material

Method for the production of a layered or stacked inorganic/organic composite material

The invention relates to a method for the production of a layered or stacked inorganic/organic composite material, a predominantly inorganic material being provided and a polymer material being provided, characterized in that the predominantly inorganic material has a glass transition temperature or melting temperature lower than 500° C., that the predominantly inorganic material and the polymer material are each molten, and that the predominantly inorganic material and the polymer material are coextruded from the melt and thus form the composite material.




material

Powder material impregnation method and method for producing fiber-reinforced composite material

When a molded fabric body (X) is impregnated with a powder (K) of a predetermined material, there are performed a first step of dispersing the powder (K) in a liquid to prepare a slurry, and a second step of burying the molded fabric body (X) made of fiber bundles in the slurry and vibrating the slurry by use of a predetermined vibrator (M). Furthermore, in the second step, the vibrator (M) is moved along a surface of the molded fabric body (X). As a result, it is possible to improve the rate of impregnation of the powder (K) more than that in the conventional cases, irrespective of the shape of the molded fabric body (X).




material

Multi-effective material removal tool

Material removal tool (100), such as for forming surfaces of valve seats, includes an integral or separable reduced diameter circumferential insert housing (106) including a plurality of inserts (120) bonded thereto. The plurality of inserts (120) include cutting surfaces (122) at different axial and radial positions relative to the axis (112) of the material removal tool (100). Cutting surfaces (122) at different axial and radial positions are arranged at different angles to the axis (112), and at least one cutting surface (122) on at least one insert is at an angle of about 45 degrees relative to the axis (112). Cutting surfaces (122) can be located on one insert-type or different insert-types and can have different combinations of cutting surfaces (122). When arranged circumferentially on the insert housing (106), a N-effective material removal tool (100) is formed. Methods of machining using the N-effective material removal tool (100) is also disclosed.




material

Flip cartridges and material removal tool with same

A material removal having a plurality of cartridges mounted on an active portion where a plurality of seating members mounted in each of the plurality of cartridges pivots about an axis between a retracted position and an extended position is disclosed. Alternative embodiments have a single pivotable seating member. The pivotable extending seating members operate to extend and retract in a scissors-like motion and enable compact and efficient machining operation, particularly for crank shaft bearing supports.




material

Electronic device for voltage switchable dielectric material having high aspect ratio particles

One or more embodiments provide for a device that utilizes voltage switchable dielectric material having semi-conductive or conductive materials that have a relatively high aspect ratio for purpose of enhancing mechanical and electrical characteristics of the VSD material on the device.




material

High temperature material compositions for high temperature thermal cutoff devices

The present disclosure provides a high-temperature thermal pellet composition that maintains structural rigidity up to a transition temperature of about 240° C. The composition comprises at least one organic compound (e.g., triptycene or 1-aminoanthroquinone). The pellet can be disposed in a housing of a thermally-actuated, current cutoff device, such as a high-temperature thermal cutoff device (HTTCO). Also provided are material systems, which include the pellet composition and a high-temperature seal that provides substantial sealing up to at least the transition temperature. Methods of making such high-temperature pellet compositions and incorporating them into a thermally-actuated, current cutoff device are also provided.




material

Components having voltage switchable dielectric materials

Various aspects provide for structures and devices to protect against spurious electrical events (e.g., electrostatic discharge). Some embodiments incorporate a voltage switchable dielectric material (VSDM) bridging a gap between two conductive pads. Normally insulating, the VSDM may conduct current from one pad to the other during a spurious electrical event (e.g., shunting current to ground). Some aspects include gaps having a gap width that is greater than 50% of a spacing between electrical leads connected to the pads. Some devices include single layers of VSDM. Some devices include multiple layers of VSDM. Various devices may be designed to increase a ratio of active volume (of VSDM) to inactive volume.




material

Substrate device or package using embedded layer of voltage switchable dielectric material in a vertical switching configuration

A substrate device includes an embedded layer of VSD material that overlays a conductive element or layer to provide a ground. An electrode, connected to circuit elements that are to be protected, extends into the thickness of the substrate to make contact with the VSD layer. When the circuit elements are operated under normal voltages, the VSD layer is dielectric and not connected to ground. When a transient electrical event occurs on the circuit elements, the VSD layer switches instantly to a conductive state, so that the first electrode is connected to ground.




material

Material deposition system and method for depositing materials on a substrate

A material deposition system includes a frame, a support coupled to the frame to support an electronic substrate during a deposit operation, a gantry coupled to the frame, and a deposition head coupled to the gantry. The deposition head is movable over the support by movement of the gantry. The deposition head includes a chamber to hold material, an actuator to push a volume of material out of the chamber, a needle extending from the chamber and terminating in a needle orifice, and at least two air jets located on opposite sides of the needle orifice. A desired volume of material is formed at the needle orifice in response to the actuator, and each of the at least two air jets produce a timed pulse of air to create a micro-droplet from the desired volume and to accelerate the micro-droplet to high velocity.




material

Printing apparatus and printing material supply system

A printing apparatus adapted to have a cartridge detachably mounted thereon includes a cartridge mounting structure, a printing material supply tube, a plurality of apparatus-side terminals and a lever used for attachment and detachment of the cartridge to and from the printing apparatus. The lever has an operating member, a first apparatus-side locking portion and an axis of rotation. When an external force is applied to the operating member of the lever from the +X-axis direction to the −X-axis direction, the lever moves the first apparatus-side locking portion about the axis of rotation from a specified locking position toward the +X-axis direction and disengages the first apparatus-side locking portion from a first cartridge-side restriction portion, so as to eliminate the restriction of motion of the cartridge. This ensures stable electrical connection between cartridge-side terminals and apparatus-side terminals.




material

Cartridge and printing material supply system

A cartridge comprises an ink supply structure, a terminal bearing structure, and a first restriction portion. The terminal bearing structure has terminals arranged in a terminal plane which is neither parallel nor perpendicular to a plane defined by a mounting direction leading edge of the ink supply structure, so that the contact portions of the terminals receive a force in a direction opposite from the mounting direction. An engagement portion of the first restriction portion is provided at a position adjacent to the terminal bearing structure.




material

Interlocking buttress material retention system

A surgical stapler is provided having a pair of jaws including a staple containing cartridge and an anvil. Buttress material is releasable affixed to the staple containing cartridge and the anvil. One of the jaws includes a pair of longitudinal projections at a first end of the jaw and configured to frictionally engage corresponding slots in a first end the buttress material. One of the jaws includes a post at a second end of the jaw. The buttress material includes a hole in a second end of the buttress material for receipt of the post.




material

Circular stapler and staple line reinforcement material

A surgical stapling instrument includes a staple cartridge assembly having a plurality of rows of staple receiving slots and an anvil assembly having a plurality of rows of staple forming recesses. The staple cartridge assembly, the anvil assembly, or both have one or more attachment members overmolded thereon. A staple line reinforcement material is attached to the attachment members.




material

Methods and apparatus for fixing sheet-like materials to a target tissue

A device for attaching a sheet-like implant to a target tissue. The device includes a fastener push rod including a first portion, a second portion and a force limiting mechanism operably coupled between the first portion and the second portion. A fastener is carried by the second portion of the fastener push rod. The force limiting mechanism transmits longitudinal movement of the first portion to the second portion while the forces applied to the fastener by the fastener push rod are less than a predetermined value such that longitudinal movement of the first portion of the fastener push rod causes substantially equivalent longitudinal movement of the second portion. The force limiting mechanism allows relative longitudinal motion between the first and second portions while the forces applied to the fastener are equal to or greater than the predetermined value such that the application of undue forces to the fastener is prevented.




material

Fiber-reinforced material composed, at least in a surface region, of a metal/ceramic composite, molding composed of the fiber-reinforced material and method of producing the fiber-reinforced material

A method is provided for producing a fiber-reinforced material which is composed, at least in a region of a surface layer, of a ceramic composite and has carbon-containing fibers reaction-bonded to a matrix containing the elements Si and C. In particular a method of producing fiber-reinforced silicon carbide is provided in which a structure of a matrix contains cracks and/or pores, at least at ambient temperature, because of a high thermal expansion coefficient compared with that of the fibers. Metals are selectively electrodeposited in the open pores and cracks of the matrix and, in particular, in a region of the electrically conductive reinforcing fibers. As a result, the open pores and cracks are filled and, in addition, metallic top layers are optionally formed that are firmly keyed to the ceramic composite and that may serve as an interlayer for glass top layers or ceramic top layers. A fiber-reinforced composite material, as well as moldings, in particular brake discs, brake linings or clutch plates, composed of such a composite material, are also provided.




material

Fiber-reinforced ceramic material

Process for a fiber-reinforced ceramic material whose reinforcing fibers are present in the form of at least one of woven fabrics, short fibers and long fibers, wherein the mass ratio of the fibers in the form of woven fabrics, short fibers and long fibers is 0-35:25-80:0-45 and at least a part of the reinforcing fibers has at least one protective layer of carbon produced by pyrolysis of resins or pitches, boron compounds or phosphorus compounds or combinations thereof which have been deposited thereon, a process for producing it and its use as material for brake linings




material

Liquid precursors for formation of materials containing alkali metals

Volatile liquid precursors are provided for use in the formation of alkali metal-containing materials. The compound includes an alkali metal and an amide ligand and is a liquid at a temperature of less than about 70° C.




material

Functionally graded friction material

A functionally graded friction material 18 having improved wear resistance and thermal conductivity with fibers 10 and heat conducting elements 12 disposed in an arrangement that conducts heat away from a first surface 20 to a second surface 22. Preferably, the heat conducting elements 12 are copper, copper alloy, filaments, threads, or wire situated substantially perpendicular to the engaging surface and extending to the non-engaging surface 22.




material

Mixing method for friction material with a pre-mix in a single mixer

An improved method of producing a friction material for use in the production of brake pads. A first mixing step blends binder, fiber, and filler materials together in a mixer to create a pre-mix, with one of the materials doubling as a wetting agent promoting the homogeneity of the mixture. A second non-asbestos material is added to the pre-mix in the same mixer, and the two are mixed together to produce the final friction material.




material

Raw material for forming a strontium-containing thin film and process for preparing the raw material

The present invention provides a raw material for forming a strontium-containing thin film of a cyclopentadienyl-based strontium compound, which is in the liquid state at room temperature to 50° C., can be purified by distillation, present as a monomer, has high vapor pressure, and suitable for mass production, and a process for preparing the same. Sr[C5(CH3)4(C3H7)]2 is prepared by reacting Na[C5(CH3)4(C3H7)]2 or K[C5(CH3)4(C3H7)]2 with SrI2 in THF to produce a THF adduct of Sr[C5(CH3)4(C3H7)]2; evaporating THF and extracting the residue with toluene to give a toluene solution; evaporating toluene and drying the residue under reduced pressure; and heating to 100 to 160° C. in vacuo to dissociate and remove THF and distilling.




material

Method of preparing soybean mixed powder, method of preparing a solidified soybean food, and a method of preparing a packaged raw material for preparing a solidified soybean food

A method of preparing soybean mixed powder comprising a soybean powder having properties wherein formation of agglomerate is small when the powder is added to water and then heated with stirring to dissolve the powder.




material

Hyperbolic metamaterials as distributed bragg mirrors for high power VCSEL devices

Implementing a layered hyperbolic metamaterial in a vertical cavity surface emitting laser (VCSEL) to improve thermal conductivity and thermal dissipation thereby stabilizing optical performance. Improvement in the thermal management and power is expected by replacing the distributed Bragg reflector (DBR) mirrors in the VCSEL. The layered metamaterial structure performs the dual function of the DBR and the heat spreader at the same time.




material

Supply device for a machine for transversely cutting at least one strip of flexible material

A supply device (10) for a machine for transversely cutting two strips (11 and 12) of a flexible material, in particular a strip of paper, moving continuously, to produce separate stacks of documents cut transversely according to predetermined formats. The device comprises lower and upper driving mechanisms (13, 14) associated with the two strips (11, 12) of flexible material respectively, which each include a mechanically rotated first roller (13a, 14a) and a freely rotatable second bearing roller (13b and 14b). The driving mechanism is mounted on a frame (15) supported by a movable platform (16) which is rigidly connected to a linear actuator (17) arranged to be moved transversely with respect to the direction of movement of the strips (11 and 12). Optical reading cells (11a, 11b, 12a, 12b) define the operating modes of the driving servomotors (13b and 14b) and of the linear actuator (17).




material

Automated residual material detection

Methods, systems, and structures for detecting residual material on semiconductor wafers are provided. A method includes scanning a test structure including topographic features on a surface of a semiconductor wafer. The method further includes determining, based on the scanning, that the test structure includes an amount of a residual material of a sacrificial layer that exceeds a predetermined threshold.




material

Materials and methods for preparing protein-polymer conjugates

The invention is directed to a single-step method for rapidly and efficiently preparing protein-polymer conjugates, including an insulin-polymer conjugate. According to the method of the present invention, a protein and hydrophilic polymer are contacted in the presence of at least one organic solvent and at least one metal chelator, under conditions that promote the formation of a conjugate of the protein and polymer. Thus, the invention is directed to the site-specific modification of selected proteins, such as insulin, with poly(ethylene glycol) at residue PheB1. The invention also provides a pharmaceutical formulation for encapsulating the conjugate in a biodegradable polymer.




material

Cu—Ni—Si alloy for electronic material

The distribution of Ni—Si compound grains is controlled to thereby improve the properties of Corson alloys. The copper alloy for electronic materials comprises 0.4 to 6.0% mass of Ni and 0.1 to 1.4% by mass of Si, with the balance being Cu and unavoidable impurities. The copper alloy comprising: small particles of Ni—Si compound having a particle size of equal to or greater than 0.01 μm and smaller than 0.3 μm; andlarge particles of Ni—Si compound having a particle size of equal to of greater than 0.3 μm and smaller than 1.5 μm. The number density of the small particles is 1 to 2000 pieces/μm2 and the number density of the large particles is 0.05 to 2 pieces/μm2.




material

Deposition of integrated protective material into zirconium cladding for nuclear reactors by high-velocity thermal application

A zirconium alloy nuclear reactor cylindrical cladding has an inner Zr substrate surface (10), an outer volume of protective material (22), and an integrated middle volume (20) of zirconium oxide, zirconium and protective material, where the protective material is applied by impaction at a velocity greater than 340 meters/second to provide the integrated middle volume (20) resulting in structural integrity for the cladding.




material

Zirconium alloy material

Disclosed is a zirconium alloy material having high corrosion resistance regardless of thermal history during its manufacturing process. The zirconium alloy material is obtained by providing a zirconium alloy containing on the mass basis: 0.001% to 1.9% of Sn, 0.01% to 0.3% of Fe, 0.01% to 0.3% of Cr, 0.001% to 0.3% of Ni, 0.001% to 3.0% of Nb, 0.027% or less of C, 0.025% or less of N, 4.5% or less of Hf and 0.16% or less of O with the remainder being inevitable impurities and zirconium, being formed of a bulk alloy and a surface layer, in which the surface layer has a plastic strain of 3 or more or a Vickers hardness of 260 HV or more and an arithmetic mean surface roughness Ra of 0.2 μm or less.




material

System, method and apparatus for providing additional radiation shielding to high level radioactive materials

A system, method and apparatus for providing additional radiation shielding to a ventilated cask for holding high level radioactive materials. The invention utilizes a tubular shell that is ancillary to the ventilated cask that circumscribes the ventilated cask to add radiation shielding protection while improving heat removal by natural convective air flow. Because the tubular shell and cask are non-unitary and slidably separable from one another, crane lifting capacity is not affected. In one aspect, the invention is an apparatus for providing additional radiation shielding to a cask holding high level radioactive materials comprising: a tubular shell extending from an open bottom end to an open top end, the tubular shell having an inner surface that forms a cavity about a longitudinal axis; a plurality of primary apertures forming passageways through the tubular shell and circumferentially arranged in a spaced-apart manner about the tubular shell; a plurality of secondary apertures forming passageways through the tubular shell and circumferentially arranged in a spaced-apart manner about the tubular shell; and an annular seal coupled to the tubular shell and extending from the inner surface of the tubular shell; wherein the secondary apertures are located at an axial height above the annular seal and the primary apertures are located at an axial height below the annular seal.




material

Method and system for in situ depositon and regeneration of high efficiency target materials for long life nuclear reaction devices

Aspects of the invention relate to several methods to deposit and regenerate target materials in neutron generators and similar nuclear reaction devices. In situ deposition and regeneration of a target material reduces tube degradation of the nuclear reaction device and covers impurities on the surface of the target material at the target location. Further aspects of the invention include a method of designing a target to generate neutrons at a high efficiency rate and at a selected neutron energy from a neutron energy spectrum.




material

System and method for annealing nuclear fission reactor materials

Illustrative embodiments provide systems, methods, apparatuses, and applications related to annealing nuclear fission reactor materials.




material

Locomotive adhesion enhancing material mixtures

The adhesion between a locomotive drive wheel and supporting rail can be substantially increased by application of a powder mixture that contains a hard particle constituent preferably including alumina, a soft particle constituent preferably including titania, and an iron oxide constituent. The mixture may be in the form of a dry powder, a paste with water or alcohol vehicle, or a metal composite that includes the powder.




material

Spreading device for confined application of grain type materials

A spreading device for confined application of grain type materials along a well-defined path on a road from a conveyor of a storing tank mounted on a moving vehicle includes a chute member mounted thereon that receives the materials from the conveyor and substantially drops them generally vertically under gravity on the road along the path in proximity and in front of a roller. The latter stops the materials relative to the road and confines, or packs, them on the road. The spreading device is adapted to be mounted on either side of the vehicle, in line with its wheels.




material

Apparatus for use in applying granular material to a rail

An apparatus for applying granular material to a rail adjacent to a wheel of a train includes a granular supply material container to which a granular material injection assembly is connected. The granular material injection assembly includes a housing having a mixing chamber. An insert is connected with the housing. A first end portion of the insert has an air inlet through which air flows into the mixing chamber. A second end portion of the insert has an air outlet through which air and granular material flow from the mixing chamber. A valve may be mounted in the air inlet portion of the insert. A venturi may be mounted in the air outlet portion of the insert. A deflector portion of the insert deflects granular material away from a path of flow of air between the air inlet and the air and granular material outlet.




material

Antislip material ejector

An antislip material ejector comprises an antislip material container 12 which stores antislip material, an air inlet pipe 13 which is arranged in the antislip material container, a compressed air supply pipe 14 which supplies compressed air to the air inlet pipe, a nozzle portion 16 which is arranged in the air inlet pipe, a mixing pipe 17, which is connected with the air inlet pipe, in which the antislip materials are mixed with air and in which a suction hole 18 is formed through which the antislip material passes, a connecting pipe, one end of which communicates with the mixing pipe and the other end of which communicates with a cavity in the antislip material container, and an ejection pipe 20 which is connected with the mixing pipe and which ejects the antislip material together with the compressed air.




material

Traction material dispensing apparatus

The traction material dispensing apparatus mounts within the wheel well of a fender of a vehicle and is therefore visually and physically unobtrusive. The apparatus selectively dispenses traction material both in front of and behind a vehicle tire. A driver-accessed switch controls the apparatus dispensing of material. Of importance is that the manifolds, funnels, and nozzles are gravity fed by the vessel so that agitators and pressurized material flow assistance is not needed. Flappers within each manifold are controlled by the driver-actuated switch and control delivery of the traction material to the nozzles. As with the flappers, flow from the nozzles is controlled by a miniature DC (direct current) motor powered by the vehicle's electrical system. Screens ensure breakup of any clumps and therefore proper dispersion of traction material to the roadway.




material

Porous silica material and optical microphone using the same

A porous silica material in which silica particles are connected to one another three-dimensionally, wherein: the porous silica material includes a through hole including first pores smaller than a mean free path of an air, and second pores larger than the first pores; the porous silica material has a density of 100 kg/m3 or more and 300 kg/m3 or less; and an isobutyl group is bound to silicon of silica of the silica particles.




material

Process for the organotemplate-free synthetic production of a zeolitic material using recycled mother liquor

The present invention relates to an organotemplate-free synthetic process for the production of a zeolitic material comprising YO2 and X2O3, wherein said process comprises the steps of (1) preparing a mixture comprising seed crystals, one or more sources for YO2, one or more sources for X2O3, and one or more solvents;(2) crystallizing the mixture obtained in step (1) to obtain a zeolitic material comprising YO2 and X2O3 as a crystallization product; wherein Y is a tetravalent element, and X is a trivalent element, and wherein at least a portion of the mother liquor obtained in step (2) is recycled to step (1) as a source for YO2, optionally after concentration of the mother liquor.




material

Storage material and method for obtaining H-silanes therefrom

A storage material for obtaining H-silanes which is present in the form of a hydrogenated polysilane (HPS), as a pure compound or as a mixture of compounds having on average at least six direct Si—Si bonds, the substituenis of which predominantly consist of hydrogen and in the composition of which the atomic ratio of sabstitueot to silicon is at least 1:1.




material

Production process for composite oxide, positive-electrode active material for lithium-ion secondary battery and lithium-ion secondary battery

A production process for composite oxide expressed by a compositional formula: LiMn1-xAxO2, where “A” is one or more kinds of metallic elements other than Mn; and 0≦“x”




material

Post-treatment method of carbon materials for improving the electrical conductivity and mechanical properties via dehydrocyclization reaction and polymer composite materials comprising the treated carbon materials

Provided are a method for post-treatment of a carbonaceous material using dehydrocyclization, a carbonaceous material post-treated by the method, and a polymer composite material including the carbonaceous material. More particularly, provided are a method for post-treatment of a carbonaceous material using dehydrocyclization, including subjecting the carbonaceous material to dehydrocyclization at room temperature to heal structural defects in the carbonaceous material, while increasing the effective conjugated length of the carbonaceous material to improve the electrical conductivity thereof, as well as a carbonaceous material post-treated by the method and a polymer composite material including the carbonaceous material.




material

Vacuum heat insulating material, heat insulating box using vacuum heat insulating material, refrigerator, refrigerating/air-conditioning apparatus, water heater, equipments, and manufacturing method of vacuum heat insulating material

A highly reliable vacuum heat insulating material having excellent processability, usability and heat insulating performance and a heat insulating box using the vacuum heat insulating material are provided. A vacuum heat insulating material related to the present invention includes: a core material structured by a laminated structure of an organic fiber assembly formed by forming an organic fiber into a sheet shape and cutting an end face with a predetermined length, and having a core material opening portion formed by a through hole or a notch with cutting; a gas-barrier outer cover material containing the core material inside, having a sealing portion for sealing surrounding of the sheet-shaped organic fiber assembly and surrounding of the core material opening portion, and hermetically sealing an inside with almost vacuum status by sealing the sealing portion; and an outer cover material opening portion provided at the outer cover material under a status in which the sealing portion provided at the surrounding of the sheet-shaped organic fiber assembly and the surrounding of the core material opening portion is sealed, being a through hole or a notch which is smaller than the core material opening portion with a sealed amount, and a long fiber being equal to or longer than a length of the sheet is used for the organic fiber.




material

Adhesive closure strip for bulk material product bag

A bulk material product bag has an adhesive closure strip fixedly secured thereon. As a result of the adhesive closure strip being oriented transversely across the normally open end region of the bulk material product bag so as to be adhesively bonded to both the back and front sides of the bulk material product bag, the adhesive closure strip effectively closes and seals the open end region of the bulk material product bag. Handle structure can also be integrally incorporated within the adhesive closure strip.




material

Material for attenuating impact energy

A new and novel impact energy attenuation material, impact energy attenuation module employing the material and a fit system for optimizing the performance thereof is provided. Non-linear energy attenuating material consisting of a plurality of loose particles is employed for impact energy dissipation. The loose particles are preferably spherical elastomeric balls. An impact energy attenuation module includes a container that holds the loose particles. The impact energy attenuation module can be provided in a wide range of sizes and shapes and the loose particles can be provided in different materials, sizes, density, compaction and hardness to suit with the application at hand. A matrix of impact energy attenuation module are provided about the surface of a shell to provide the required impact energy attenuation. The material, impact energy attenuation module and system of the present invention are well suited for protection of body parts and other cushioning and protection needs.




material

Packaging material and method for microwave and steam cooking of food products

A packaging device allowing for the distribution, storage and cooking of various food products, such as perishable or frozen food product(s). The packaging device includes a plurality of micro-perforations that may promote the extended shelf-life of the perishable food product and the maintenance of the quality of the perishable food product or be configured to maintain the integrity of a frozen food product. The packaging device also includes a venting system that allows the cooking of the perishable or frozen food products within the packaging device.




material

Multi-material decomposition using dual energy computed tomography

A method for obtaining multi-material decomposition images of an object is presented. The method includes acquiring an image pair from a dual energy computed tomography scan of the imaged object. The method then includes selecting a material basis for multi-material decomposition of the image pair. The method further includes applying a physicochemical model for the material basis. Also, the method includes performing multi-material decomposition using at least one constraint imposed by the physicochemical model.




material

Printing material transfer device




material

Material templates for automatic assignment of materials to a 3D CAD model

The present invention relates to a system, method, and apparatus that include a novel way of automatically assigning materials to 3D CAD models. A predefined material template specifies that a particular part or material name is assigned to a particular material such that all instances of the particular part name are assigned or modified automatically by the material template. By having a consistent naming convention for the parts in the CAD file, this material assignment can be performed automatically when the CAD file is imported or viewed.




material

Artificial microstructure and artificial electromagnetic material using the same

The present invention provides an artificial microstructure employed in an artificial electromagnetic material. The artificial microstructure includes a first segment, a second segment, and a third segment. The first segment is parallel to the second segment, and the third segment is connected between the first segment and the second segment. The artificial electromagnetic material has a special electromagnetic effect. The artificial electromagnetic material can be applied to various electromagnetic application systems instead of the typical electromagnetic material.




material

X weave of composite material and method of weaving thereof

An X weave of composite material has multiple latitudinal fibers, multiple longitudinal fibers, and a woven center. Each longitudinal fiber is layered on two of the latitudinal fibers and then is woven through and layered under two of the latitudinal fibers. The longitudinal fibers are each woven by shifting in relative alignment position from one of the latitudinal fibers sequentially and woven radially with respect to the woven center, such that the longitudinal fibers form an X woven structure. Therefore, the intensity of the X weave can be enhanced by the X woven structure.