or embedding, and can in principle also be subjected to different sample environments or mechanical strains. This combination of techniques is applied to living as well as fixed and stained NIH3T3 mouse fibroblasts and the effect of the beam energy on the phase shifts is investigated. Furthermore, a 3D algebraic reconstruction scheme and a dedicated mathematical description is used to follow the motion of the trapped cells in the optical stretcher for multiple rotations. Full Article text
ni Development of a portable and cost-effective femtosecond fibre laser synchronizable with synchrotron X-ray pulses By journals.iucr.org Published On :: 2024-06-20 This study introduces a compact, portable femtosecond fibre laser system designed for synchronization with SPring-8 synchrotron X-ray pulses in a uniform filling mode. Unlike traditional titanium–sapphire mode-locked lasers, which are fixed installations, our system utilizes fibre laser technology to provide a practical alternative for time-resolved spectroscopy, striking a balance between usability, portability and cost-efficiency. Comprehensive evaluations, including pulse characterization, timing jitter and frequency stability tests revealed a centre wavelength of 1600 nm, a pulse energy of 4.5 nJ, a pulse duration of 35 fs with a timing jitter of less than 9 ps, confirming the suitability of the system for time-resolved spectroscopic studies. This development enhances the feasibility of experiments that combine synchrotron X-rays and laser pulses, offering significant scientific contributions by enabling more flexible and diverse research applications. Full Article text
ni Automated spectrometer alignment via machine learning By journals.iucr.org Published On :: 2024-06-20 During beam time at a research facility, alignment and optimization of instrumentation, such as spectrometers, is a time-intensive task and often needs to be performed multiple times throughout the operation of an experiment. Despite the motorization of individual components, automated alignment solutions are not always available. In this study, a novel approach that combines optimisers with neural network surrogate models to significantly reduce the alignment overhead for a mobile soft X-ray spectrometer is proposed. Neural networks were trained exclusively using simulated ray-tracing data, and the disparity between experiment and simulation was obtained through parameter optimization. Real-time validation of this process was performed using experimental data collected at the beamline. The results demonstrate the ability to reduce alignment time from one hour to approximately five minutes. This method can also be generalized beyond spectrometers, for example, towards the alignment of optical elements at beamlines, making it applicable to a broad spectrum of research facilities. Full Article text
ni X-ray scattering based scanning tomography for imaging and structural characterization of cellulose in plants By journals.iucr.org Published On :: 2024-06-25 X-ray and neutron scattering have long been used for structural characterization of cellulose in plants. Due to averaging over the illuminated sample volume, these measurements traditionally overlooked the compositional and morphological heterogeneity within the sample. Here, a scanning tomographic imaging method is described, using contrast derived from the X-ray scattering intensity, for virtually sectioning the sample to reveal its internal structure at a resolution of a few micrometres. This method provides a means for retrieving the local scattering signal that corresponds to any voxel within the virtual section, enabling characterization of the local structure using traditional data-analysis methods. This is accomplished through tomographic reconstruction of the spatial distribution of a handful of mathematical components identified by non-negative matrix factorization from the large dataset of X-ray scattering intensity. Joint analysis of multiple datasets, to find similarity between voxels by clustering of the decomposed data, could help elucidate systematic differences between samples, such as those expected from genetic modifications, chemical treatments or fungal decay. The spatial distribution of the microfibril angle can also be analyzed, based on the tomographically reconstructed scattering intensity as a function of the azimuthal angle. Full Article text
ni Revealing the structure of the active sites for the electrocatalytic CO2 reduction to CO over Co single atom catalysts using operando XANES and machine learning By journals.iucr.org Published On :: 2024-06-25 Transition-metal nitrogen-doped carbons (TM-N-C) are emerging as a highly promising catalyst class for several important electrocatalytic processes, including the electrocatalytic CO2 reduction reaction (CO2RR). The unique local environment around the singly dispersed metal site in TM-N-C catalysts is likely to be responsible for their catalytic properties, which differ significantly from those of bulk or nanostructured catalysts. However, the identification of the actual working structure of the main active units in TM-N-C remains a challenging task due to the fluctional, dynamic nature of these catalysts, and scarcity of experimental techniques that could probe the structure of these materials under realistic working conditions. This issue is addressed in this work and the local atomistic and electronic structure of the metal site in a Co–N–C catalyst for CO2RR is investigated by employing time-resolved operando X-ray absorption spectroscopy (XAS) combined with advanced data analysis techniques. This multi-step approach, based on principal component analysis, spectral decomposition and supervised machine learning methods, allows the contributions of several co-existing species in the working Co–N–C catalysts to be decoupled, and their XAS spectra deciphered, paving the way for understanding the CO2RR mechanisms in the Co–N–C catalysts, and further optimization of this class of electrocatalytic systems. Full Article text
ni X-ray lens figure errors retrieved by deep learning from several beam intensity images By journals.iucr.org Published On :: 2024-07-23 The phase problem in the context of focusing synchrotron beams with X-ray lenses is addressed. The feasibility of retrieving the surface error of a lens system by using only the intensity of the propagated beam at several distances is demonstrated. A neural network, trained with a few thousand simulations using random errors, can predict accurately the lens error profile that accounts for all aberrations. It demonstrates the feasibility of routinely measuring the aberrations induced by an X-ray lens, or another optical system, using only a few intensity images. Full Article text
ni New opportunities for time-resolved imaging using diffraction-limited storage rings By journals.iucr.org Published On :: 2024-07-30 The advent of diffraction-limited storage rings (DLSRs) has boosted the brilliance or coherent flux by one to two orders of magnitude with respect to the previous generation. One consequence of this brilliance enhancement is an increase in the flux density or number of photons per unit of area and time, which opens new possibilities for the spatiotemporal resolution of X-ray imaging techniques. This paper studies the time-resolved microscopy capabilities of such facilities by benchmarking the ForMAX beamline at the MAX IV storage ring. It is demonstrated that this enhanced flux density using a single harmonic of the source allows micrometre-resolution time-resolved imaging at 2000 tomograms per second and 1.1 MHz 2D acquisition rates using the full dynamic range of the detector system. Full Article text
ni VUV absorption spectra of water and nitrous oxide by a double-duty differentially pumped gas filter By journals.iucr.org Published On :: 2024-07-23 The differentially pumped rare-gas filter at the end of the VUV beamline of the Swiss Light Source has been adapted to house a windowless absorption cell for gases. Absorption spectra can be recorded from 7 eV to up to 21 eV photon energies routinely, as shown by a new water and nitrous oxide absorption spectrum. By and large, the spectra agree with previously published ones both in terms of resonance energies and absorption cross sections, but that of N2O exhibits a small shift in the { ilde{f D}} band and tentative fine structures that have not yet been fully described. This setup will facilitate the measurement of absorption spectra in the VUV above the absorption edge of LiF and MgF2 windows. It will also allow us to carry out condensed-phase measurements on thin liquid sheets and solid films. Further development options are discussed, including the recording of temperature-dependent absorption spectra, a stationary gas cell for calibration measurements, and the improvement of the photon energy resolution. Full Article text
ni Effectiveness of ab initio molecular dynamics in simulating EXAFS spectra from layered systems By journals.iucr.org Published On :: 2024-07-23 The simulation of EXAFS spectra of thin films via ab initio methods is discussed. The procedure for producing the spectra is presented as well as an application to a two-dimensional material (WSe2) where the effectiveness of this method in reproducing the spectrum and the linear dichroic response is shown. A series of further examples in which the method has been employed for the structural determination of materials are given. Full Article text
ni Development and commissioning of a broadband online X-ray spectrometer for the SXFEL Facility By journals.iucr.org Published On :: 2024-07-29 A broadband online X-ray spectrometer has been designed and commissioned at the SUD beamline of the Shanghai Soft X-ray Free-Electron Laser Facility, which can deliver both SASE and seeded FEL pulses to user experiments, spanning the photon energy range of 50–620 eV. The resolving powers of the spectrometer calibrated via online measurement at 92 eV and 249 eV are ∼20000 and ∼15000, respectively, and the absolute photon energy is characterized by an electron time-of-flight spectrometer. The high energy resolution provided by the spectrometer can differentiate the fine structure in the FEL spectrum, to determine its pulse length. Full Article text
ni Spexwavepy: an open-source Python package for X-ray wavefront sensing using speckle-based techniques By journals.iucr.org Published On :: 2024-07-30 In situ wavefront sensing plays a critical role in the delivery of high-quality beams for X-ray experiments. X-ray speckle-based techniques stand out among other in situ techniques for their easy experimental setup and various data acquisition modes. Although X-ray speckle-based techniques have been under development for more than a decade, there are still no user-friendly software packages for new researchers to begin with. Here, we present an open-source Python package, spexwavepy, for X-ray wavefront sensing using speckle-based techniques. This Python package covers a variety of X-ray speckle-based techniques, provides plenty of examples with real experimental data and offers detailed online documentation for users. We hope it can help new researchers learn and apply the speckle-based techniques for X-ray wavefront sensing to synchrotron radiation and X-ray free-electron laser beamlines. Full Article text
ni Development of an X-ray ionization beam position monitor for PAL-XFEL soft X-rays By journals.iucr.org Published On :: 2024-07-29 The Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) operates hard X-ray and soft X-ray beamlines for conducting scientific experiments providing intense ultrashort X-ray pulses based on the self-amplified spontaneous emission (SASE) process. The X-ray free-electron laser is characterized by strong pulse-to-pulse fluctuations resulting from the SASE process. Therefore, online photon diagnostics are very important for rigorous measurements. The concept of photo-absorption and emission using solid materials is seldom considered in soft X-ray beamline diagnostics. Instead, gas monitoring detectors, which utilize the photo-ionization of noble gas, are employed for monitoring the beam intensity. To track the beam position at the soft X-ray beamline in addition to those intensity monitors, an X-ray ionization beam position monitor (XIBPM) has been developed and characterized at the soft X-ray beamline of PAL-XFEL. The XIBPM utilizes ionization of either the residual gas in an ultra-high-vacuum environment or injected krypton gas, along with a microchannel plate with phosphor. The XIBPM was tested separately for monitoring horizontal and vertical beam positions, confirming the feasibility of tracking relative changes in beam position both on average and down to single-shot measurements. This paper presents the basic structure and test results of the newly developed non-invasive XIBPM. Full Article text
ni Development and performance simulations of a soft X-ray and XUV split-and-delay unit at beamlines FL23/24 at FLASH2 for time-resolved two-color pump–probe experiments By journals.iucr.org Published On :: 2024-08-05 The split-and-delay unit (SDU) at FLASH2 will be upgraded to enable the simultaneous operation of two temporally, spatially and spectrally separated probe beams when the free-electron laser undulators are operated in a two-color scheme. By means of suitable thin filters and an optical grating beam path a wide range of combinations of photon energies in the spectral range from 150 eV to 780 eV can be chosen. In this paper, simulations of the spectral transmission and performance parameters of the filter technique are discussed, along with a monochromator with dispersion compensation presently under construction. Full Article text
ni Hyperspectral full-field quick-EXAFS imaging at the ROCK beamline for monitoring micrometre-sized heterogeneity of functional materials under process conditions By journals.iucr.org Published On :: 2024-08-23 Full-field transmission X-ray microscopy has been recently implemented at the hard X-ray ROCK–SOLEIL quick-EXAFS beamline, adding micrometre spatial resolution to the second time resolution characterizing the beamline. Benefiting from a beam size versatility due to the beamline focusing optics, full-field hyperspectral XANES imaging has been successfully used at the Fe K-edge for monitoring the pressure-induced spin transition of a 150 µm × 150 µm Fe(o-phen)2(NCS)2 single crystal and the charge of millimetre-sized LiFePO4 battery electrodes. Hyperspectral imaging over 2000 eV has been reported for the simultaneous monitoring of Fe and Cu speciation changes during activation of a FeCu bimetallic catalyst along a millimetre-sized catalyst bed. Strategies of data acquisition and post-data analysis using Jupyter notebooks and multivariate data analysis are presented, and the gain obtained using full-field hyperspectral quick-EXAFS imaging for studies of functional materials under process conditions in comparison with macroscopic information obtained by non-spatially resolved quick-EXAFS techniques is discussed. Full Article text
ni Electrochemical cell for synchrotron nuclear resonance techniques By journals.iucr.org Published On :: 2024-08-16 Developing new materials for Li-ion and Na-ion batteries is a high priority in materials science. Such development always includes performance tests and scientific research. Synchrotron radiation techniques provide unique abilities to study batteries. Electrochemical cell design should be optimized for synchrotron studies without losing electrochemical performance. Such design should also be compatible with operando measurement, which is the most appropriate approach to study batteries and provides the most reliable results. The more experimental setups a cell can be adjusted for, the easier and faster the experiments are to carry out and the more reliable the results will be. This requires optimization of window materials and sizes, cell topology, pressure distribution on electrodes etc. to reach a higher efficiency of measurement without losing stability and reproducibility in electrochemical cycling. Here, we present a cell design optimized for nuclear resonance techniques, tested using nuclear forward scattering, synchrotron Mössbauer source and nuclear inelastic scattering. Full Article text
ni trans-Bis[bis(diphenylphosphanyl)methane-κ2P,P']dichloridoruthenium(II): a triclinic polymorph By journals.iucr.org Published On :: 2023-11-14 The title compound, [RuCl2(C25H22P2)2] or [RuCl2(dppm)2] (dppm = bis(diphenylphosphanyl)methane, C25H22P2) crystallizes as two half-molecules (completed by inversion symmetry) in space group Poverline{1} (Z = 2), with the RuII atoms occupying inversion centers at 0,0,0 and 1/2, 1/2, 1/2, respectively. The bidentate phosphane ligands occupy equatorial positions while the chlorido ligands complete the distorted octahedral coordination spheres at axial positions. The bite angles of the phosphane chelates are similar for the two molecules [(P—Ru—P)avg. = 71.1°], while there are significant differences in the twisting of the methylene backbone, with a distance of the methylene C atom from the RuP4 plane of 0.659 (2) and 0.299 (3) Å, respectively, and also for the phenyl substituents for both molecules due to variations in weak C—H⋯Cl interactions. Full Article text
ni Tetraaqua(ethane-1,2-diamine-κ2N,N')nickel(II) naphthalene-1,5-disulfonate dihydrate By journals.iucr.org Published On :: 2023-12-14 The reaction of ethane-1,2-diamine (en, C2H8N2), the sodium salt of naphthalene-1,5-disulfonic acid (H2NDS, C10H8O6S2), and nickel sulfate in an aqueous solution resulted in the formation of the title salt, [Ni(C2H8N2)(H2O)4](C10H6O6S2)·2H2O or [Ni(en)(H2O)4](NDS)·2H2O. In the asymmetric unit, one half of an [Ni(en)(H2O)4]2+ cation and one half of an NDS2− anion, and one water molecule of crystallization are present. The Ni2+ cation in the complex is positioned on a twofold rotation axis and exhibits a slight tetragonal distortion of the cis-NiO4N2 octahedron, with an Ni—N bond length of 2.0782 (16) Å, and Ni—O bond lengths of 2.1170 (13) Å and 2.0648 (14) Å. The anion is completed by inversion symmetry. In the extended structure, the cations, anions, and non-coordinating water molecules are connected by intermolecular N—H⋯O and O—H⋯O hydrogen bonding, as well as C—H⋯π interactions, forming a three-dimensional network. Full Article text
ni meso-α,α-5,15-Bis(o-nicotinamidophenyl)-10,20-diphenylporphyrin n-hexane monosolvate By journals.iucr.org Published On :: 2023-12-22 The structure of the title solvated porphyrin, C56H38N8O2·C6H14, is reported. Two porphyrin molecules, one ordered and one disordered n-hexane solvate molecules are present in its asymmetric unit. The porphyrin macrocycle shows a characteristic saddle-shaped distortion, and the maximum deviation from the mean plane for non-hydrogen atoms is 0.48 Å. N—H⋯N, N—H⋯O, and C—H⋯O hydrogen bonds, as well as π–π interactions, are observed in the crystal structure. Full Article text
ni Synthesis and structure of trans-bis(4-amino-3-nitrobenzoato-κO)bis(4-amino-3-nitrobenzoic acid-κO)diaquamanganese(II) dihydrate By journals.iucr.org Published On :: 2024-01-19 The manganese title complex, [Mn(C7H5N2O4)2(C7H6N2O4)2(H2O)2]·2H2O, is one of the first 4-amino 3-nitrobenzoic acid (4 A3NBA) monoligand metal complexes to be synthesized. It crystallizes in the centrosymmetric monoclinic space group P21/n with the complex molecules located on inversion centers. Four 4 A3NBA ligand molecules are monodentately coordinated by the Mn2+ ion through the carboxylic oxygen atoms while the other two positions of the inner coordination sphere are occupied by water molecules, giving rise to a distorted octahedron, and two water molecules are in the outer coordination sphere. There are two intramolecular hydrogen bonds in the complex molecule. The first is of the common N—H⋯O=N type, while the second is a rarely occurring very strong hydrogen bond in which a common proton is shared by two uncoordinated oxygen atoms of neighboring carboxylate groups. In the crystal, an intricate system of intermolecular hydrogen bonds links the complex molecules into a three-dimensional-network. Full Article text
ni Crystal structure of Ti4Ni2C By journals.iucr.org Published On :: 2024-01-19 Single crystals of the intermetallic phase with composition Ti4Ni2C were serendipitously obtained by high-pressure sintering of a mixture with initial chemical composition Ti2Ni. The Ti4Ni2C phase crystallizes in the Fdoverline{3}m space group and can be considered as a partially filled Ti2Ni structure with the C atom occupying an octahedral void. Ti4Ni2C is isotypic with Ti4Ni2O, Nb4Ni2C and Ta4Ni2C, all of which were studied previously by means of powder diffraction. Full Article text
ni Bis(2-hydroxy-2,3-dihydro-1H-inden-1-aminium) tetrachloridopalladate(II) hemihydrate By journals.iucr.org Published On :: 2024-01-26 A new square-planar palladium complex salt hydrate, (C9H12NO)2[PdCl4]·0.5H2O, has been characterized. The asymmetric unit of the complex salt comprises two [PdCl4]2− dianions, four 2-hydroxy-2,3-dihydro-1H-inden-1-aminium cations, each derived from (1R,2S)-(+)-1-aminoindan-2-ol, and one water molecule of crystallization. In the crystal, a two-dimensional layer parallel to (001) features a number of O—H⋯O, N—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds. Full Article text
ni Bis[2,6-bis(benzimidazol-2-yl)pyridine-κ3N,N',N'']nickel(II) bis(trifluoromethanesulfonate) diethyl ether monosolvate By journals.iucr.org Published On :: 2024-01-31 In the title complex, [Ni(C19H13N5)2](CF3SO3)2·(CH3CH2)2O, the central NiII atom is sixfold coordinated by three nitrogen atoms of each 2,6-bis(2-benzimidazolyl)pyridine ligand in a distorted octahedral geometry with two trifluoromethanesulfonate ions and a molecule of diethyl ether completing the outer coordination sphere of the complex. Hydrogen bonding contributes to the organization of the asymmetric units in columns along the a axis generating a porous supramolecular structure. The structure was refined as a two-component twin with a refined BASF value of 0.4104 (13). Full Article text
ni Aquabis(2,2'-bipyridine-κ2N,N')(isonicotinamide-κN)ruthenium(II) bis(trifluoromethanesulfonate) By journals.iucr.org Published On :: 2024-02-08 In the title complex, [Ru(C10H8N2)2(C6H6N2O)(H2O)](CF3SO3)2, the central RuII atom is sixfold coordinated by two bidentate 2,2'-bipyridine, an isonicotinamide ligand, and a water molecule in a distorted octahedral environment with trifluoromethanesulfonate ions completing the outer coordination sphere of the complex. Hydrogen bonding involving the water molecule and weak π–π stacking interactions between the pyridyl rings in adjacent molecules contribute to the alignment of the complexes in columns parallel to the c axis. Full Article text
ni Bis[S-octyl 3-(2-methylpropylidene)dithiocarbazato-κ2N3,S]nickel(II) By journals.iucr.org Published On :: 2024-03-06 The central NiII atom in the title complex, [Ni(C13H25N2S2)2], is located on an inversion center and adopts a roughly square-planar coordination environment defined by two chelating N,S donor sets of two symmetry-related ligands in a trans configuration. The Ni—N and Ni—S bond lenghts are 1.9193 (14) and 2.1788 (5) Å, respectively, with a chelating N—Ni—S bond angle of 86.05 (4)°. These data are compared with those measured for similar dithiocarbazato ligands that bear n-octyl or n-hexyl alkyl chains. Slight differences are observed with respect to the phenylethylidene derivative where the ligands are bound cis relative to one another. Full Article text
ni cis,cis,cis-Dichloridobis(N4,N4-dimethylpyridin-4-amine-κN1)bis(dimethyl sulfoxide-κS)ruthenium(II) By journals.iucr.org Published On :: 2024-03-06 The structure of the title compound, [RuCl2(C7H10N2)2(C2H6OS)2], has monoclinic (P21/n) symmetry. The Ru—N distances of the coordination compound are influenced by the trans chloride or dimethylsulfoxide-κS ligands. The molecular structure exhibits disorder for two of the terminal methyl groups of a dimethyl sulfoxide ligand. Full Article text
ni {N-[1-(2-Oxidophenyl)ethylidene]-dl-alaninato}(pentane-1,5-diyl)silicon(IV) By journals.iucr.org Published On :: 2024-03-19 The title SiIV complex, C16H21NO3Si, is built up by a tridentate dinegative Schiff base ligand bound to a silacyclohexane unit. The coordination geometry of the pentacoordinated SiIV atom is a distorted trigonal bipyramid. The presence of the silacyclohexane ring in the complex leads to an unusual coordination geometry of the SiIV atom with the N atom from the Schiff base ligand and an alkyl-C atom in apical positions of the trigonal bipyramid. There is a disorder of the methyl group at the imine bond with two orientations resolved for the H atoms [major orientation = 0.55 (3)]. In the crystal, C—H⋯O interactions are found within corrugated layers of molecules parallel to the ab plane. Full Article text
ni Poly[(μ-2,3-diethyl-7,8-dimethylquinoxaline-κ2N:N)(2,3-diethyl-7,8-dimethylquinoxaline-κN)-μ-nitrato-κ2O:O'-nitrato-κ2O,O'-disilver(I)] By journals.iucr.org Published On :: 2024-03-21 The structure of the title compound, [C14H18N2)2Ag2](NO3)2, contains subtle differences in ligand, metal, and counter-anion coordination. One quinoxaline ligand uses one of its quinoxaline N atoms to bond to one silver cation. That silver cation is bound to a second quinoxaline which, in turn, is bound to a second silver atom; thereby using both of its quinoxaline N atoms. A nitrate group bonds with one of its O atoms to the first silver and uses the same oxygen to bond to a silver atom (related by symmetry to the second), thereby forming an extended network. The second nitrate group on the other silver bonds via two nitrate O atoms; one silver cation therefore has a coordination number of three whereas the second has a coordination number of four. One of the quinoxaline ligands has a disordered ethyl group. Full Article text
ni Bis[2,6-bis(1H-benzimidazol-2-yl)pyridine]ruthenium(II) bis(hexafluoridophosphate) diethyl ether trisolvate By journals.iucr.org Published On :: 2024-03-28 The title compound, [Ru(C19H13N5)2](PF6)2·3C4H10O, was obtained from the reaction of Ru(bimpy)Cl3 [bimpy is 2,6-bis(1H-benzimidazol-2-yl)pyridine] and bimpy in refluxing ethanol followed by recrystallization from diethyl ether/acetonitrile. At 125 K the complex has orthorhombic (Pca21) symmetry. It is remarkable that the structure is almost centrosymmetric. However, refinement in space group Pbcn leads to disorder and definitely worse results. It is of interest with respect to potential catalytic reduction of CO2. The structure displays N—H⋯O, N—H⋯F hydrogen bonding and significant π–π stacking and C—H⋯π stacking interactions. Full Article text
ni 13-Nitrobenzo[a][1,4]benzothiazino[3,2-c]phenoxazine By journals.iucr.org Published On :: 2024-04-26 In the title compound, C22H11N3O3S, dihedral angle between the phenyl rings on the periphery of the molecule is 8.05 (18)°. In the crystal, aromatic π–π stacking distance and short C—H⋯O contacts are observed. The maximum absorption occurs at 688 nm. Full Article text
ni mer-Bis(quinoline-2-carboxaldehyde 4-ethylthiosemicarbazonato)nickel(II) methanol 0.33-solvate 0.67-hydrate By journals.iucr.org Published On :: 2024-04-26 In the title compound, [Ni(C13H13N4S)2]·0.33CH3OH·0.67H2O, the NiII atom is coordinated by two tridentate quinoline-2-carboxaldehyde 4-ethylthiosemicarbazonate ligands in a distorted octahedral shape. At 100 K, the crystal symmetry is monoclinic (space group P21/n). A mixture of water and methanol crystallizes with the title complex, and one of the ethyl groups in the coordinating ligands is disordered over two positions, with an occupancy ratio of 58:42. There is intermolecular hydrogen bonding between the solvent molecules and the amine and thiolate groups in the ligands. No other significant interactions are present in the crystal packing. Full Article text
ni Poly[3-methylpyridinium [(μ2-dihydrogen phosphito)bis(μ3-hydrogen phosphito)dizinc]] By journals.iucr.org Published On :: 2024-04-26 In the title compound, {(C6H8N)[Zn2(HPO3)2(H2PO3)]}n, the constituent ZnO4, HPO3 and H2PO3 polyhedra of the inorganic component are linked into (010) sheets by Zn—O—P bonds (mean angle = 134.4°) and the layers are reinforced by O—H⋯O hydrogen bonds. The protonated templates are anchored to the inorganic sheets via bifurcated N—H⋯(O,O) hydrogen bonds. Full Article text
ni 4-(1H-2,3-Dihydronaphtho[1,8-de][1,3,2]diazaborinin-2-yl)-1-ethylpyridin-1-ium iodide By journals.iucr.org Published On :: 2024-04-26 The title compound, C17H17BN3I, is a type of diazaborinane featuring substitution at the 1, 2, and 3 positions of the nitrogen–boron six-membered heterocycle. The organic molecule has a planar structure, the dihedral angle between the pyridyl ring and the fused ring system being 3.46 (4)°. In the crystal, molecules are stacked in a head-to-tail manner. The iodide ion makes close contacts with three organic molecules and supports the alternating stack. Full Article text
ni 4-(1H-2,3-Dihydronaphtho[1,8-de][1,3,2]diazaborinin-2-yl)-1-ethylpyridin-1-ium iodide monohydrate By journals.iucr.org Published On :: 2024-04-26 The cation of the title hydrated salt, C17H17BN3+·I−·H2O, is a diazaborinane featuring substitution at the 1, 2, and 3 positions in the nitrogen–boron six-membered heterocycle. The cation is approximately planar with a dihedral angle between the pyridyl ring and the diazaborinane ring system of 5.40 (5)°. In the crystal, the cations stack along [100] in an alternating head-to-tail manner, while the iodide ion and water molecule form one-dimensional hydrogen-bonded chains beside the cation stack. The cation stacks and I−–water chains are crosslinked by N—H⋯I and N—H⋯O hydrogen bonds. Full Article text
ni trans-Dichloridobis(secnidazole-κN3)copper(II) By journals.iucr.org Published On :: 2024-05-03 The use of acetic acid (HOAc) in a reaction between CuCl2·2H2O and secnidazole, an active pharmaceutical ingredient useful in the treatment against a variety of anaerobic Gram-positive and Gram-negative bacteria, affords the title complex, [CuCl2(C7H11N3O3)2]. This compound was previously synthesized using ethanol as solvent, although its crystal structure was not reported [Betanzos-Lara et al. (2013). Inorg. Chim. Acta, 397, 94–100]. In the molecular complex, the Cu2+ cation is situated at an inversion centre and displays a square-planar coordination environment. There is a hydrogen-bonded framework based on intermolecular O—H⋯Cl interactions, characterized by H⋯Cl separations of 2.28 (4) Å and O—H⋯Cl angles of 175 (3)°. The resulting supramolecular network is based on R22(18) ring motifs, forming chains in the [010] direction. Full Article text
ni Octakis(dibutylammonium) decamolybdate(VI) By journals.iucr.org Published On :: 2024-05-31 In the title salt, (C8H20N)8[Mo10O34], the [Mo10O34]8− polyanion is located about an inversion centre and can be considered as a β-type octamolybdate anion to which two additional MoO4 tetrahedra are linked via common corners. The [Mo10O34]8− polyanions are packed in rows extending parallel to [001] and are connected to the dibutylammonium counter-cations through N—H⋯O hydrogen-bonding interactions. Full Article text
ni 2-(10-Bromoanthracen-9-yl)-N-phenylaniline By journals.iucr.org Published On :: 2024-05-31 In the title compound, C26H18BrN, the central benzene ring makes dihedral angles with its adjacent anthracene ring system and pendant benzene ring of 87.49 (13) and 62.01 (17)°, respectively. The N—H moiety is sterically blocked from forming a hydrogen bond, but weak C—H⋯π interactions occur in the extended structure. Full Article text
ni Tetrakis(2,4,6-trimethylanilido)tin(IV) By journals.iucr.org Published On :: 2024-05-31 Transamination of Sn(NMe2)4 with H2NMes (Mes is 2,4,6-trimethylphenyl, C9H11) led to the formation of the title compound, [Sn(C9H12N)4] or Sn(NHMes)4, which crystallizes in the tetragonal space group Poverline{4}21c, with four formula units per unit cell. The molecular structure consists of a central tin(IV) atom, which is surrounded by four NHMes groups. Sn(NHMes)4 possesses crystallographically imposed overline{4} symmetry. The SnN4 coordination polyhedron is best described as a compressed bisphenoid. Full Article text
ni Ilmenite-type Na2(Fe2/3Te4/3)O6 By journals.iucr.org Published On :: 2024-05-31 Na2(Fe2/3Te4/3)O6 (Z = 3) or Na3(FeTe2)O9 (Z = 2), trisodium iron(III) ditellurium(VI) nonaoxide, adopts the ilmenite (FeTiO3, Z = 6) structure type with the Ti site (site symmetry 3.) replaced by Na and the Fe site (site symmetry 3.) replaced by a mixed-occupied (FeIII,TeVI) site in a Fe:Te ratio of 1:2. Whereas the [(Fe,Te)O6] octahedron is only slightly distorted, the [NaO6] octahedron shows much stronger distortions, as revealed by a larger spread of the bond lengths and some distortion parameters. Full Article text
ni Triacetonitrile(1,4,7-trimethyl-1,4,7-triazacyclononane)cobalt(II) bis(tetraphenylborate) By journals.iucr.org Published On :: 2024-06-11 The title cobalt(II) complex, [Co(C2H3N)3(C9H21N3)](C24H20B)2 or [(tacn)Co(NCMe)3][BPh4]2, has been characterized by single-crystal X-ray diffraction. It incorporates the well-known macrocyclic tacn (1,4,7-trimethyl-1,4,7-triazacyclononane) ligand, which is coordinated facially to the metal center. The complex crystallizes in space group P21/c with Z = 4. The divalent cobalt ion exhibits a six-coordinate octahedral geometry by one tacn and three acetonitrile ligands. Two non-coordinating tetraphenylborate (BPh4−) anions are also present. Full Article text
ni Bis(8-hydroxyquinolinium) naphthalene-1,5-disulfonate tetrahydrate By journals.iucr.org Published On :: 2024-06-18 The interaction between 8-hydroxyquinoline (8HQ, C9H7NO) and naphthalene-1,5-disulfonic acid (H2NDS, C10H8O6S2) in aqueous media results in the formation of the salt hydrate bis(8-hydroxyquinolinium) naphthalene-1,5-disulfonate tetrahydrate, 2C9H8NO+·C10H6O6S22−·4H2O. The asymmetric unit comprises one protonated 8HQ+ cation, half of an NDS2– dianion symmetrically disposed around a center of inversion, and two water molecules. Within the crystal structure, these components are organized into chains along the [010] and [10overline{1}] directions through O—H⋯O and N—H⋯O hydrogen-bonding interactions, forming a di-periodic network parallel to (101). Additional stabilizing interactions such as C—H⋯O, C—H⋯π, and π–π interactions extend this arrangement into a tri-periodic network structure Full Article text
ni 2-(Pyridin-4-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine By journals.iucr.org Published On :: 2024-06-28 The title compound, C15H12BN3, is a type of diazaborinane featuring substitution at 1, 2, and 3 positions in the nitrogen–boron six-membered heterocycle. It is comprised of two almost planar units, the pyridyl ring and the Bdan (dan = 1,8-diaminonaphtho) group, which subtend a dihedral angle of 24.57 (5)°. In the crystal, the molecules are linked into R44(28) hydrogen-bonding networks around the fourfold inversion axis, giving cyclic tetramers. The molecules form columnar stacks along the c axis. Full Article text
ni Dicarbonyl-1κ2C-μ-chlorido-2:3κ2Cl:Cl-pentachlorido-2κ2Cl,3κ3Cl-[1(η6)-toluene]digallium(III)ruthenium(I)(Ru—Ga) By journals.iucr.org Published On :: 2024-07-09 The title compound, [RuGa2Cl6(C7H8)(CO)2] or [(CO)2(GaCl2)(η6-toluene)Ru]+[GaCl4]−, was isolated from the reaction of Ga2Cl4 with diphenylsilanediol in toluene, followed by the addition of Ru3(CO)12. The compound contains a ruthenium–gallium metal–metal bond with a length of 2.4575 (2) Å. Full Article text
ni [1-(Anthracen-9-ylmethyl)-1,4,7,10-tetraazacyclododecane]chloridozinc(II) nitrate By journals.iucr.org Published On :: 2024-07-12 In the title salt, [ZnCl(C23H30N4)]NO3, the central ZnII atom of the complex cation is coordinated in a square-pyramidal arrangement by four nitrogen atoms from cyclen (1,4,7,10-tetraazacyclododecane) in the basal plane and one chlorido ligand in the apical position. The anthracene group attached to cyclen contributes to the crystal packing through intermolecular T-shaped π interactions. Additionally, the nitrate anion participates in intermolecular N—H⋯O hydrogen bonds with cyclen. Full Article text
ni Bis(ethylenediammonium) μ-ethylenediaminetetraacetato-1κ3O,N,O':2κ3O'',N',O'''-bis[trioxidomolybdate(VI)] tetrahydrate By journals.iucr.org Published On :: 2024-07-12 The title compound, (C2H10N2)2[(C10H12N2O8)(MoO3)2]·4H2O, which crystallizes in the monoclinic C2/c space group, was obtained by mixing molybdenum oxide, ethylenediamine and ethylenediaminetetraacetic acid (H4edta) in a 2:4:1 ratio. The complex anion contains two MoO3 units bridged by an edta4− anion. The midpoint of the central C—C bond of the edta4− anion is located on a crystallographic inversion centre. The independent Mo atom is tridentately coordinated by a nitrogen atom and two carboxylate groups of the edta4− ligand, together with the three oxo ligands, producing a distorted octahedral coordination environment. In the three-dimensional supramolecular crystal structure, the dinuclear anions, the organoammonium counter-ions and the solvent water molecules are linked by N—H⋯Ow, N—H⋯Oedta and O—H⋯O hydrogen bonds. Full Article text
ni (η6-Benzene)chlorido[(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolato]ruthenium(II) By journals.iucr.org Published On :: 2024-07-26 The title compound, [Ru(C12H14NO2)Cl(η6-C6H6)], exhibits a half-sandwich tripod stand structure and crystallizes in the orthorhombic space group P212121. The arene group is η6 π-coordinated to the Ru atom with a centroid-to-metal distance of 1.6590 (5) Å, with the (S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenolate chelate ligand forming a bite angle of 86.88 (19)° through its N and phenolate O atoms. The pseudo-octahedral geometry assumed by the complex is completed by a chloride ligand. The coordination of the optically pure bidentate ligand induces metal centered chirality onto the complex with a Flack parameter of −0.056. Full Article text
ni Diisobutylammonium triphenyl(2-thiolatoacetato-κ2O,S)stannate(IV) By journals.iucr.org Published On :: 2024-08-09 Crystals of the title salt, (C8H20N)[Sn(C6H5)3(C2H2O2S)], comprise diisobutylammonium cations and mercaptoacetatotriphenylstannate(IV) anions. The bidentate binding mode of the mercaptoacetate ligand gives rise to a five-coordinated, ionic triphenyltin complex with a distorted cis-trigonal–bipyramidal geometry around the tin atom. In the crystal, charge-assisted ammonium-N—H⋯O(carboxylate) hydrogen-bonding connects two cations and two anions into a four-ion aggregate. Two positions were resolved for one of the phenyl rings with the major component having a site occupancy factor of 0.60 (3). Full Article text