material

BONDING METHOD, BONDING KIT, AND BONDING MATERIAL

To enable firm bonding to a member including a polyaryl ether ketone resin. A bonding method including: a bonding material applying step for applying, to the surface of a member including a polyaryl ether ketone resin, a bonding material including (A) a polymerizable monomer and (B) at least a portion of components for configuring a polymerization initiator, the content ratio of polymerizable monomers at least having two or more polymerizable functional groups in a (p2) molecule among all polymerizable monomers being 50% by mass or greater, and the content ratio of polymerizable monomers at least having one or more polymerizable functional groups and one or more functional groups capable of hydrogen bonding in a (p1h1) molecule being 5% by mass or greater; and a curing step for curing the bonding material. A bonding material and bonding kit using the bonding method.




material

FLEXIBLE WET FRICTION MATERIALS INCLUDING SILANE

A friction material for a clutch comprising: a plurality of fibers; a filler material: and, a binder including at least 3% and at most 50% silane by weight based on total weight of the binder. The friction material is devoid of added water. In an example aspect, the silane is an organosilane having a reactive organic ureido group and a hydrolyzable inorganic triethoxysilyl group. In an example aspect, the binder further includes phenolic resin, wherein the phenolic resin forms byproduct water upon curing to react with the hydrolyzable inorganic triethoxysilyl group to form a cross-linked binder. A method forming a hybrid matrix composite for a flexible clutch friction material is also disclosed.




material

Treating lignocellulosic materials

A process of covalently modifying a lignocellulosic material is provided. The process includes oxidizing a lignocellulosic material having hydroxyl groups with an oxidant to oxidize at least a portion of the hydroxyl groups to carboxylic acid groups, optionally activating the carboxylic acid groups with an activating agent to form activated carboxylic acid groups, and reacting the carboxylic acid groups or the activated carboxylic acid groups with a first nitrogen-containing reagent selected from amino acids, peptides, or protected derivatives thereof to provide a treated lignocellulosic material. The treated lignocellulosic materials thus prepared displays resistance to degradation.




material

Process for lightening keratin materials using an emulsion comprising an alkaline agent and an oxidizing composition

The present disclosure therefore relates to a method for lightening keratin materials, in which the following are used: (a) a direct emulsion (A) comprising at least one fatty substance in an amount greater than 25% by weight, such as greater than 50%, at least one surfactant; at least one alkaline agent and an amount of water greater than 5% by weight, of the total weight of the emulsion, (b) a composition (B) comprising at least one oxidizing agent. It also relates to a multi-compartment device comprising, in one compartment, an emulsion (A), in another compartment a composition (B) comprising at least one oxidizing agent.




material

TWO-DIMENSIONAL MATERIAL SEMICONDUCTOR DEVICE

A semiconductor device comprises a two-dimensional (2D) material layer, the 2D material layer comprising a channel region in between a source region and a drain region; a first gate stack and a second gate stack in contact with the 2D material layer, the first and second gate stack being spaced apart over a distance; the first gate stack located on the channel region of the 2D material layer and in between the source region and the second gate stack, the first gate stack arranged to control the injection of carriers from the source region to the channel region and the second gate stack located on the channel region of the 2D material layer; the second gate stack arranged to control the conduction of the channel region.




material

POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERIES, POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERIES, AND LITHIUM SECONDARY BATTERY

The object of the present invention is to provide a positive electrode active material usable for a lithium ion battery capable of high charge/discharge cycle performance and high discharge capacity. The positive electrode active material for a lithium secondary battery has a layered structure and comprises at least nickel, cobalt and manganese. Further, the positive electrode active material satisfies requirements (1) to (3) below: (1) a primary particle size of 0.1 μm to 1 μm, and a 50% cumulative particle size D50 of 1 μm to 10 μm, (2) a ratio (D90/D10) of volume-based 90% cumulative particle size D50 to volume-based 10% cumulative particle size D10 of 2 to 6, and (3) a lithium carbonate content in a residual alkali on particle surfaces of 0.1% by mass to 0.8% by mass as measured by neutralization titration.




material

POSITIVE ELECTRODE ACTIVE MATERIAL FOR SODIUM SECONDARY BATTERY, AND METHOD FOR PREPARING SAME

The present invention relates to a positive electrode active material for a sodium secondary battery, and a method for preparing the same. The positive electrode active material for the sodium secondary battery according to the present invention is structurally more stable by replacing a part of the transition metal with Li, and accordingly, the thermal stability and life characteristics of the sodium battery including the positive electrode active material are greatly improved.




material

CARBON MATERIAL, METHOD FOR PRODUCING CARBON MATERIAL, AND NON-AQUEOUS SECONDARY BATTERY USING CARBON MATERIAL

A carbon material for a non-aqueous secondary battery containing a graphite capable of occluding and releasing lithium ions, and having a cumulative pore volume at pore diameters in a range of 0.01 μm to 1 μm of 0.08 mL/g or more, a roundness, as determined by flow-type particle image analysis, of 0.88 or greater, and a pore diameter to particle diameter ratio (PD/d50 (%)) of 1.8 or less, the ratio being given by equation (1A): PD/d50 (%)=mode pore diameter (PD) in a pore diameter range of 0.01 μm to 1 μm in a pore distribution determined by mercury intrusion/volume-based average particle diameter (d50)×100 is provided.




material

POSITIVE ELECTRODE ACTIVE MATERIAL FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERIES, PRODUCTION METHOD THEREOF, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY INCLUDING SAID MATERIAL

Provided is a positive electrode active material that can be used to fabricate a nonaqueous electrolyte secondary battery having excellent output characteristics not only in an environment at normal temperature but also in all temperature environments from extremely low to high temperatures. A positive electrode active material for nonaqueous electrolyte secondary batteries, the positive electrode active material includes a boron compound and lithium-nickel-cobalt-manganese composite oxide of general formula (1) having a layered hexagonal crystal structure. The lithium-nickel-cobalt-manganese composite oxide includes secondary particles composed of agglomerated primary particles. The boron compound is present on at least part of the surface of the primary particles, and contains lithium. Li1+sNixCoyMnzMotMwO2 (1)




material

GARNET MATERIALS FOR LI SECONDARY BATTERIES AND METHODS OF MAKING AND USING GARNET MATERIALS

Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (




material

Device on a spinning room preparation machine, for example a fibre flock feeder, carding machine, cleaner or the like, for supplying and/or discharging fibre material

In a device on a spinning room preparation machine, for example a fiber flock feeder, carding machine, cleaner or the like, for supplying and/or discharging fiber material, a tray-like guide element having a guide surface co-operates with at least one conveyor roll located opposite, the fiber material being guided towards and along the guide surface. In order to provide a simple way of supplying and/or discharging fiber material without undesirable adhesion of fibers, the guide element located opposite the at least one conveyor roll is arranged to be set in vibration by at least one actuator.




material

In yarn production, apron cladding mechanism and method to the rollers coated with elastic material and found in the drafting and guiding zone, having shift structure and pre-tensioning mechanism

The purpose of the invention is to reduce the abrasive impact of the fiber or the yarn on the rollers coated with elastic material, which are used for drafting and guiding purposes in yarn production techniques, and thus keep the operating conditions and yarn quality parameters constant. The fiber on the top rollers coated with elastic material especially in the mechanical ring compact yarn production among the yarn production techniques, is an apron cladding method, over the top roller and the bearing guide arms connected to a bearing body found on the bearing unit placed on the pressure arm, in a way that it would cover these together. The method includes the operation steps of stretching the aprons by application of tension via a tension component and, while the fiber drafting operation continues, the bearing unit carrying the aprons being shifted in the horizontal plane in certain intervals.




material

Clothing carrier for clothing for processing fiber material

The invention relates to a clothing carrier (3) for flexible or semi-rigid clothings (2) for processing fiber material, wherein the clothing carrier (3) has a longitudinal direction (6) and a transverse direction (7). The transverse direction (6) corresponds to a working direction (A) of the clothing (2). The clothing carrier (3) exhibits a maximum tensile force (FL) in the longitudinal direction (6) which is greater than a maximum tensile force (FQ) in the transverse direction (7).




material

Cellular cushions including support material and methods of fabricating same

A cellular cushion includes a base, a plurality of hollow cells, and support material. The base includes at least a first layer and a second layer. The plurality of hollow cells are coupled to, and extend outward from, only one of the first layer and the second layer. Each of the plurality of cells extends from a root defined at only one of the first layer and the second layer outwardly to an outer end. The plurality of cells are coupled together in flow communication via a plurality of channels extending between the cells. The support material is inserted within at least one of the hollow cells. The second layer coupled to the first layer such that the support material is between an inner surface of said at least one of the hollow cells and the second layer.




material

IDENTIFICATION OF MATERIAL TYPE AND CONDITION IN A DRY BULK MATERIAL HOPPER

A method includes optically interacting a bulk material or powder stored in a hopper with an integrated computational element (“ICE”) configured to detect a characteristic of the bulk material or powder. The method also includes generating an output signal corresponding to the characteristic of the bulk material or powder, and receiving and processing the output signal with a signal processor to yield a value for the characteristic of the bulk material or powder. Also, the method includes transmitting a message flagging the hopper when it is determined that the bulk material or powder is not suitable for usage.




material

IDENTIFICATION OF MATERIAL TYPE AND CONDITION IN A DRY BULK MATERIAL STORAGE BIN

A method includes optically interacting a bulk material or powder stored in a storage bin with an integrated computational element (“ICE”) configured to modify an electromagnetic radiation according to a characteristic of the bulk material or powder. The method also includes detecting the modified electromagnetic radiation with a detector, and producing an output signal correlated to a value for the characteristic of the bulk material or powder, and receiving and processing the output signal with a signal processor to yield a value for the characteristic of the bulk material or powder. Also, the method includes transmitting a message flagging the storage bin when it is determined that the bulk material or powder is not suitable for continued storage. The bulk material or powder includes a dry cement or a dry cement component.




material

SYSTEMS, APPARATUS, AND METHODS FOR TREATING WASTE MATERIALS

Systems and methods for a pyrolytic oven for processing waste include multiple zones associated with multiple independently-controlled heating sources. The pyrolytic oven may have multiple sensors also associated with each zone. The pyrolytic oven may also include a fuel management system which adjusts a power level of each heating source for each zone independently based on a reading of the corresponding sensor.




material

THERMALLY-PROTECTIVE MATERIAL AND COOL-TOUCH CANDLE ASSEMBLIES PREPARED THEREWITH

The present invention relates to materials and systems useful for increasing the safety profile of a candle. In particular, the present invention provides a thermally-protective material that is useful to prepare labels or wraps to encircle or surround a candle. The present invention further provides a cool-touch thermally-protected candle assembly.




material

Insect repellent compound, material and animal mask, and method for making the same

An insect repellent compound that includes naturally occurring oil that emits an odor which repels insects is described. The compound is not harmful to animals, to humans or to the environment. The compound may be incorporated into materials such as yarn that is woven to form a mesh. The material may be used for making an animal mask, for screen doors and other applications. A method of making the compound and incorporating it into materials and products is described.




material

MATERIALS FOR NEAR FIELD TRANSDUCERS, NEAR FIELD TRANDUCERS CONTAINING SAME, AND METHODS OF FORMING

A device including a near field transducer, the near field transducer including gold (Au), silver (Ag), copper (Cu), or aluminum (Al), and at least two other secondary atoms, the at least two other secondary atoms selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), manganese (Mn), tellurium (Te), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), germanium (Ge), hydrogen (H), iodine (I), rubidium (Rb), selenium (Se), terbium (Tb), nitrogen (N), oxygen (O), carbon (C), antimony (Sb), gadolinium (Gd), samarium (Sm), thallium (Tl), cadmium (Cd), neodymium (Nd), phosphorus (P), lead (Pb), hafnium (Hf), niobium (Nb), erbium (Er), zinc (Zn), magnesium (Mg), palladium (Pd), vanadium (V), zinc (Zn), chromium (Cr), iron (Fe), lithium (Li), nickel (Ni), platinum (Pt), sodium (Na), strontium (Sr), calcium (Ca), yttrium (Y), thorium (Th), beryllium (Be), thulium (Tm), erbium (Er), ytterbium (Yb), promethium (Pm), neodymium (Nd cobalt (Co), cerium (Ce), lanthanum (La), praseodymium (Pr), or combinations thereof.




material

MATERIALS CONTAINING METAL OXIDES, PROCESSES FOR MAKING SAME, AND PROCESSES FOR USING SAME

Compositions having a high metal content comprising a metal salt solution, a stabilizer and one or more optional additives, wherein the metal salt solution comprises a metal ion, a counter ion and a solvent. The compositions are useful for forming films on substrates in the manufacture of solid state and integrated circuit devices.




material

METHOD AND APPARATUS FOR APPLYING A MATERIAL ONTO ARTICLES WITH A PRE-DISTORTED TRANSFER COMPONENT

Apparatuses and methods for applying a transfer material onto the surface of an article are disclosed, including apparatuses and methods of transfer printing on and/or decorating three-dimensional articles, as well as the articles printed and/or decorated thereby. In some cases, the apparatuses and methods involve providing a deposition device, such as a printing device; providing a transfer component; depositing a material onto a portion of the transfer component with the deposition device; modifying the portion of the transfer component with the transfer material thereon to conform the transfer component to at least a portion of the surface of the three-dimensional article; and transferring the transfer material onto the surface of the article.




material

COMPOSITE MATERIAL WITH COATING MATERIAL

The invention relates to a composite material composed at least of one carrier material, wherein the carrier material is coated on a first surface with a first coating material and on a second surface with a second coating material, wherein the composite material has links of coating material which run from the first surface of the carrier material to the second surface of the carrier material, wherein links of coating material start from 1% to 90% of at least one of the surfaces of the carrier material. The invention further relates to a method for producing a composite material of this type.




material

METHOD FOR MANUFACTURING ENERGY-STORAGE COMPOSITE MATERIAL

The present disclosure provides a method for manufacturing an energy-storage composite material. The method includes (a) providing a solution having a carbon substrate, and placing the solution in a pressure container, and a surface of the carbon substrate having an energy-storage active precursor; (b) stirring the solution having the carbon substrate at a first stirring speed, and venting air in the pressure container at a first temperature, such that a pressure in the pressure container reaches a first pressure and is maintained for a first period of time; and (c) introducing a fluid into the pressure container, stirring the solution having the carbon substrate at a second stirring speed, increasing a pressure and a temperature in the pressure container to a second pressure and a second temperature and maintaining for a second period of time, and then reducing the pressure to the atmosphere pressure to obtain an energy-storage composite material.




material

SILICON-BASED ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND PREPARATION METHOD THEREOF

Disclosed is a silicon-based anode active material for a lithium secondary battery. The silicon-based anode active material imparts high capacity and high power to the lithium secondary battery, can be used for a long time, and has good thermal stability. Also disclosed is a method for preparing the silicon-based anode active material. The method includes (A) binding metal oxide particles to the entire surface of silicon particles or portions thereof to form a silicon-metal oxide composite, (B) coating the surface of the silicon-metal oxide composite with a polymeric material to form a silicon-metal oxide-polymeric material composite, and (C) heat treating the silicon-metal oxide-polymeric material composite under an inert gas atmosphere to convert the coated polymeric material layer into a carbon coating layer.




material

Adsorbent Materials And Methods of Adsorbing Carbon Dioxide

Methods of designing zeolite materials for adsorption of CO2. Zeolite materials and processes for CO2 adsorption using zeolite materials.




material

METAL-ORGANIC MATERIALS (MOMS) FOR CO2 ADSORPTION AND METHODS OF USING MOMS

Embodiments of the present disclosure provide for metal-organic materials (MOMs), systems that exhibit permanent porosity and using hydrophobic MOMs to separate components in a gas, methods of separating CO2 from a gas, and the like.




material

Harvesting machine for erecting and threshing and collecting crop materials

A harvesting machine for threshing crop materials includes a platform supported in front of a chassis, an erecting device having a number pairs of guiding bars attached to the platform and having a channel formed between two bar members of each pair of guiding bars, a guiding element disposed between every two adjacent pairs of guiding bars for guiding a stalk of the crop materials into the channel of the guiding bars, a number of pawls extended into the channel for sending the stalk of the crop materials into the channel, and a cutting device having two or more cutting elements for cutting the stalk into a lower base segment that carries no grain and an upper straw segment that carries grains.




material

METHOD OF USING A SURFACTANT-CONTAINING SHRINKAGE MATERIAL TO PREVENT PHOTORESIST PATTERN COLLAPSE CAUSED BY CAPILLARY FORCES

A first photoresist pattern and a second photoresist pattern are formed over a substrate. The first photoresist pattern is separated from the second photoresist pattern by a gap. A chemical mixture is coated on the first and second photoresist patterns. The chemical mixture contains a chemical material and surfactant particles mixed into the chemical material. The chemical mixture fills the gap. A baking process is performed on the first and second photoresist patterns, the baking process causing the gap to shrink. At least some surfactant particles are disposed at sidewall boundaries of the gap. A developing process is performed on the first and second photoresist patterns. The developing process removes the chemical mixture in the gap and over the photoresist patterns. The surfactant particles disposed at sidewall boundaries of the gap reduce a capillary effect during the developing process.




material

Coffin made from environmentally friendly material

A coffin in an environmentally friendly material with a special shape and fittings at the places where the coffin is to be lifted, which is new in that the coffin itself has vertical recesses directed inwards, which cover both the coffin box and the lid, and wherein at each side of the coffin box bottom, a transverse lever or pipe has been placed, and wherein said pipe or lever is through-going to each and across each recess.




material

Hinge in composite material and process for its manufacture

Disclosed is a hinge having a rigid portion integral with a flexible portion suitable to be bent with respect to the rigid portion, wherein the rigid portion has a substrate in a rigid composite material and the flexible portion has a first flexible sheet, wherein a first portion of the first flexible sheet is joined at least partially to the substrate by means of at least one first layer of resin for composite materials, wherein the flexible portion also has a second flexible sheet joined at least partially by means of at least one second layer of resin for composite materials both to the first portion of the first flexible sheet and to at least one second portion of the first flexible sheet which is not joined to the substrate.




material

SYSTEMS AND METHODS FOR CARBON-CARBON MATERIALS INCORPORATING YTTRIUM AND ZIRCONIUM COMPOUNDS

A method of treating a carbon structure is provided. The method may include the step of infiltrating the carbon structure with a ceramic preparation comprising yttrium oxides and zirconium oxides. The carbon structure may be densified by chemical vapor infiltration (CVI) and heat treated to form yttrium oxycarbides and/or carbides and zirconium oxycarbides and/or carbides. Heat treating the carbon structure may comprise a temperature ranging from 1000° C. to 1600° C.




material

MATERIALS FOR DAMPED HEATSINK DISK BRAKE ASSEMBLY

A friction disk brake system may comprise a plurality of rotor friction disks and a plurality of stator friction disks. At least one of the friction disks may be a split disk friction disk. The split disk friction disk may comprise a first disk half and a second disk half. A carbon foam damping feature may be located between the first disk half and the second disk half.




material

Methods for gasification of carbonaceous materials

The present disclosure is generally directed to process of gasification of carbonaceous materials to produce synthesis gas or syngas. The present disclosure provides improved methods of gasification comprising: adding one or more carbonaceous materials, adding a molecular oxygen-containing gas, adding a methane-containing gas and optionally adding water or steam into said gasifier. This disclosure is also directed to process of production of one or more alcohols from said syngas via fermentation or digestion in the presence of at least one microorganism.




material

Polycrystalline ultra-hard material with microstructure substantially free of catalyst material eruptions

Polycrystalline ultra-hard materials and compacts comprise an ultra-hard material body having a polycrystalline matrix of bonded together ultra-hard particles, e.g., diamond crystals, and a catalyst material disposed in interstitial regions within the polycrystalline matrix. The material microstructure is substantially free of localized concentrations, regions or volumes of the catalyst material or other substrate constituent. The body can include a region extending a depth from a body working surface and that is substantially free of the catalyst material. The compact is produced using a multi-stage HPHT process, e.g., comprising two HPHT process conditions, wherein during a first stage HPHT process the catalyst material is melted and only partially infiltrates the precursor ultra-hard material, and during a second stage further catalyst material infiltrates the precursor ultra-hard material to produce a fully sintered compact.




material

Plastic soft composition for polishing and for surface protective material application

A plastic soft composition is formed of soft base material constantly provided with plasticity, porous fine particles for polishing contained in the base material, and the like, and a polishing process and a coating process are performed to a painted surface and the like using the plastic soft composition. The fine particles for polishing are impregnated with a coating agent (a surface protective agent) added with an activator which is emulsified by contact with water, and the coating agent is held in concave portions formed in the fine particles. Both polishing work and coating work are achieved by sliding the plastic soft composition on a painted surface by a palm pressure of a user.




material

Cleaning material and abrasive material made from bamboo fiber

The present invention discloses a cleaning cloth, an abrasive cloth, a cleaning buff and an abrasive buff which are each formed by knitting/weaving bamboo fibers having excellent cleaning, abrasive capacity and excellent ignition resistance.




material

Polycrystalline diamond compact including a polycrystalline diamond table with a thermally-stable region having at least one low-carbon-solubility material and applications therefor

Embodiments of the invention relate to polycrystalline diamond compacts (“PDCs”) comprising a polycrystalline diamond (“PCD”) table including a thermally-stable region having at least one low-carbon-solubility material disposed interstitially between bonded diamond grains thereof, and methods of fabricating such PDCs. In an embodiment, a PDC includes a substrate, and a PCD table bonded to the substrate. The PCD table includes a plurality of diamond grains exhibiting diamond-to-diamond bonding therebetween and defining a plurality of interstitial regions. The PCD table further includes at least one low-carbon-solubility material disposed in at least a portion of the plurality of interstitial regions. The at least one low-carbon-solubility material exhibits a melting temperature of about 1300° C. or less and a bulk modulus at 20° C. of less than about 150 GPa.




material

DETERMINING A TOPOLOGY OF THE SURFACE OF A MATERIAL FILLED INTO A CONTAINER

A fill level measurement device for determining a topology of a filling material surface in a container including an antenna apparatus, a receiver and control circuitry. An emission angle of the antenna apparatus and a spatial position of the antenna apparatus relative to the filling material surface is settable by the control circuitry. A resultant emission direction of the fill level measurement device is changeable by the control circuitry by controlling a position of the antenna apparatus and by controlling an emission and/or receiving angle of the antenna apparatus.




material

AMINO-CONTAINING SILICA PARTICLE, COMPOSITION FOR FORMING POLYIMIDE AEROGEL, POLYIMIDE AEROGEL AND METHOD OF FABRICATING THE SAME, POLYIMIDE AEROGEL-CONTAINING COMPOSITE MATERIAL

An amino-containing silica particle is provided. The amino-containing silica particle is obtained by hydrolysis-condensation reaction of an alkoxy silane represented by formula (I), an alkoxy silane represented by formula (II) and a catalyst: Si(OR1)4 formula (I) (NH2—Y)m—Si(OR2)4-m formula (II) wherein in formula (I), R1 is a C1-C10 alkyl group, and in formula (II), Y is a C1-C10 alkyl group or a C2-C10 alkenyl group, R2 is a C1-C10 alkyl group, and m is an integer of 1 to 3.




material

ULTRALIGHT ROBUST PLATE MATERIALS

A nanoscale plate structure includes base plates and rib plates with nanoscale thickness and macroscopic lateral dimensions. The base plate resides in the first plane, the ribs can reside out-of-plane and form at least one strengthening rib, and additional base plates can reside in planes parallel to the first plane. The strengthening rib can be patterned such that there is no straight line path extending through a lateral dimension of the plate structure that does not intersect the at least one base plate and the at least one strengthening rib. The plates and ribs used in the structure have a thickness between about 1 nm and about 100 nm. The plate structures can be fabricated using a conformal deposition method including atomic layer deposition.




material

LIGHTWEIGHT CONSTRUCTION ELEMENT, MANUFACTURING METHOD THEREFOR, USE OF SAME, AND LIGHTWEIGHT PANEL AND INSULATING MATERIAL

A lightweight construction element (1) comprises at least one lightweight panel (2) and a layer of insulating material (4) associated with the lightweight panel (2), wherein the at least one lightweight panel (2) comprises boards (6), which, on at least one of the main surfaces (8) thereof, have a group of grooves (9) running parallel and which boards (6) are arranged in at least one layer (5) and are connected to one another via adhesive bonds. The layer of insulating material (4) comprises wood chips (19), which are removed from starting boards during the manufacture of boards (6) for the lightweight panels (2). These lightweight construction elements have good load and thermal insulation properties. The material used originates from one source and achieves a large overall volume after processing.




material

ELECTRONIC/ELECTRICAL COMPONENT HOUSING WITH STRIPS OF METAL PLATE AND SHAPE MEMORY MATERIAL FORMING A HEAT TRANSFER PATH

Disclosed is a housing for electronic/electrical that includes an inner panel and an outer panel, a strip of metal plate, and a strip of shape memory material. The inner panel and the outer panel are disposed parallel to each other at regular intervals to define an internal space. The strip of metal plate extends from an inner surface of the outer panel. The strip of shape memory material extends from an inner surface of the inner panel and is attached or detached to/from the metal plate on the outer panel while changing into an original straight shape or a bent shape according to a temperature variation. Here, when the temperature increase beyond a first transition temperature, the shape memory material straightens to form a heat transfer path. At a low temperature environment, the shape memory material bends and is separated from the metal plate to interrupt the heat transfer path.




material

Method and System for Discharging Flexitank Viscous Material

A discharge system that includes a flexitank having product stored therein and a discharge port. The discharge port is selectively fluidly connected to a first or second heat exchanger input port. The first heat exchanger has an outlet port that is in selective communication with either a second heat exchanger input port, or a discharge location. The second heat exchanger has an outlet port in selective fluid communication with discharge location. The first heat exchanger transfers heat to product flowing through the first heat exchanger; and the second heat exchanger removes heat from product flowing through the second heat exchanger.




material

THERMAL MANAGEMENT USING PHASE CHANGE MATERIAL

Generally discussed herein are devices and methods for thermal management of a component. An apparatus can include a phase change material substantially at a phase transition temperature of the phase change material, a component near, on, or at least partially in the phase change material, and a heat removal device to transfer heat energy away from the phase change material and maintain the phase change material substantially at the phase transition temperature.




material

Process for the production of granules from powdered materials

The present invention relates to a process for the wet production of granules from powdered materials, in particular raw materials for the production of glass. The process of the invention comprises the following successive steps: (i) the powdered materials to be granulated are divided into at least two portions: a first portion and a second portion; (ii) a binder liquid is added to the first portion of powdered materials; (iii) the first mixture thus obtained is agglomerated in the granulator in order to obtain granules (a); (iv) the second portion of powdered materials is added to the granulator; and (v) the new mixture obtained is agglomerated in the granulator in order to obtain granules (b). This sequenced granulation process allows granules to be obtained that have a degree of moisture that assures their stability and their ease of handling eliminating the drying step.




material

Methods for controlling crystal growth, crystallization, structures and phases in materials and systems

This invention relates to novel methods for affecting, controlling and/or directing various crystal formation, structure formation or phase formation/phase change reaction pathways or systems by exposing one or more components in a holoreaction system to at least one spectral energy pattern. In a first aspect of the invention, at least one spectral energy pattern can be applied to a crystallization reaction system. In a second aspect of the invention, at least one spectral energy conditioning pattern can be applied to a conditioning reaction system. The spectral energy conditioning pattern can, for example, be applied at a separate location from the reaction vessel (e.g., in a conditioning reaction vessel) or can be applied in (or to) the reaction vessel, but prior to other (or all) crystallization reaction system participants being introduced into the reaction vessel.




material

Piezoelectric MEMS Resonator with Integrated Phase Change Material Switches

A monolithic integration of phase change material (PCM) switches with a MEMS resonator is provided to implement switching and reconfiguration functionalities. MEMS resonator includes a piezoelectric material to control terminal connections to the electrodes. The PCM is operable between an ON state and an OFF state by application of heat, which causes the phase change material to change from an amorphous state to a crystalline state or from a crystalline state to an amorphous state, the amorphous state and the crystalline state each associated with one of the ON state and the OFF state. A method of fabricating the MEMS resonator with phase change material is provided. A reconfigurable filter system using the MEMS resonators is also provided.




material

Composite joint filler seal material for joints in precast concrete structures

An apparatus for filling joints in precast concrete structures includes a core that has exceptionally low creep and conforms to ASTM D 1752 made of controlled particle size composites of recycled cellular rubber and plastic materials in the form of a rectangular slab. Holes are drilled through a central area and countersink recesses are formed around the holes. An outer coating of a thermoplastic polyurethane/polyurea elastomer system of a thickness of 0.075 inch covers the slab and countersink recesses. The coated core is abrasion and UV resistant while having the creep characteristics needed to make a dam expansion joint filler.




material

IMPREGNATED FILTER MATERIAL

A method for manufacturing an impregnated filter material includes preparing at least one impregnating solution comprising sulphate and phosphate; providing a filter material; and impregnating the filter material with at least one impregnating solution, at least once. In this manner, it is possible to manufacture an impregnated filter material for the removal of noxious substances and/or toxins, which includes sulphate and phosphate. The noxious substances and/or toxins can thereby be present in the form of gases and/or vapours.