it Wintrust Financial Corporation Announces the Closing of the Acquisition of Countryside Bank By www.snl.com Published On :: Fri, 01 Nov 2019 20:10:00 GMT To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452. Full Article
it Wintrust Financial Corporation to Present at Raymond James 41st Annual Institutional Investors Conference By www.snl.com Published On :: Mon, 24 Feb 2020 23:03:00 GMT To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452. Full Article
it Wintrust Financial Corporation to Present at RBC Capital Markets Global Financial Institutions Conference on March 10, 2020 By www.snl.com Published On :: Thu, 27 Feb 2020 23:49:00 GMT To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452. Full Article
it Wintrust Financial Corporation Announces Precautionary Decision to Help Achieve Community Health Objectives By Temporarily Closing Selected Branches By www.snl.com Published On :: Tue, 17 Mar 2020 11:00:00 GMT To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452. Full Article
it Wintrust Financial Corporation Announces Further Actions To Help Achieve Community Health Objectives By www.snl.com Published On :: Fri, 20 Mar 2020 11:00:00 GMT To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452. Full Article
it Wintrust Financial Corporation Working Tirelessly To Support Strong Community Interest in the Paycheck Protection Program By www.snl.com Published On :: Fri, 10 Apr 2020 20:42:00 GMT To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452. Full Article
it Engineering researcher’s non-invasive aid to monitoring pressure in the skull wins gold medal By www.raeng.org.uk Published On :: Wed, 11 Mar 2020 11:49:33 +00:00 Full Article
it New ‘Great Exhibition at Home’ challenge launched to inspire young innovators By www.raeng.org.uk Published On :: Thu, 26 Mar 2020 16:03:57 +00:00 Full Article
it Linux Foundation Leads Initiative for Better Digital Trust By www.technewsworld.com Published On :: 2020-05-05T12:03:46-07:00 The Linux Foundation will host ToIP, a cross-industry effort to ensure more secure data handling over the Internet. This new foundation is an independent project enabling trustworthy exchange and verification of data between any two parties on the Internet. The ToIP Foundation will provide a robust common standard to instill confidence that data is coming from a trusted source. Full Article
it Red Hat's Virtual Summit Crowds Hint at Future Conference Models By www.technewsworld.com Published On :: 2020-05-07T04:00:00-07:00 In what could be a trial run for more of the same, Red Hat last week held a first-ever virtual technical summit to spread the word about its latest cloud tech offerings. CEO Paul Cormier welcomed online viewers to the conference, which attracted more than 80,000 virtual attendees. The company made several key announcements during the online gathering and highlighted customer innovations. Full Article
it Microsoft Covers All the Bases With Impressive Surface Lineup By www.technewsworld.com Published On :: 2020-05-07T09:43:07-07:00 Microsoft has introduced a slew of new products, including the Surface Go 2, the Surface Book 3, Surface Headphones 2 and Surface Earbuds. Both the Surface Go 2 and the Surface Book 3 come in consumer and corporate versions. "The two products are very different," noted Rob Enderle, principal analyst at the Enderle Group. "The Go 2 is a high-value product -- the Surface Book 3 high innovation." Full Article
it MakuluLinux Delivers Modernity With New Core Platform By www.technewsworld.com Published On :: 2020-05-08T10:56:00-07:00 If you are looking for a well-designed Linux distro that is far from mainstream, loaded with performance features not found elsewhere, check out the 2020 upgrade of the MakuluLinux Core distro. It could change your perspective on what a daily computing driver should offer. Developer Jacque Montague Raymer recently released the 2020 edition of MakuluLinux Core OS. Full Article
it Information Security: New Rules By www.technewsworld.com Published On :: 2020-05-08T09:12:18-07:00 Warren Buffet once said, "Only when the tide goes out do you discover who's been swimming naked." You can cover over a host of sins when times are good, but bad or unsafe practices will be exposed when times are rough. Time and experience have borne out the accuracy of this witticism in the financial arena -- and we're now seeing its applicability to the intersection of infosec and COVID-19. Full Article
it 6 Signs You May Be Ready for a CRM Switch By www.crmbuyer.com Published On :: 2020-03-14T04:00:00-07:00 In today's evolving business environment, every operational decision is critical -- and that includes best practices for managing the customer journey. The CRM platform is an integral part of the process. In fact, 91 percent of companies with more than 11 employees use a CRM system. Because of the time it saves and the structure CRM delivers, it can seem daunting for businesses to make a switch. Full Article
it Contact Tracing With Salesforce By www.crmbuyer.com Published On :: 2020-04-22T04:00:00-07:00 Contact tracing is a big job, like trying to drain an ocean with a teaspoon. It involves finding people who have been exposed to the coronavirus and testing them to determine if they are infected or are carriers. Public health officials then can take necessary steps to prevent the virus' spread. It's a perfect fit for CRM, and Salesforce's core technology is coming to the forefront. Full Article
it Zoom Oracles Its Way to Center Stage By www.crmbuyer.com Published On :: 2020-04-28T12:21:50-07:00 Oracle and Zoom just entered a deal that for once is more about technological audacity than about dollars -- a partnership to host Zoom on Oracle Cloud Infrastructure. In just a few months -- basically since the beginning of the novel coronavirus pandemic -- Zoom has seen demand for its service grow from about 10 million daily meeting participants to more than 300 million. Full Article
it Health Insurance, Banking, Oil Industries Met with Koch, Chamber, Glenn Beck to Plot 2010 Election By thinkprogress.org Published On :: Full Article
it Keith Olbermann: If the Tea Party wins, America loses By www.msnbc.msn.com Published On :: Full Article
it The lawyer who laundered political contributions By www.mcclatchydc.com Published On :: Full Article
it Mike Leigh cancels Israel visit to protest loyalty oath By www.haaretz.com Published On :: Full Article
it Donations Dropped 11% at Nation's Biggest Charities Last Year By philanthropy.com Published On :: Full Article
it Israeli Jews at odds with liberal brethren in US By www.washingtonpost.com Published On :: Full Article
it Mary Elizabeth Williams: The clumsy, beautiful Rally to Restore Sanity By www.salon.com Published On :: Full Article
it Central bank innovation - from Switzerland to the world By www.bis.org Published On :: 2019-10-11T07:22:00Z Speech by Mr Agustín Carstens, General Manager of the BIS, at the Founding Ceremony, Swiss Centre BIS Innovation Hub, Zurich, 8 October 2019. Full Article
it Interview with Brazil's EXAME By www.bis.org Published On :: 2019-10-28T16:00:00Z Original quotes from interview by Mr Agustin Carstens, General Manager of the BIS, with Exame, conducted by Mr Felipe Serrano on 9 October 2019 and published on 24 October 2019. Full Article
it Vulnerabilities in the international monetary and financial system By www.bis.org Published On :: 2019-10-30T09:25:00Z Speech by Mr Claudio Borio, Head of the Monetary and Economic Department of the BIS, at the OECD-G20 High Level Policy Seminar, Paris, 11 September 2019. Full Article
it Welfare implications of digital financial innovation By www.bis.org Published On :: 2019-11-20T15:00:00Z Based on remarks by Mr Luiz Awazu Pereira da Silva, Deputy General Manager of the BIS, with Jon Frost and Leonardo Gambacorta at the Santander International Banking Conference on "Banking on trust: Building confidence in the future", Madrid, 5 November 2019. Full Article
it Exiting low inflation traps by "consensus": nominal wages and price stability By www.bis.org Published On :: 2019-12-20T09:00:00Z Exiting low inflation traps by "consensus": nominal wages and price stability - Speech by Luiz A Pereira da Silva and Benoît Mojon, based on the keynote speech at the Eighth High-level Policy Dialogue between the Eurosystem and Latin American Central Banks, Cartagena de Indias, Colombia, 28-29 November 2019. Full Article
it Cross Recruitment of Domain-Selective Cortical Representations Enables Flexible Semantic Knowledge By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 Knowledge about objects encompasses not only their prototypical features but also complex, atypical, semantic knowledge (e.g., "Pizza was invented in Naples"). This fMRI study of male and female human participants combines univariate and multivariate analyses to consider the cortical representation of this more complex semantic knowledge. Using the categories of food, people, and places, this study investigates whether access to spatially related geographic semantic knowledge (1) involves the same domain-selective neural representations involved in access to prototypical taste knowledge about food; and (2) elicits activation of neural representations classically linked to places when this geographic knowledge is accessed about food and people. In three experiments using word stimuli, domain-relevant and atypical conceptual access for the categories food, people, and places were assessed. Results uncover two principles of semantic representation: food-selective representations in the left insula continue to be recruited when prototypical taste knowledge is task-irrelevant and under conditions of high cognitive demand; access to geographic knowledge for food and people categories involves the additional recruitment of classically place-selective parahippocampal gyrus, retrosplenial complex, and transverse occipital sulcus. These findings underscore the importance of object category in the representation of a broad range of knowledge, while showing how the cross recruitment of specialized representations may endow the considerable flexibility of our complex semantic knowledge. SIGNIFICANCE STATEMENT We know not only stereotypical things about objects (an apple is round, graspable, edible) but can also flexibly combine typical and atypical features to form complex concepts (the metaphorical role an apple plays in Judeo-Christian belief). In this fMRI study, we observe that, when atypical geographic knowledge is accessed about food dishes, domain-selective sensorimotor-related cortical representations continue to be recruited, but that regions classically associated with place perception are additionally engaged. This interplay between categorically driven representations, linked to the object being accessed, and the flexible recruitment of semantic stores linked to the content being accessed, provides a potential mechanism for the broad representational repertoire of our semantic system. Full Article
it The Right Temporoparietal Junction Is Causally Associated with Embodied Perspective-taking By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 A prominent theory claims that the right temporoparietal junction (rTPJ) is especially associated with embodied processes relevant to perspective-taking. In the present study, we use high-definition transcranial direct current stimulation to provide evidence that the rTPJ is causally associated with the embodied processes underpinning perspective-taking. Eighty-eight young human adults were stratified to receive either rTPJ or dorsomedial PFC anodal high-definition transcranial direct current stimulation in a sham-controlled, double-blind, repeated-measures design. Perspective-tracking (line-of-sight) and perspective-taking (embodied rotation) were assessed using a visuo-spatial perspective-taking task that required understanding what another person could see or how they see it, respectively. Embodied processing was manipulated by positioning the participant in a manner congruent or incongruent with the orientation of an avatar on the screen. As perspective-taking, but not perspective-tracking, is influenced by bodily position, this allows the investigation of the specific causal role for the rTPJ in embodied processing. Crucially, anodal stimulation to the rTPJ increased the effect of bodily position during perspective-taking, whereas no such effects were identified during perspective-tracking, thereby providing evidence for a causal role for the rTPJ in the embodied component of perspective-taking. Stimulation to the dorsomedial PFC had no effect on perspective-tracking or taking. Therefore, the present study provides support for theories postulating that the rTPJ is causally involved in embodied cognitive processing relevant to social functioning. SIGNIFICANCE STATEMENT The ability to understand another's perspective is a fundamental component of social functioning. Adopting another perspective is thought to involve both embodied and nonembodied processes. The present study used high-definition transcranial direct current stimulation (HD-tDCS) and provided causal evidence that the right temporoparietal junction is involved specifically in the embodied component of perspective-taking. Specifically, HD-tDCS to the right temporoparietal junction, but not another hub of the social brain (dorsomedial PFC), increased the effect of body position during perspective-taking, but not tracking. This is the first causal evidence that HD-tDCS can modulate social embodied processing in a site-specific and task-specific manner. Full Article
it Integration of Swimming-Related Synaptic Excitation and Inhibition by olig2+ Eurydendroid Neurons in Larval Zebrafish Cerebellum By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 The cerebellum influences motor control through Purkinje target neurons, which transmit cerebellar output. Such output is required, for instance, for larval zebrafish to learn conditioned fictive swimming. The output cells, called eurydendroid neurons (ENs) in teleost fish, are inhibited by Purkinje cells and excited by parallel fibers. Here, we investigated the electrophysiological properties of glutamatergic ENs labeled by the transcription factor olig2. Action potential firing and synaptic responses were recorded in current clamp and voltage clamp from olig2+ neurons in immobilized larval zebrafish (before sexual differentiation) and were correlated with motor behavior by simultaneous recording of fictive swimming. In the absence of swimming, olig2+ ENs had basal firing rates near 8 spikes/s, and EPSCs and IPSCs were evident. Comparing Purkinje firing rates and eurydendroid IPSC rates indicated that 1-3 Purkinje cells converge onto each EN. Optogenetically suppressing Purkinje simple spikes, while preserving complex spikes, suggested that eurydendroid IPSC size depended on presynaptic spike duration rather than amplitude. During swimming, EPSC and IPSC rates increased. Total excitatory and inhibitory currents during sensory-evoked swimming were both more than double those during spontaneous swimming. During both spontaneous and sensory-evoked swimming, the total inhibitory current was more than threefold larger than the excitatory current. Firing rates of ENs nevertheless increased, suggesting that the relative timing of IPSCs and EPSCs may permit excitation to drive additional eurydendroid spikes. The data indicate that olig2+ cells are ENs whose activity is modulated with locomotion, suiting them to participate in sensorimotor integration associated with cerebellum-dependent learning. SIGNIFICANCE STATEMENT The cerebellum contributes to movements through signals generated by cerebellar output neurons, called eurydendroid neurons (ENs) in fish (cerebellar nuclei in mammals). ENs receive sensory and motor signals from excitatory parallel fibers and inhibitory Purkinje cells. Here, we report electrophysiological recordings from ENs of larval zebrafish that directly illustrate how synaptic inhibition and excitation are integrated by cerebellar output neurons in association with motor behavior. The results demonstrate that inhibitory and excitatory drive both increase during fictive swimming, but inhibition greatly exceeds excitation. Firing rates nevertheless increase, providing evidence that synaptic integration promotes cerebellar output during locomotion. The data offer a basis for comparing aspects of cerebellar coding that are conserved and that diverge across vertebrates. Full Article
it Astrocytes Modulate Baroreflex Sensitivity at the Level of the Nucleus of the Solitary Tract By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 Maintenance of cardiorespiratory homeostasis depends on autonomic reflexes controlled by neuronal circuits of the brainstem. The neurophysiology and neuroanatomy of these reflex pathways are well understood, however, the mechanisms and functional significance of autonomic circuit modulation by glial cells remain largely unknown. In the experiments conducted in male laboratory rats we show that astrocytes of the nucleus of the solitary tract (NTS), the brain area that receives and integrates sensory information from the heart and blood vessels, respond to incoming afferent inputs with [Ca2+]i elevations. Astroglial [Ca2+]i responses are triggered by transmitters released by vagal afferents, glutamate acting at AMPA receptors and 5-HT acting at 5-HT2A receptors. In conscious freely behaving animals blockade of Ca2+-dependent vesicular release mechanisms in NTS astrocytes by virally driven expression of a dominant-negative SNARE protein (dnSNARE) increased baroreflex sensitivity by 70% (p < 0.001). This effect of compromised astroglial function was specific to the NTS as expression of dnSNARE in astrocytes of the ventrolateral brainstem had no effect. ATP is considered the principle gliotransmitter and is released by vesicular mechanisms blocked by dnSNARE expression. Consistent with this hypothesis, in anesthetized rats, pharmacological activation of P2Y1 purinoceptors in the NTS decreased baroreflex gain by 40% (p = 0.031), whereas blockade of P2Y1 receptors increased baroreflex gain by 57% (p = 0.018). These results suggest that glutamate and 5-HT, released by NTS afferent terminals, trigger Ca2+-dependent astroglial release of ATP to modulate baroreflex sensitivity via P2Y1 receptors. These data add to the growing body of evidence supporting an active role of astrocytes in brain information processing. SIGNIFICANCE STATEMENT Cardiorespiratory reflexes maintain autonomic balance and ensure cardiovascular health. Impaired baroreflex may contribute to the development of cardiovascular disease and serves as a robust predictor of cardiovascular and all-cause mortality. The data obtained in this study suggest that astrocytes are integral components of the brainstem mechanisms that process afferent information and modulate baroreflex sensitivity via the release of ATP. Any condition associated with higher levels of "ambient" ATP in the NTS would be expected to decrease baroreflex gain by the mechanism described here. As ATP is the primary signaling molecule of glial cells (astrocytes, microglia), responding to metabolic stress and inflammatory stimuli, our study suggests a plausible mechanism of how the central component of the baroreflex is affected in pathological conditions. Full Article
it Neural Correlates of Strategy Switching in the Macaque Orbital Prefrontal Cortex By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 We can adapt flexibly to environment changes and search for the most appropriate rule to a context. The orbital prefrontal cortex (PFo) has been associated with decision making, rule generation and maintenance, and more generally has been considered important for behavioral flexibility. To better understand the neural mechanisms underlying the flexible behavior, we studied the ability to generate a switching signal in monkey PFo when a strategy is changed. In the strategy task, we used a visual cue to instruct two male rhesus monkeys either to repeat their most recent choice (i.e., stay strategy) or to change it (i.e., shift strategy). To identify the strategy switching-related signal, we compared nonswitch and switch trials, which cued the same or a different strategy from the previous trial, respectively. We found that the switching-related signal emerged during the cue presentation and it was combined with the strategy signal in a subpopulation of cells. Moreover, the error analysis showed that the activity of the switch-related cells reflected whether the monkeys erroneously switched or not the strategy, rather than what was required for that trial. The function of the switching signal could be to prompt the use of different strategies when older strategies are no longer appropriate, conferring the ability to adapt flexibly to environmental changes. In our task, the switching signal might contribute to the implementation of the strategy cued, overcoming potential interference effects from the strategy previously cued. Our results support the idea that ascribes to PFo an important role for behavioral flexibility. SIGNIFICANCE STATEMENT We can flexibly adapt our behavior to a changing environment. One of the prefrontal areas traditionally associated with the ability to adapt to new contingencies is the orbital prefrontal cortex (PFo). We analyzed the switching related activity using a strategy task in which two rhesus monkeys were instructed by a visual cue either to repeat or change their most recent choice, respectively using a stay or a shift strategy. We found that PFo neurons were modulated by the strategy switching signal, pointing to the importance of PFo in behavioral flexibility by generating control over the switching of strategies. Full Article
it Interneuron NMDA Receptor Ablation Induces Hippocampus-Prefrontal Cortex Functional Hypoconnectivity after Adolescence in a Mouse Model of Schizophrenia By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Although the etiology of schizophrenia is still unknown, it is accepted to be a neurodevelopmental disorder that results from the interaction of genetic vulnerabilities and environmental insults. Although schizophrenia's pathophysiology is still unclear, postmortem studies point toward a dysfunction of cortical interneurons as a central element. It has been suggested that alterations in parvalbumin-positive interneurons in schizophrenia are the consequence of a deficient signaling through NMDARs. Animal studies demonstrated that early postnatal ablation of the NMDAR in corticolimbic interneurons induces neurobiochemical, physiological, behavioral, and epidemiological phenotypes related to schizophrenia. Notably, the behavioral abnormalities emerge only after animals complete their maturation during adolescence and are absent if the NMDAR is deleted during adulthood. This suggests that interneuron dysfunction must interact with development to impact on behavior. Here, we assess in vivo how an early NMDAR ablation in corticolimbic interneurons impacts on mPFC and ventral hippocampus functional connectivity before and after adolescence. In juvenile male mice, NMDAR ablation results in several pathophysiological traits, including increased cortical activity and decreased entrainment to local gamma and distal hippocampal theta rhythms. In addition, adult male KO mice showed reduced ventral hippocampus-mPFC-evoked potentials and an augmented low-frequency stimulation LTD of the pathway, suggesting that there is a functional disconnection between both structures in adult KO mice. Our results demonstrate that early genetic abnormalities in interneurons can interact with postnatal development during adolescence, triggering pathophysiological mechanisms related to schizophrenia that exceed those caused by NMDAR interneuron hypofunction alone. SIGNIFICANCE STATEMENT NMDAR hypofunction in cortical interneurons has been linked to schizophrenia pathophysiology. How a dysfunction of GABAergic cortical interneurons interacts with maturation during adolescence has not been clarified yet. Here, we demonstrate in vivo that early postnatal ablation of the NMDAR in corticolimbic interneurons results in an overactive but desynchronized PFC before adolescence. Final postnatal maturation during this stage outspreads the impact of the genetic manipulation toward a functional disconnection of the ventral hippocampal-prefrontal pathway, probably as a consequence of an exacerbated propensity toward hippocampal-evoked depotentiation plasticity. Our results demonstrate a complex interaction between genetic and developmental factors affecting cortical interneurons and PFC function. Full Article
it Neural Evidence for the Prediction of Animacy Features during Language Comprehension: Evidence from MEG and EEG Representational Similarity Analysis By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 It has been proposed that people can generate probabilistic predictions at multiple levels of representation during language comprehension. We used magnetoencephalography (MEG) and electroencephalography (EEG), in combination with representational similarity analysis, to seek neural evidence for the prediction of animacy features. In two studies, MEG and EEG activity was measured as human participants (both sexes) read three-sentence scenarios. Verbs in the final sentences constrained for either animate or inanimate semantic features of upcoming nouns, and the broader discourse context constrained for either a specific noun or for multiple nouns belonging to the same animacy category. We quantified the similarity between spatial patterns of brain activity following the verbs until just before the presentation of the nouns. The MEG and EEG datasets revealed converging evidence that the similarity between spatial patterns of neural activity following animate-constraining verbs was greater than following inanimate-constraining verbs. This effect could not be explained by lexical-semantic processing of the verbs themselves. We therefore suggest that it reflected the inherent difference in the semantic similarity structure of the predicted animate and inanimate nouns. Moreover, the effect was present regardless of whether a specific word could be predicted, providing strong evidence for the prediction of coarse-grained semantic features that goes beyond the prediction of individual words. SIGNIFICANCE STATEMENT Language inputs unfold very quickly during real-time communication. By predicting ahead, we can give our brains a "head start," so that language comprehension is faster and more efficient. Although most contexts do not constrain strongly for a specific word, they do allow us to predict some upcoming information. For example, following the context of "they cautioned the...," we can predict that the next word will be animate rather than inanimate (we can caution a person, but not an object). Here, we used EEG and MEG techniques to show that the brain is able to use these contextual constraints to predict the animacy of upcoming words during sentence comprehension, and that these predictions are associated with specific spatial patterns of neural activity. Full Article
it Synaptic Specificity and Application of Anterograde Transsynaptic AAV for Probing Neural Circuitry By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Revealing the organization and function of neural circuits is greatly facilitated by viral tools that spread transsynaptically. Adeno-associated virus (AAV) exhibits anterograde transneuronal transport, however, the synaptic specificity of this spread and its broad application within a diverse set of circuits remains to be explored. Here, using anatomic, functional, and molecular approaches, we provide evidence for the preferential transport of AAV1 to postsynaptically connected neurons and reveal its spread is strongly dependent on synaptic transmitter release. In addition to glutamatergic pathways, AAV1 also spreads through GABAergic synapses to both excitatory and inhibitory cell types. We observed little or no transport, however, through neuromodulatory projections (e.g., serotonergic, cholinergic, and noradrenergic). In addition, we found that AAV1 can be transported through long-distance descending projections from various brain regions to effectively transduce spinal cord neurons. Combined with newly designed intersectional and sparse labeling strategies, AAV1 can be applied within a wide variety of pathways to categorize neurons according to their input sources, morphology, and molecular identities. These properties make AAV1 a promising anterograde transsynaptic tool for establishing a comprehensive cell-atlas of the brain, although its capacity for retrograde transport currently limits its use to unidirectional circuits. SIGNIFICANCE STATEMENT The discovery of anterograde transneuronal spread of AAV1 generates great promise for its application as a unique tool for manipulating input-defined cell populations and mapping their outputs. However, several outstanding questions remain for anterograde transsynaptic approaches in the field: (1) whether AAV1 spreads exclusively or specifically to synaptically connected neurons, and (2) how broad its application could be in various types of neural circuits in the brain. This study provides several lines of evidence in terms of anatomy, functional innervation, and underlying mechanisms, to strongly support that AAV1 anterograde transneuronal spread is highly synapse specific. In addition, several potentially important applications of transsynaptic AAV1 in probing neural circuits are described. Full Article
it Contribution of NPY Y5 Receptors to the Reversible Structural Remodeling of Basolateral Amygdala Dendrites in Male Rats Associated with NPY-Mediated Stress Resilience By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Endogenous neuropeptide Y (NPY) and corticotrophin-releasing factor (CRF) modulate the responses of the basolateral amygdala (BLA) to stress and are associated with the development of stress resilience and vulnerability, respectively. We characterized persistent effects of repeated NPY and CRF treatment on the structure and function of BLA principal neurons in a novel organotypic slice culture (OTC) model of male rat BLA, and examined the contributions of specific NPY receptor subtypes to these neural and behavioral effects. In BLA principal neurons within the OTCs, repeated NPY treatment caused persistent attenuation of excitatory input and induced dendritic hypotrophy via Y5 receptor activation; conversely, CRF increased excitatory input and induced hypertrophy of BLA principal neurons. Repeated treatment of OTCs with NPY followed by an identical treatment with CRF, or vice versa, inhibited or reversed all structural changes in OTCs. These structural responses to NPY or CRF required calcineurin or CaMKII, respectively. Finally, repeated intra-BLA injections of NPY or a Y5 receptor agonist increased social interaction, a validated behavior for anxiety, and recapitulated structural changes in BLA neurons seen in OTCs, while a Y5 receptor antagonist prevented NPY's effects both on behavior and on structure. These results implicate the Y5 receptor in the long-term, anxiolytic-like effects of NPY in the BLA, consistent with an intrinsic role in stress buffering, and highlight a remarkable mechanism by which BLA neurons may adapt to different levels of stress. Moreover, BLA OTCs offer a robust model to study mechanisms associated with resilience and vulnerability to stress in BLA. SIGNIFICANCE STATEMENT Within the basolateral amygdala (BLA), neuropeptide Y (NPY) is associated with buffering the neural stress response induced by corticotropin releasing factor, and promoting stress resilience. We used a novel organotypic slice culture model of BLA, complemented with in vivo studies, to examine the cellular mechanisms associated with the actions of NPY. In organotypic slice cultures, repeated NPY treatment reduces the complexity of the dendritic extent of anxiogenic BLA principal neurons, making them less excitable. NPY, via activation of Y5 receptors, additionally inhibits and reverses the increases in dendritic extent and excitability induced by the stress hormone, corticotropin releasing factor. This NPY-mediated neuroplasticity indicates that resilience or vulnerability to stress may thus involve neuropeptide-mediated dendritic remodeling in BLA principal neurons. Full Article
it Adaptive Resetting of Tuberoinfundibular Dopamine (TIDA) Network Activity during Lactation in Mice By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Giving birth triggers a wide repertoire of physiological and behavioral changes in the mother to enable her to feed and care for her offspring. These changes require coordination and are often orchestrated from the CNS, through as of yet poorly understood mechanisms. A neuronal population with a central role in puerperal changes is the tuberoinfundibular dopamine (TIDA) neurons that control release of the pituitary hormone, prolactin, which triggers key maternal adaptations, including lactation and maternal care. Here, we used Ca2+ imaging on mice from both sexes and whole-cell recordings on female mouse TIDA neurons in vitro to examine whether they adapt their cellular and network activity according to reproductive state. In the high-prolactin state of lactation, TIDA neurons shift to faster membrane potential oscillations, a reconfiguration that reverses upon weaning. During the estrous cycle, however, which includes a brief, but pronounced, prolactin peak, oscillation frequency remains stable. An increase in the hyperpolarization-activated mixed cation current, Ih, possibly through unmasking as dopamine release drops during nursing, may partially explain the reconfiguration of TIDA rhythms. These findings identify a reversible plasticity in hypothalamic network activity that can serve to adapt the dam for motherhood. SIGNIFICANCE STATEMENT Motherhood requires profound behavioral and physiological adaptations to enable caring for offspring, but the underlying CNS changes are poorly understood. Here, we show that, during lactation, neuroendocrine dopamine neurons, the "TIDA" cells that control prolactin secretion, reorganize their trademark oscillations to discharge in faster frequencies. Unlike previous studies, which typically have focused on structural and transcriptional changes during pregnancy and lactation, we demonstrate a functional switch in activity and one that, distinct from previously described puerperal modifications, reverses fully on weaning. We further provide evidence that a specific conductance (Ih) contributes to the altered network rhythm. These findings identify a new facet of maternal brain plasticity at the level of membrane properties and consequent ensemble activity. Full Article
it Circuit Stability to Perturbations Reveals Hidden Variability in the Balance of Intrinsic and Synaptic Conductances By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Neurons and circuits each with a distinct balance of intrinsic and synaptic conductances can generate similar behavior but sometimes respond very differently to perturbation. Examining a large family of circuit models with non-identical neurons and synapses underlying rhythmic behavior, we analyzed the circuits' response to modifications in single and multiple intrinsic conductances in the individual neurons. To summarize these changes over the entire range of perturbed parameters, we quantified circuit output by defining a global stability measure. Using this measure, we identified specific subsets of conductances that when perturbed generate similar behavior in diverse individuals of the population. Our unbiased clustering analysis enabled us to quantify circuit stability when simultaneously perturbing multiple conductances as a nonlinear combination of single conductance perturbations. This revealed surprising conductance combinations that can predict the response to specific perturbations, even when the remaining intrinsic and synaptic conductances are unknown. Therefore, our approach can expose hidden variability in the balance of intrinsic and synaptic conductances of the same neurons across different versions of the same circuit solely from the circuit response to perturbations. Developed for a specific family of model circuits, our quantitative approach to characterizing high-dimensional degenerate systems provides a conceptual and analytic framework to guide future theoretical and experimental studies on degeneracy and robustness. SIGNIFICANCE STATEMENT Neural circuits can generate nearly identical behavior despite neuronal and synaptic parameters varying several-fold between individual instantiations. Yet, when these parameters are perturbed through channel deletions and mutations or environmental disturbances, seemingly identical circuits can respond very differently. What distinguishes inconsequential perturbations that barely alter circuit behavior from disruptive perturbations that drastically disturb circuit output remains unclear. Focusing on a family of rhythmic circuits, we propose a computational approach to reveal hidden variability in the intrinsic and synaptic conductances in seemingly identical circuits based solely on circuit output to different perturbations. We uncover specific conductance combinations that work similarly to maintain stability and predict the effect of changing multiple conductances simultaneously, which often results from neuromodulation or injury. Full Article
it Cortical Tonotopic Map Changes in Humans Are Larger in Hearing Loss Than in Additional Tinnitus By www.jneurosci.org Published On :: 2020-04-15T09:30:18-07:00 Neural plasticity due to hearing loss results in tonotopic map changes. Several studies have suggested a relation between hearing loss-induced tonotopic reorganization and tinnitus. This large fMRI study on humans was intended to clarify the relations between hearing loss, tinnitus, and tonotopic reorganization. To determine the differential effect of hearing loss and tinnitus, both male and female participants with bilateral high-frequency hearing loss, with and without tinnitus, and a control group were included. In a total of 90 participants, bilateral cortical responses to sound stimulation were measured with loudness-matched pure-tone stimuli (0.25-8 kHz). In the bilateral auditory cortices, the high-frequency sound-evoked activation level was higher in both hearing-impaired participant groups, compared with the control group. This was most prominent in the hearing loss group without tinnitus. Similarly, the tonotopic maps for the hearing loss without tinnitus group were significantly different from the controls, whereas the maps of those with tinnitus were not. These results show that higher response amplitudes and map reorganization are a characteristic of hearing loss, not of tinnitus. Both tonotopic maps and response amplitudes of tinnitus participants appear intermediate to the controls and hearing loss without tinnitus group. This observation suggests a connection between tinnitus and an incomplete form of central compensation to hearing loss, rather than excessive adaptation. One implication of this may be that treatments for tinnitus shift their focus toward enhancing the cortical plasticity, instead of reversing it. SIGNIFICANCE STATEMENT Tinnitus, a common and potentially devastating condition, is the presence of a "phantom" sound that often accompanies hearing loss. Hearing loss is known to induce plastic changes in cortical and subcortical areas. Although plasticity is a valuable trait that allows the human brain to rewire and recover from injury and sensory deprivation, it can lead to tinnitus as an unwanted side effect. In this large fMRI study, we provide evidence that tinnitus is related to a more conservative form of reorganization than in hearing loss without tinnitus. This result contrasts with the previous notion that tinnitus is related to excessive reorganization. As a consequence, treatments for tinnitus may need to enhance the cortical plasticity, rather than reverse it. Full Article