act

Punjab DGP asks police field officers to be more proactive




act

Punjab Police expose Pak links in powerful nexus of narcotics smuggling, hawala transaction




act

Punjab to renegotiate power purchase pacts




act

Sirsa demands action against Punjab DGP for Kartarpur remark




act

Cabinet approves Punjab Slum Dwellers (Proprietary Rights) Act, 2020




act

Punjab Cabinet amends FRBM Act for Rs 928 crore additional borrowing




act

Action will be taken against culprits of Bargari sacrilege case, says Punjab CM




act

Punjab allows distilleries to manufacture hand sanitizers




act

'Centre's steps to counter coronavirus impacts inadequate'




act

Punjab: Dead coronavirus patient's contact trail touches 22




act

Chandigarh administration to initiate action against those spreading rumours about COVID-19 patient




act

COVID-19 : Punjab distilleries begins manufacturing sanitisers




act

36 active COVID-19 cases in Punjab




act

Punjab CM warns of strict action for hiding travel history




act

Punjab village panchayats actively working to contain spread of coronavirus: Minister




act

Bhagwat Mann, Sirsa condemn attack on Punjab cops, demand strict action




act

Punjab, OLA in pact to issue e-passes to 17 lakh farmers




act

Punjab to allow limited industrial activity from Monday




act

No industrial activity in containment zones: Punjab CM




act

23 of 26 samples taken of contacts of last positive case from Punjab's Nayagaon test negative




act

No short-term adverse impact of Mw on COVID-19 patients, says PGIMER




act

Fire breaks out in cardboard factory in outer Delhi’s Bawana

A fire broke out in a cardboard factory in outer Delhi’s Bawana on Sunday morning, Delhi Fire Service officials said. However, no one is trapped or in




act

Tamil Nadu forms high level committee to assess Covid-19 impact on economy

The committee shall submit its final reports to the government within three months time and also submit an interim report




act

The competition between dehydrogenation and dehydration reactions for primary and secondary alcohols over gallia: unravelling the effects of molecular and electronic structure via a two-pronged theoretical/experimental approach

Catal. Sci. Technol., 2020, Advance Article
DOI: 10.1039/C9CY02603G, Paper
Lorella Izzo, Tommaso Tabanelli, Fabrizio Cavani, Paola Blair Vàsquez, Carlo Lucarelli, Massimo Mella
The relative dehydrogenation/dehydration reactivity imparted by nanostructured gallium(III) oxide on alcohols was investigated via electronic structure calculations, reactivity tests and DRIFT-IR spectroscopy.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




act

Covid19: TN eases lockdown restrictions even as 526 more active cases reported in last 24 hours

Another 279 patients in Chennai, taking the tally to 3,330




act

'I'm a fearless actor now'

'Having lived through cancer, through so many ups and downs, I'm not particularly attached to attention or success -- it's lovely if it's there, it's fine if it's not.'




act

Super Moms! After Sushmita Sen's Miss India episode, Debina Bonnerjee's mom turns TV actor to Kajol from 'Baazigar'

Sushmita Sen won Miss India with a dress selected by a mother, and similarly, Debina played an important role resembling Kajol from Baazigar thanks to her mom




act

A versatile nanoreactor for complementary in situ X-ray and electron microscopy studies in catalysis and materials science

Two in situ `nanoreactors' for high-resolution imaging of catalysts have been designed and applied at the hard X-ray nanoprobe endstation at beamline P06 of the PETRA III synchrotron radiation source. The reactors house samples supported on commercial MEMS chips, and were applied for complementary hard X-ray ptychography (23 nm spatial resolution) and transmission electron microscopy, with additional X-ray fluorescence measurements. The reactors allow pressures of 100 kPa and temperatures of up to 1573 K, offering a wide range of conditions relevant for catalysis. Ptychographic tomography was demonstrated at limited tilting angles of at least ±35° within the reactors and ±65° on the naked sample holders. Two case studies were selected to demonstrate the functionality of the reactors: (i) annealing of hierarchical nanoporous gold up to 923 K under inert He environment and (ii) acquisition of a ptychographic projection series at ±35° of a hierarchically structured macroporous zeolite sample under ambient conditions. The reactors are shown to be a flexible and modular platform for in situ studies in catalysis and materials science which may be adapted for a range of sample and experiment types, opening new characterization pathways in correlative multimodal in situ analysis of functional materials at work. The cells will presently be made available for all interested users of beamline P06 at PETRA III.




act

Fast identification of mineral inclusions in diamond at GSECARS using synchrotron X-ray microtomography, radiography and diffraction

Mineral inclusions in natural diamond are widely studied for the insight that they provide into the geochemistry and dynamics of the Earth's interior. A major challenge in achieving thorough yet high rates of analysis of mineral inclusions in diamond derives from the micrometre-scale of most inclusions, often requiring synchrotron radiation sources for diffraction. Centering microinclusions for diffraction with a highly focused synchrotron beam cannot be achieved optically because of the very high index of refraction of diamond. A fast, high-throughput method for identification of micromineral inclusions in diamond has been developed at the GeoSoilEnviro Center for Advanced Radiation Sources (GSECARS), Advanced Photon Source, Argonne National Laboratory, USA. Diamonds and their inclusions are imaged using synchrotron 3D computed X-ray microtomography on beamline 13-BM-D of GSECARS. The location of every inclusion is then pinpointed onto the coordinate system of the six-circle goniometer of the single-crystal diffractometer on beamline 13-BM-C. Because the bending magnet branch 13-BM is divided and delivered into 13-BM-C and 13-BM-D stations simultaneously, numerous diamonds can be examined during coordinated runs. The fast, high-throughput capability of the methodology is demonstrated by collecting 3D diffraction data on 53 diamond inclusions from Juína, Brazil, within a total of about 72 h of beam time.




act

Microfluidic electrochemical cell for in situ structural characterization of amorphous thin-film catalysts using high-energy X-ray scattering

Porous, high-surface-area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device-relevant functional electrochemical conditions using high-energy X-ray (>50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass-capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm–50 nm crystalline indium tin oxide or a 100 nm–150 nm-thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two-dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high-resolution signal collection from interfacial thin-film catalysts. For example, PDF measurements were readily obtained with 0.2 Å spatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm-diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure–function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre-scale surface-supported molecular catalysts. In addition, a compact 3D-printed electrochemical cell in a three-electrode configuration is described which is designed to allow for simultaneous X-ray transmission and electrolyte flow through the porous working electrode.




act

X-ray reflecto-interferometer based on compound refractive lenses

An X-ray amplitude-splitting interferometer based on compound refractive lenses, which operates in the reflection mode, is proposed and realized. The idea of a reflecto-interferometer is to use a very simplified experimental setup where a focused X-ray beam reflected from parallel flat surfaces creates an interference pattern in a wide angular range. The functional capabilities of the interferometer were experimentally tested at the European Synchrotron Radiation Facility (ESRF) ID06 beamline in the X-ray energy range from 10 keV to 15 keV. The main features of the proposed approach, high spatial and temporal resolution, were demonstrated experimentally. The reflections from free-standing Si3N4 membranes, gold and resist layers were studied. Experimentally recorded interferograms are in good agreement with our simulations. The main advantages and future possible applications of the reflecto-interferometer are discussed.




act

Microsecond time-resolved X-ray diffraction for the investigation of fatigue behavior during ultrasonic fatigue loading

A new method based on time-resolved X-ray diffraction is proposed in order to measure the elastic strain and stress during ultrasonic fatigue loading experiments. Pure Cu was chosen as an example material for the experiments using a 20 kHz ultrasonic fatigue machine mounted on the six-circle diffractometer available at the DiffAbs beamline on the SOLEIL synchrotron facility in France. A two-dimensional hybrid pixel X-ray detector (XPAD3.2) was triggered by the strain gage signal in a synchronous data acquisition scheme (pump–probe-like). The method enables studying loading cycles with a period of 50 µs, achieving a temporal resolution of 1 µs. This allows a precise reconstruction of the diffraction patterns during the loading cycles. From the diffraction patterns, the position of the peaks, their shifts and their respective broadening can be deduced. The diffraction peak shift allows the elastic lattice strain to be estimated with a resolution of ∼10−5. Stress is calculated by the self-consistent scale-transition model through which the elastic response of the material is estimated. The amplitudes of the cyclic stresses range from 40 to 120 MPa and vary linearly with respect to the displacement applied by the ultrasonic machine. Moreover, the experimental results highlight an increase of the diffraction peak broadening with the number of applied cycles.




act

Characterization of the soft X-ray spectrometer PEAXIS at BESSY II

The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200–1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 1012 photons s−1 within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of ∼400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106° within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to ∼100 meV at 1000 eV incident photon energy are discussed.




act

A semi-analytical approach for the characterization of ordered 3D nanostructures using grazing-incidence X-ray fluorescence

Following the recent demonstration of grazing-incidence X-ray fluorescence (GIXRF)-based characterization of the 3D atomic distribution of different elements and dimensional parameters of periodic nanoscale structures, this work presents a new computational scheme for the simulation of the angular-dependent fluorescence intensities from such periodic 2D and 3D nanoscale structures. The computational scheme is based on the dynamical diffraction theory in many-beam approximation, which allows a semi-analytical solution to the Sherman equation to be derived in a linear-algebraic form. The computational scheme has been used to analyze recently published GIXRF data measured on 2D Si3N4 lamellar gratings, as well as on periodically structured 3D Cr nanopillars. Both the dimensional and structural parameters of these nanostructures have been reconstructed by fitting numerical simulations to the experimental GIXRF data. Obtained results show good agreement with nominal parameters used in the manufacturing of the structures, as well as with reconstructed parameters based on the previously published finite-element-method simulations, in the case of the Si3N4 grating.




act

X-ray free-electron laser wavefront sensing using the fractional Talbot effect

Wavefront sensing at X-ray free-electron lasers is important for quantitatively understanding the fundamental properties of the laser, for aligning X-ray instruments and for conducting scientific experimental analysis. A fractional Talbot wavefront sensor has been developed. This wavefront sensor enables measurements over a wide range of energies, as is common on X-ray instruments, with simplified mechanical requirements and is compatible with the high average power pulses expected in upcoming X-ray free-electron laser upgrades. Single-shot measurements were performed at 500 eV, 1000 eV and 1500 eV at the Linac Coherent Light Source. These measurements were applied to study both mirror alignment and the effects of undulator tapering schemes on source properties. The beamline focal plane position was tracked to an uncertainty of 0.12 mm, and the source location for various undulator tapering schemes to an uncertainty of 1 m, demonstrating excellent sensitivity. These findings pave the way to use the fractional Talbot wavefront sensor as a routine, robust and sensitive tool at X-ray free-electron lasers as well as other high-brightness X-ray sources.




act

Location of Cu2+ in CHA zeolite investigated by X-ray diffraction using the Rietveld/maximum entropy method

Rietveld/MEM analysis applied to synchrotron powder X-ray diffraction data of dehydrated CHA zeolites with catalytically active Cu2+ reveals Cu2+ in both the six- and eight-membered rings in the CHA framework, providing the first complete structural model that accounts for all Cu2+. Density functional theory calculations are used to corroborate the experimental structure and to discuss the Cu2+ coordination in terms of the Al distribution in the framework.




act

Nanocrystalline materials: recent advances in crystallographic characterization techniques

This feature article reviews the control and understanding of nanoparticle shape from their crystallography and growth. Particular emphasis is placed on systems relevant for plasmonics and catalysis.




act

The first X-ray diffraction measurements on Mars

The X-ray diffraction/X-ray fluorescence instrument CheMin on the Curiosity rover is a shoebox-sized device using transmission geometry and an energy-discriminating CCD detector. The instrument has returned the first X-ray diffraction data for soil and drilled samples from Mars outcrops, revealing a suite of primary basaltic minerals, amorphous components and varied hydrous alteration products including phyllosilicates.




act

Capability of X-ray diffraction for the study of microstructure of metastable thin films

PLEASE REDUCE TO 1-2 SENTENCES. The capability of X-ray diffraction for the microstructure investigations of metastable systems is illustrated on the example of thin films of titanium aluminium nitrides with high aluminium content, which are supersaturated and partially decomposed. In addition to the chemical composition, the surface mobility of the deposited species was employed as a factor influencing the microstructure of the thin films. It is shown how the micromechanical properties of the partially decomposed (Ti,Al)N thin films, which were deduced from the synchrotron diffraction experiments, are related to the thin film microstructure and to the decomposition mechanism. The prominent role of the crystallographic anisotropy of the macroscopic and microscopic lattice deformations in the understanding of the micromechanical properties is addressed.




act

Precession electron diffraction – a topical review

This topical review highlights progress made recently in the development and application of precession electron diffraction (PED) and its scanning variant for the determination of unknown crystal structures and the mapping of orientations at the nanoscale.











act

Crystal structure of gluconate 5-dehydrogenase from Lentibacter algarum

Gluconate 5-dehydrogenase (Ga5DH; EC 1.1.1.69) from Lentibacter algarum (LaGa5DH) was recombinantly expressed in Escherichia coli and purified to homogeneity. The protein was crystallized and the crystal structure was solved at 2.1 Å resolution. The crystal belonged to the monoclinic system, with space group P1 and unit-cell parameters a = 55.42, b = 55.48, c = 79.16 Å, α = 100.51, β = 105.66, γ = 97.99°. The structure revealed LaGaDH to be a tetramer, with each subunit consisting of six α-helices and three antiparallel β-hairpins. LaGa5DH has high structural similarity to other Ga5DH proteins, demonstrating that this enzyme is highly conserved.




act

Characterization of the Pseudomonas aeruginosa T6SS PldB immunity proteins PA5086, PA5087 and PA5088 explains a novel stockpiling mechanism

The bacterial type VI secretion system (T6SS) secretes many toxic effectors to gain advantage in interbacterial competition and for eukaryotic host infection. The cognate immunity proteins of these effectors protect bacteria from their own effectors. PldB is a T6SS trans-kingdom effector in Pseudomonas aeruginosa that can infect both prokaryotic and eukaryotic cells. Three proteins, PA5086, PA5087 and PA5088, are employed to suppress the toxicity of PldB-family proteins. The structures of PA5087 and PA5088 have previously been reported, but the identification of further distinctions between these immunity proteins is needed. Here, the crystal structure of PA5086 is reported at 1.90 Å resolution. A structural comparison of the three PldB immunity proteins showed vast divergences in their electrostatic potential surfaces. This interesting phenomenon provides an explanation of the stockpiling mechanism of T6SS immunity proteins.