ma Strategic geotechnical asset management By qjegh.lyellcollection.org Published On :: 2020-05-01T00:46:18-07:00 Strategic geotechnical asset management considers the whole of an organization's earthworks portfolio and is concerned with setting an overall earthworks asset management policy with long-term objectives related to asset performance, safety and condition, and identifying how those objectives can best be met, now and into the future. A risk-based approach is adopted that requires an understanding of the likelihood that any of the earthworks may fail, combined with a knowledge of the consequences should they fail. Procedures are required to identify those earthworks that are most vulnerable to failure under the influence of triggering events, such as extreme weather. The risks are managed through a mix of interventions to reduce the likelihood of failure and mitigations to reduce the impact of failure. Many of the challenges of implementing a strategic earthworks policy have, or are, being met by the main UK transportation infrastructure organizations. Thematic collection: This article is part of the Ground-related risk to transportation infrastructure collection available at https://www.lyellcollection.org/cc/Ground-related-risk-to-transportation-infrastructure Full Article
ma The origin and pedogenesis of the Clay-with-flints Formation By qjegh.lyellcollection.org Published On :: 2020-05-01T00:46:18-07:00 The Clay-with-flints Formation outcrops on the high chalk plateaux and interfluves of the chalk downs in southern England. Both current and historical definitions of the Clay-with-flints are detailed and important distinctions are identified with other deposits that appear identical but are formed in different ways. Historically pedological or geomorphological studies have been carried out on the deposit. Engineering studies are only carried out where the deposit is crossed by infrastructure. The physical and chemical processes acting on the deposit and the resulting effects on the physical properties are discussed. Full Article
ma Decision tree as a tool for the management of coastal aquifers of limited saturated thickness By qjegh.lyellcollection.org Published On :: 2020-05-01T00:46:18-07:00 In this paper, a decision tree is presented, constructed on the basis of hydrogeological characteristics (water table depth, freshwater thickness, surface area required and distance between wells), to choose the optimal groundwater extraction method in the case of a coastal unconfined aquifer. A comparison is made of the groundwater extraction methods in a freshwater aquifer of limited thickness occurring in coastal dunes in the eastern region of the Province of Buenos Aires (Argentina). The negative effects brought about by the wrong use of the groundwater extraction methods are analysed, because, as a result of excessive extraction, such methods lead to the dramatic decrease of the freshwater reserves. The decision tree is a useful tool to assist decision-makers as it suggests the most suitable groundwater extraction method options (vertical wells or wellpoints), as well as identifying areas that are unsuitable for sustainable groundwater extraction. Full Article
ma Groundwater recharge susceptibility mapping using logistic regression model and bivariate statistical analysis By qjegh.lyellcollection.org Published On :: 2020-05-01T00:46:18-07:00 A logistic regression model and a bivariate statistical analysis were used in this paper to evaluate the groundwater recharge susceptibility. The approach is based on the assessment of the relationship involving groundwater recharge and parameters that influence this hydrological process. Surface parameters and aquifer-related parameters were evaluated as thematic map layers using ArcGIS. Then, a weighted-rating method was adopted to categorize each parameter's map. To assess the role of each parameter in the aquifer recharge, a logistic regression model and a bivariate statistical analysis were applied to the Guenniche phreatic aquifer (Tunisia). Models are explored to establish a map showing the aquifer recharge susceptibility. The code Modflow was used to simulate the consequence of the recharge. The recharge amount was introduced in the model and was tested to verify the recharge effect on the hydraulic head for the two models. The obtained results reveal that the recharge as mapped in the bivariate statistical model has a minor impact on the hydraulic head. Results of the logistic regression model are more significant as the hydraulic head is widely affected. This model provides good results in mapping the spatial distribution of the aquifer recharge susceptibility. Full Article
ma Nanopore Sequencing Reveals Novel Targets for Detection and Surveillance of Human and Avian Influenza A Viruses [Virology] By jcm.asm.org Published On :: 2020-04-23T08:00:29-07:00 Accurate detection of influenza A virus (IAV) is crucial for patient management, infection control, and epidemiological surveillance. The World Health Organization and the Centers for Disease Control and Prevention have recommended using the M gene as the diagnostic gene target for reverse-transcription-PCR (RT-PCR). However, M gene RT-PCR has reduced sensitivity for recent IAV due to novel gene mutations. Here, we sought to identify novel diagnostic targets for the molecular detection of IAV using long-read third-generation sequencing. Direct nanopore sequencing from 18 nasopharyngeal specimens and one saliva specimen showed that the 5' and 3' ends of the PB2 gene and the entire NS gene were highly abundant. Primers selected for PB2 and NS genes were well matched with seasonal or avian IAV gene sequences. Our novel PB2 and NS gene real-time RT-PCR assays showed limits of detection similar to or lower than that of M gene RT-PCR and achieved 100% sensitivity and specificity in the detection of A(H1N1), A(H3N2), and A(H7N9) in nasopharyngeal and saliva specimens. For 10 patients with IAV detected by M gene RT-PCR conversion in sequentially collected specimens, NS and/or PB2 gene RT-PCR was positive in 2 (20%) of the initial specimens that were missed by M gene RT-PCR. In conclusion, we have shown that PB2 or NS gene RT-PCRs are suitable alternatives to the recommended M gene RT-PCR for diagnosis of IAV. Long-read nanopore sequencing facilitates the identification of novel diagnostic targets. Full Article
ma Photo Quiz: A 55-Year-Old-Man with Rectal Bleeding and a Rectal Mass [Photo Quiz] By jcm.asm.org Published On :: 2020-04-23T08:00:29-07:00 Full Article
ma Genomic Investigation Reveals Contaminated Detergent as the Source of an Extended-Spectrum-{beta}-Lactamase-Producing Klebsiella michiganensis Outbreak in a Neonatal Unit [Bacteriology] By jcm.asm.org Published On :: 2020-04-23T08:00:29-07:00 Klebsiella species are problematic pathogens in neonatal units and may cause outbreaks, for which the sources of transmission may be challenging to elucidate. We describe the use of whole-genome sequencing (WGS) to investigate environmental sources of transmission during an outbreak of extended-spectrum-β-lactamase (ESBL)-producing Klebsiella michiganensis colonizing neonates. Ceftriaxone-resistant Klebsiella spp. isolated from neonates (or their mothers) and the hospital environment were included. Short-read sequencing (Illumina) and long-read sequencing (MinION; Oxford Nanopore Technologies) were used to confirm species taxonomy, to identify antimicrobial resistance genes, and to determine phylogenetic relationships using single-nucleotide polymorphism profiling. A total of 21 organisms (10 patient-derived isolates and 11 environmental isolates) were sequenced. Standard laboratory methods identified the outbreak strain as an ESBL-producing Klebsiella oxytoca, but taxonomic assignment from WGS data suggested closer identity to Klebsiella michiganensis. Strains isolated from multiple detergent-dispensing bottles were either identical or closely related by single-nucleotide polymorphism comparison. Detergent bottles contaminated by K. michiganensis had been used for washing milk expression equipment. No new cases were identified once the detergent bottles were removed. Environmental reservoirs may be an important source in outbreaks of multidrug-resistant organisms. WGS, in conjunction with traditional epidemiological investigation, can be instrumental in revealing routes of transmission and guiding infection control responses. Full Article
ma Pooling Pharyngeal, Anorectal, and Urogenital Samples for Screening Asymptomatic Men Who Have Sex with Men for Chlamydia trachomatis and Neisseria gonorrhoeae [Bacteriology] By jcm.asm.org Published On :: 2020-04-23T08:00:29-07:00 Screening for Chlamydia trachomatis and Neisseria gonorrhoeae at the pharyngeal, urogenital, and anorectal sites is recommended for men who have sex with men (MSM). Combining the three individual-site samples into a single pooled sample could result in significant cost savings, provided there is no significant sensitivity reduction. The aim of this study was to examine the sensitivity of pooled samples for detecting chlamydia and gonorrhea in asymptomatic MSM using a nucleic acid amplification test. Asymptomatic MSM who tested positive for chlamydia or gonorrhoea were invited to participate. Paired samples were obtained from participants prior to administration of treatment. To form the pooled sample, the anorectal swab was agitated in the urine specimen transport tube and then discarded. The pharyngeal swab and 2 ml of urine sample were then added to the tube. The difference in sensitivity between testing of pooled samples and individual-site testing was calculated against an expanded gold standard, where an individual is considered positive if either pooled-sample or individual-site testing returns a positive result. All samples were tested using the Aptima Combo 2 assay. A total of 162 MSM were enrolled in the study. Sensitivities of pooled-sample testing were 86% (94/109; 95% confidence interval [CI], 79 to 92%]) for chlamydia and 91% (73/80; 95% CI, 83 to 96%) for gonorrhea. The sensitivity reduction was significant for chlamydia (P = 0.02) but not for gonorrhea (P = 0.34). Pooling caused 22 infections (15 chlamydia and 7 gonorrhoea) to be missed, and the majority were single-site infections (19/22). Pooling urogenital and extragenital samples from asymptomatic MSM reduced the sensitivity of detection by approximately 10% for chlamydia but not for gonorrhea. Full Article
ma Recombinase Polymerase Amplification and Lateral Flow Assay for Ultrasensitive Detection of Low-Density Plasmodium falciparum Infection from Controlled Human Malaria Infection Studies and Naturally Acquired Infections [Parasitology] By jcm.asm.org Published On :: 2020-04-23T08:00:29-07:00 Microscopy and rapid diagnostic tests (RDTs) are the main diagnostic tools for malaria but fail to detect low-density parasitemias that are important for maintaining malaria transmission. To complement existing diagnostic methods, an isothermal reverse transcription-recombinase polymerase amplification and lateral flow assay (RT-RPA) was developed. We compared the performance with that of ultrasensitive reverse transcription-quantitative PCR (uRT-qPCR) using nucleic acid extracts from blood samples (n = 114) obtained after standardized controlled human malaria infection (CHMI) with Plasmodium falciparum sporozoites. As a preliminary investigation, we also sampled asymptomatic individuals (n = 28) in an area of malaria endemicity (Lambaréné, Gabon) to validate RT-RPA and assess its performance with unprocessed blood samples (dbRT-RPA). In 114 samples analyzed from CHMI trials, the positive percent agreement to uRT-qPCR was 90% (95% confidence interval [CI], 80 to 96). The negative percent agreement was 100% (95% CI, 92 to 100). The lower limit of detection was 64 parasites/ml. In Gabon, RT-RPA was 100% accurate with asymptomatic volunteers (n = 28), while simplified dbRT-RPA showed 89% accuracy. In a subgroup analysis, RT-RPA detected 9/10 RT-qPCR-positive samples, while loop-mediated isothermal amplification (LAMP) detected 2/10. RT-RPA is a reliable diagnostic test for asymptomatic low-density infections. It is particularly useful in settings where uRT-qPCR is difficult to implement. Full Article
ma A Fully Automated Multiplex Assay for Diagnosis of Lyme Disease with High Specificity and Improved Early Sensitivity [Immunoassays] By jcm.asm.org Published On :: 2020-04-23T08:00:29-07:00 Lyme borreliosis is a tick-borne disease caused by the Borrelia burgdorferi sensu lato complex. Bio-Rad Laboratories has developed a fully automated multiplex bead-based assay for the detection of IgM and IgG antibodies to B. burgdorferi. The BioPlex 2200 Lyme Total assay exhibits an improved rate of seropositivity in patients with early Lyme infection. Asymptomatic subjects from endemic and nonendemic origins demonstrated a seroreactivity rate of approximately 4% that was similar to other commercial assays evaluated in this study. Coupled to this result was the observation that the Lyme Total assay retained a high first-tier specificity of 96% while demonstrating a relatively high sensitivity of 91% among a well-characterized CDC Premarketing Lyme serum panel. The Lyme Total assay also performs well under a modified two-tier algorithm (sensitivity, 84.4 to 88.9%; specificity, 98.4 to 99.5%). Furthermore, the new assay is able to readily detect early Lyme infection in patient samples from outside North America. Full Article
ma Development of a Sensitive and Rapid Recombinase Polymerase Amplification Assay for Detection of Anaplasma phagocytophilum [Chlamydiology and Rickettsiology] By jcm.asm.org Published On :: 2020-04-23T08:00:29-07:00 Human granulocytic anaplasmosis (HGA) is a tick-borne disease caused by the obligate intracellular Gram-negative bacterium Anaplasma phagocytophilum. The disease often presents with nonspecific symptoms with negative serology during the acute phase. Direct pathogen detection is the best approach for early confirmatory diagnosis. Over the years, PCR-based molecular detection methods have been developed, but optimal sensitivity is not achieved by conventional PCR while real-time PCR requires expensive and sophisticated instruments. To improve the sensitivity and also develop an assay that can be used in resource-limited areas, an isothermal DNA amplification assay based on recombinase polymerase amplification (RPA) was developed. To do this, we identified a 171-bp DNA sequence within multiple paralogous copies of msp2 within the genome of A. phagocytophilum. Our novel RPA assay targeting this sequence has an analytical limit of detection of one genome equivalent copy of A. phagocytophilum and can reliably detect 125 bacteria/ml in human blood. A high level of specificity was demonstrated by the absence of nonspecific amplification using genomic DNA from human or DNA from other closely-related pathogenic bacteria, such as Anaplasma platys, Ehrlichia chaffeensis, Orientia tsutsugamushi, and Rickettsia rickettsii, etc. When applied to patient DNA extracted from whole blood, this new RPA assay was able to detect 100% of previously diagnosed A. phagocytophilum cases. The sensitivity and rapidness of this assay represents a major improvement for early diagnosis of A. phagocytophilum in human patients and suggest a role for better surveillance in its reservoirs or vectors, especially in remote regions where resources are limited. Full Article
ma Multicenter Evaluation of the BD Phoenix CPO Detect Test for Detection and Classification of Carbapenemase-Producing Organisms in Clinical Isolates [Bacteriology] By jcm.asm.org Published On :: 2020-04-23T08:00:28-07:00 Limited treatment options contribute to high morbidity/mortality rates with carbapenem-resistant, Gram-negative bacterial infections. New approaches for carbapenemase-producing organism (CPO) detection may help inform clinician decision-making on patient treatment and infection control. BD Phoenix CPO detect (CPO detect) detects and classifies carbapenemases in Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa during susceptibility testing. The clinical performance of CPO detect is reported here. Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa isolates were evaluated across three sites using CPO detect and a composite reference method (RM); the latter was comprised of the modified carbapenem inactivation method and a MIC screen for ertapenem, imipenem, and meropenem. Multiplex PCR testing was also utilized for Ambler class determination. Positive and negative percentages of agreement (PPA and NPA, respectively) between CPO detect and the RM were determined. The PPA and NPA for Enterobacterales were 98.5% (confidence intervals, 96.6%, 99.4%) and 97.2% (95.8%, 98.2%), respectively. The A. baumannii PPA and NPA, respectively, were 97.1% (90.2%, 99.2%) and 97.1% (89.9%, 99.2%). The P. aeruginosa PPA and NPA, respectively, were 95.9% (88.6%, 98.6%) and 92.3% (86.7%, 95.6%). The PPA values for carbapenemase class designations for all organisms combined and Enterobacterales alone, respectively, were 95.3% (90.2%, 97.8%) and 94.6% (88.8%, 97.5%) for class A, 94.0% (88.7%, 96.6%) and 96.4% (90.0%, 98.8%) for class B, and 95.0% (90.1%, 97.6%) and 99.0% (94.4%, 99.8%) for class D carbapenemases. NPA values for all organisms and Enterobacterales alone ranged from 98.5% to 100%. CPO detect provided accurate detection and classification of CPOs for the majority of isolates of Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa tested. Full Article
ma Evaluation of ID Fungi Plates Medium for Identification of Molds by MALDI Biotyper [Mycology] By jcm.asm.org Published On :: 2020-04-23T08:00:28-07:00 MALDI-TOF mass spectrometry (MS) identification of pathogenic filamentous fungi is often impaired by difficulties in harvesting hyphae embedded in the medium and long extraction protocols. The ID Fungi Plate (IDFP) is a novel culture method developed to address such difficulties and improve the identification of filamentous fungi by MALDI-TOF MS. We cultured 64 strains and 11 clinical samples on IDFP, Sabouraud agar-chloramphenicol (SAB), and ChromID Candida agar (CAN2). We then compared the three media for growth, ease of harvest, amount of material picked, and MALDI-TOF identification scores after either rapid direct transfer (DT) or a long ethanol-acetonitrile (EA) extraction protocol. Antifungal susceptibility testing and microscopic morphology after subculture on SAB and IDFP were also compared for ten molds. Growth rates and morphological aspects were similar for the three media. With IDFP, harvesting of fungal material for the extraction procedure was rapid and easy in 92.4% of cases, whereas it was tedious on SAB or CAN2 in 65.2% and 80.3% of cases, respectively. The proportion of scores above 1.7 (defined as acceptable identification) were comparable for both extraction protocols using IDFP (P = 0.256). Moreover, rates of acceptable identification after DT performed on IDFP (93.9%) were significantly higher than those obtained after EA extraction with SAB (69.7%) or CAN2 (71.2%) (P = <0.001 and P = 0.001, respectively). Morphological aspects and antifungal susceptibility testing were similar between IDFP and SAB. IDFP is a culture plate that facilitates and improves the identification of filamentous fungi, allowing accurate routine identification of molds with MALDI-TOF-MS using a rapid-extraction protocol. Full Article
ma Pharmacy-Based Infectious Disease Management Programs Incorporating CLIA-Waived Point-of-Care Tests [Minireviews] By jcm.asm.org Published On :: 2020-04-23T08:00:28-07:00 There are roughly 48,000 deaths caused by influenza annually and an estimated 200,000 people who have undiagnosed human immunodeficiency virus (HIV). These are examples of acute and chronic illnesses that can be identified by employing a CLIA-waived test. Pharmacies across the country have been incorporating CLIA-waived point-of-care tests (POCT) into disease screening and management programs offered in the pharmacy. The rationale behind these programs is discussed. Additionally, a summary of clinical data for some of these programs in the infectious disease arena is provided. Finally, we discuss the future potential for CLIA-waived POCT-based programs in community pharmacies. Full Article
ma Targeting Asymptomatic Bacteriuria in Antimicrobial Stewardship: the Role of the Microbiology Laboratory [Minireviews] By jcm.asm.org Published On :: 2020-04-23T08:00:28-07:00 This minireview focuses on the microbiologic evaluation of patients with asymptomatic bacteriuria, as well as indications for antibiotic treatment. Asymptomatic bacteriuria is defined as two consecutive voided specimens (preferably within 2 weeks) with the same bacterial species, isolated in quantitative counts of ≥105 CFU/ml in women, including pregnant women; a single voided urine specimen with one bacterial species isolated in a quantitative count ≥105 CFU/ml in men; and a single catheterized urine specimen with one or more bacterial species isolated in a quantitative count of ≥105 CFU/ml in either women or men (or ≥102 CFU/ml of a single bacterial species from a single catheterized urine specimen). Any urine specimen with ≥104 CFU/ml group B Streptococcus is significant for asymptomatic bacteriuria in a pregnant woman. Asymptomatic bacteriuria occurs, irrespective of pyuria, in the absence of signs or symptoms of a urinary tract infection. The two groups with the best evidence of adverse outcomes in the setting of untreated asymptomatic bacteriuria include pregnant women and patients who undergo urologic procedures with risk of mucosal injury. Screening and treatment of asymptomatic bacteriuria is not recommended in the following patient populations: pediatric patients, healthy nonpregnant women, older patients in the inpatient or outpatient setting, diabetic patients, patients with an indwelling urethral catheter, patients with impaired voiding following spinal cord injury, patients undergoing nonurologic surgeries, and nonrenal solid-organ transplant recipients. Renal transplant recipients beyond 1 month posttransplant should not undergo screening and treatment for asymptomatic bacteriuria. There is insufficient evidence to recommend for or against screening of renal transplant recipients within 1 month, patients with high-risk neutropenia, or patients with indwelling catheters at the time of catheter removal. Unwarranted antibiotics place patients at increased risk of adverse effects (including Clostridioides difficile diarrhea) and contribute to antibiotic resistance. Methods to reduce unnecessary screening for and treatment of asymptomatic bacteriuria aid in antibiotic stewardship. Full Article
ma Pathogen or Bystander: Clinical Significance of Detecting Human Herpesvirus 6 in Pediatric Cerebrospinal Fluid [Virology] By jcm.asm.org Published On :: 2020-04-23T08:00:28-07:00 Human herpesvirus 6 (HHV-6) is an important cause of meningitis and meningoencephalitis. As testing for HHV-6 in cerebrospinal fluid (CSF) is more readily available using the FilmArray Meningitis/Encephalitis panel (FA-ME; BioFire Diagnostics, Salt Lake City, UT), we aimed to determine the clinical significance of detecting HHV-6 in order to identify true infections and to ensure appropriate antiviral initiation. Chart review on 25 patients positive for HHV-6 by FA-ME was performed to determine clinical presentation, comorbidity, treatment, and outcome. The presence of chromosomally integrated HHV-6 (ciHHV-6) DNA was also investigated. Of 1,005 children tested by FA-ME, HHV-6 was detected in 25 (2.5%). Five patients were diagnosed with either HHV-6 meningitis or meningoencephalitis based on HHV-6 detection in CSF, clinical presentation, and radiographic findings. Detection of HHV-6 by FA-ME led to discontinuation of acyclovir within 12.0 h in all 12 patients empirically treated with acyclovir. Six of the 12 patients were started on ganciclovir therapy within 6.8 h; 4 of these were treated specifically for HHV-6 infection, whereas therapy was discontinued in the remaining 2 patients. CSF parameters were not generally predictive of HHV-6 positivity. The presence of ciHHV-6 was confirmed in 3 of 18 patients who could be tested. Five of the 25 patients included in the study were diagnosed with HHV-6 meningitis/meningoencephalitis. FA-ME results led to discontinuation of empirical antiviral treatment in 12 patients and appropriate initiation of ganciclovir in 4 patients. In our institution, detection of HHV-6 using FA-ME led to faster establishment of disease etiology and optimization of antimicrobial therapy. Full Article
ma Fourier Transform Infrared Spectroscopy Is a New Option for Outbreak Investigation: a Retrospective Analysis of an Extended-Spectrum-Beta-Lactamase-Producing Klebsiella pneumoniae Outbreak in a Neonatal Intensive Care Unit [Epidemiology] By jcm.asm.org Published On :: 2020-04-23T08:00:28-07:00 The IR Biotyper is a new automated typing system based on Fourier-transform infrared (FT-IR) spectroscopy that gives results within 4 h. We aimed (i) to use the IR Biotyper to retrospectively analyze an outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae (ESBL-KP) in a neonatal intensive care unit and to compare results to BOX-PCR and whole-genome sequencing (WGS) results as the gold standard and (ii) to assess how the cutoff values used to define clusters affect the discriminatory power of the IR Biotyper. The sample consisted of 18 isolates from 14 patients. Specimens were analyzed in the IR Biotyper using the default analysis settings, and spectra were analyzed using OPUS 7.5 software. The software contains a feature that automatically proposes a cutoff value to define clusters; the cutoff value defines up to which distance the spectra are considered to be in the same cluster. Based on FT-IR, the outbreak represented 1 dominant clone, 1 secondary clone, and several unrelated clones. FT-IR results, using the cutoff value generated by the accompanying software after 4 replicates, were concordant with WGS for all but 1 isolate. BOX-PCR was underdiscriminatory compared to the other two methods. Using the cutoff value generated after 12 replicates, the results of FT-IR and WGS were completely concordant. The IR Biotyper can achieve the same typeability and discriminatory power as genome-based methods. However, to attain this high performance requires either previous, strain-dependent knowledge about the optimal technical parameters to be used or validation by a second method. Full Article
ma Validation of an Epstein-Barr Virus Antibody Risk Stratification Signature for Nasopharyngeal Carcinoma by Use of Multiplex Serology [Virology] By jcm.asm.org Published On :: 2020-04-23T08:00:28-07:00 Serological testing for nasopharyngeal carcinoma (NPC) has recently been reinvigorated by the implementation of novel Epstein-Barr virus (EBV)-specific IgA and IgG antibodies from a proteome array. Although proteome arrays are well suited for comprehensive antigen selection, they are not applicable for large-scale studies. We adapted a 13-marker EBV antigen signature for NPC risk identified by proteome arrays to multiplex serology to establish an assay for large-scale studies. Taiwanese NPC cases (n = 175) and matched controls (n = 175) were used for assay validation. Spearman’s correlation was calculated, and the diagnostic value of all multiplex markers was assessed independently using the area under the receiver operating characteristic curve (AUC). Two refined signatures were identified using stepwise logistic regression and internally validated with 10-fold cross validation. Array and multiplex serology showed strong correlation for each individual EBV marker, as well as for a 13-marker combined model on continuous data. Two refined signatures with either four (LF2 and BGLF2 IgG, LF2 and BMRF1 IgA) or two (LF2 and BGLF2 IgG) antibodies on dichotomous data were identified as the most parsimonious set of serological markers able to distinguish NPC cases from controls with AUCs of 0.992 (95% confidence interval [CI], 0.983 to 1.000) and 0.984 (95% CI, 0.971 to 0.997), respectively. Neither differed significantly from the 13-marker model (AUC, 0.992; 95% CI, 0.982 to 1.000). All models were internally validated. Multiplex serology successfully validated the original EBV proteome microarray data. Two refined signatures of four and two antibodies were capable of detecting NPC with 99.2% and 98.4% accuracy. Full Article
ma Answer to May 2020 Photo Quiz [Photo Quiz] By jcm.asm.org Published On :: 2020-04-23T08:00:28-07:00 Full Article
ma Transcriptome reconstruction and functional analysis of eukaryotic marine plankton communities via high-throughput metagenomics and metatranscriptomics [METHOD] By genome.cshlp.org Published On :: 2020-04-27T12:09:24-07:00 Large-scale metagenomic and metatranscriptomic data analyses are often restricted by their gene-centric approach, limiting the ability to understand organismal and community biology. De novo assembly of large and mosaic eukaryotic genomes from complex meta-omics data remains a challenging task, especially in comparison with more straightforward bacterial and archaeal systems. Here, we use a transcriptome reconstruction method based on clustering co-abundant genes across a series of metagenomic samples. We investigated the co-abundance patterns of ~37 million eukaryotic unigenes across 365 metagenomic samples collected during the Tara Oceans expeditions to assess the diversity and functional profiles of marine plankton. We identified ~12,000 co-abundant gene groups (CAGs), encompassing ~7 million unigenes, including 924 metagenomics-based transcriptomes (MGTs, CAGs larger than 500 unigenes). We demonstrated the biological validity of the MGT collection by comparing individual MGTs with available references. We identified several key eukaryotic organisms involved in dimethylsulfoniopropionate (DMSP) biosynthesis and catabolism in different oceanic provinces, thus demonstrating the potential of the MGT collection to provide functional insights on eukaryotic plankton. We established the ability of the MGT approach to capture interspecies associations through the analysis of a nitrogen-fixing haptophyte-cyanobacterial symbiotic association. This MGT collection provides a valuable resource for analyses of eukaryotic plankton in the open ocean by giving access to the genomic content and functional potential of many ecologically relevant eukaryotic species. Full Article
ma Inhibition of transcription leads to rewiring of locus-specific chromatin proteomes [METHOD] By genome.cshlp.org Published On :: 2020-04-27T12:09:24-07:00 Transcription of a chromatin template involves the concerted interaction of many different proteins and protein complexes. Analyses of specific factors showed that these interactions change during stress and upon developmental switches. However, how the binding of multiple factors at any given locus is coordinated has been technically challenging to investigate. Here we used Epi-Decoder in yeast to systematically decode, at one transcribed locus, the chromatin binding changes of hundreds of proteins in parallel upon perturbation of transcription. By taking advantage of improved Epi-Decoder libraries, we observed broad rewiring of local chromatin proteomes following chemical inhibition of RNA polymerase. Rapid reduction of RNA polymerase II binding was accompanied by reduced binding of many other core transcription proteins and gain of chromatin remodelers. In quiescent cells, where strong transcriptional repression is induced by physiological signals, eviction of the core transcriptional machinery was accompanied by the appearance of quiescent cell–specific repressors and rewiring of the interactions of protein-folding factors and metabolic enzymes. These results show that Epi-Decoder provides a powerful strategy for capturing the temporal binding dynamics of multiple chromatin proteins under varying conditions and cell states. The systematic and comprehensive delineation of dynamic local chromatin proteomes will greatly aid in uncovering protein–protein relationships and protein functions at the chromatin template. Full Article
ma Time course regulatory analysis based on paired expression and chromatin accessibility data [METHOD] By genome.cshlp.org Published On :: 2020-04-27T12:09:24-07:00 A time course experiment is a widely used design in the study of cellular processes such as differentiation or response to stimuli. In this paper, we propose time course regulatory analysis (TimeReg) as a method for the analysis of gene regulatory networks based on paired gene expression and chromatin accessibility data from a time course. TimeReg can be used to prioritize regulatory elements, to extract core regulatory modules at each time point, to identify key regulators driving changes of the cellular state, and to causally connect the modules across different time points. We applied the method to analyze paired chromatin accessibility and gene expression data from a retinoic acid (RA)–induced mouse embryonic stem cells (mESCs) differentiation experiment. The analysis identified 57,048 novel regulatory elements regulating cerebellar development, synapse assembly, and hindbrain morphogenesis, which substantially extended our knowledge of cis-regulatory elements during differentiation. Using single-cell RNA-seq data, we showed that the core regulatory modules can reflect the properties of different subpopulations of cells. Finally, the driver regulators are shown to be important in clarifying the relations between modules across adjacent time points. As a second example, our method on Ascl1-induced direct reprogramming from fibroblast to neuron time course data identified Id1/2 as driver regulators of early stage of reprogramming. Full Article
ma Complete characterization of the human immune cell transcriptome using accurate full-length cDNA sequencing [METHOD] By genome.cshlp.org Published On :: 2020-04-27T12:09:24-07:00 The human immune system relies on highly complex and diverse transcripts and the proteins they encode. These include transcripts encoding human leukocyte antigen (HLA) receptors as well as B cell and T cell receptors (BCR and TCR). Determining which alleles an individual possesses for each HLA gene (high-resolution HLA typing) is essential to establish donor–recipient compatibility in organ and bone marrow transplantations. In turn, the repertoires of millions of unique BCR and TCR transcripts in each individual carry a vast amount of health-relevant information. Both short-read RNA-seq-based HLA typing and BCR/TCR repertoire sequencing (AIRR-seq) currently rely on our incomplete knowledge of the genetic diversity at HLA and BCR/TCR loci. Here, we generated over 10,000,000 full-length cDNA sequences at a median accuracy of 97.9% using our nanopore sequencing-based Rolling Circle Amplification to Concatemeric Consensus (R2C2) protocol. We used this data set to (1) show that deep and accurate full-length cDNA sequencing can be used to provide isoform-level transcriptome analysis for more than 9000 loci, (2) generate accurate sequences of HLA alleles, and (3) extract detailed AIRR data for the analysis of the adaptive immune system. The HLA and AIRR analysis approaches we introduce here are untargeted and therefore do not require prior knowledge of the composition or genetic diversity of HLA and BCR/TCR loci. Full Article
ma Arabidopsis retrotransposon virus-like particles and their regulation by epigenetically activated small RNA [RESEARCH] By genome.cshlp.org Published On :: 2020-04-27T12:09:24-07:00 In Arabidopsis, LTR retrotransposons are activated by mutations in the chromatin gene DECREASE in DNA METHYLATION 1 (DDM1), giving rise to 21- to 22-nt epigenetically activated siRNA (easiRNA) that depend on RNA DEPENDENT RNA POLYMERASE 6 (RDR6). We purified virus-like particles (VLPs) from ddm1 and ddm1rdr6 mutants in which genomic RNA is reverse transcribed into complementary DNA. High-throughput short-read and long-read sequencing of VLP DNA (VLP DNA-seq) revealed a comprehensive catalog of active LTR retrotransposons without the need for mapping transposition, as well as independent of genomic copy number. Linear replication intermediates of the functionally intact COPIA element EVADE revealed multiple central polypurine tracts (cPPTs), a feature shared with HIV in which cPPTs promote nuclear localization. For one member of the ATCOPIA52 subfamily (SISYPHUS), cPPT intermediates were not observed, but abundant circular DNA indicated transposon "suicide" by auto-integration within the VLP. easiRNA targeted EVADE genomic RNA, polysome association of GYPSY (ATHILA) subgenomic RNA, and transcription via histone H3 lysine-9 dimethylation. VLP DNA-seq provides a comprehensive landscape of LTR retrotransposons and their control at transcriptional, post-transcriptional, and reverse transcriptional levels. Full Article
ma Noncoding regions underpin avian bill shape diversification at macroevolutionary scales [RESEARCH] By genome.cshlp.org Published On :: 2020-04-27T12:09:24-07:00 Recent progress has been made in identifying genomic regions implicated in trait evolution on a microevolutionary scale in many species, but whether these are relevant over macroevolutionary time remains unclear. Here, we directly address this fundamental question using bird beak shape, a key evolutionary innovation linked to patterns of resource use, divergence, and speciation, as a model trait. We integrate class-wide geometric-morphometric analyses with evolutionary sequence analyses of 10,322 protein-coding genes as well as 229,001 genomic regions spanning 72 species. We identify 1434 protein-coding genes and 39,806 noncoding regions for which molecular rates were significantly related to rates of bill shape evolution. We show that homologs of the identified protein-coding genes as well as genes in close proximity to the identified noncoding regions are involved in craniofacial embryo development in mammals. They are associated with embryonic stem cell pathways, including BMP and Wnt signaling, both of which have repeatedly been implicated in the morphological development of avian beaks. This suggests that identifying genotype-phenotype association on a genome-wide scale over macroevolutionary time is feasible. Although the coding and noncoding gene sets are associated with similar pathways, the actual genes are highly distinct, with significantly reduced overlap between them and bill-related phenotype associations specific to noncoding loci. Evidence for signatures of recent diversifying selection on our identified noncoding loci in Darwin finch populations further suggests that regulatory rather than coding changes are major drivers of morphological diversification over macroevolutionary times. Full Article
ma Suppressor mutations in Mecp2-null mice implicate the DNA damage response in Rett syndrome pathology [RESEARCH] By genome.cshlp.org Published On :: 2020-04-27T12:09:24-07:00 Mutations in X-linked methyl-CpG-binding protein 2 (MECP2) cause Rett syndrome (RTT). To identify functional pathways that could inform therapeutic entry points, we carried out a genetic screen for secondary mutations that improved phenotypes in Mecp2/Y mice after mutagenesis with N-ethyl-N-nitrosourea (ENU). Here, we report the isolation of 106 founder animals that show suppression of Mecp2-null traits from screening 3177 Mecp2/Y genomes. Whole-exome sequencing, genetic crosses, and association analysis identified 22 candidate genes. Additional lesions in these candidate genes or pathway components associate variant alleles with phenotypic improvement in 30 lines. A network analysis shows that 63% of the genes cluster into the functional categories of transcriptional repression, chromatin modification, or DNA repair, delineating a pathway relationship with MECP2. Many mutations lie in genes that modulate synaptic signaling or lipid homeostasis. Mutations in genes that function in the DNA damage response (DDR) also improve phenotypes in Mecp2/Y mice. Association analysis was successful in resolving combinatorial effects of multiple loci. One line, which carries a suppressor mutation in a gene required for cholesterol synthesis, Sqle, carries a second mutation in retinoblastoma binding protein 8, endonuclease (Rbbp8, also known as CtIP), which regulates a DDR choice in double-stranded break (DSB) repair. Cells from Mecp2/Y mice have increased DSBs, so this finding suggests that the balance between homology-directed repair and nonhomologous end joining is important for neuronal cells. In this and other lines, two suppressor mutations confer greater improvement than one alone, suggesting that combination therapies could be effective in RTT. Full Article
ma Leveraging mouse chromatin data for heritability enrichment informs common disease architecture and reveals cortical layer contributions to schizophrenia [RESEARCH] By genome.cshlp.org Published On :: 2020-04-27T12:09:23-07:00 Genome-wide association studies have implicated thousands of noncoding variants across common human phenotypes. However, they cannot directly inform the cellular context in which disease-associated variants act. Here, we use open chromatin profiles from discrete mouse cell populations to address this challenge. We applied stratified linkage disequilibrium score regression and evaluated heritability enrichment in 64 genome-wide association studies, emphasizing schizophrenia. We provide evidence that mouse-derived human open chromatin profiles can serve as powerful proxies for difficult to obtain human cell populations, facilitating the illumination of common disease heritability enrichment across an array of human phenotypes. We demonstrate that signatures from discrete subpopulations of cortical excitatory and inhibitory neurons are significantly enriched for schizophrenia heritability with maximal enrichment in cortical layer V excitatory neurons. We also show that differences between schizophrenia and bipolar disorder are concentrated in excitatory neurons in cortical layers II-III, IV, and V, as well as the dentate gyrus. Finally, we leverage these data to fine-map variants in 177 schizophrenia loci nominating variants in 104/177. We integrate these data with transcription factor binding site, chromatin interaction, and validated enhancer data, placing variants in the cellular context where they may modulate risk. Full Article
ma Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control [RESEARCH] By genome.cshlp.org Published On :: 2020-04-27T12:09:23-07:00 Cohesin is a ring-shaped multiprotein complex that is crucial for 3D genome organization and transcriptional regulation during differentiation and development. It also confers sister chromatid cohesion and facilitates DNA damage repair. Besides its core subunits SMC3, SMC1A, and RAD21, cohesin in somatic cells contains one of two orthologous STAG subunits, STAG1 or STAG2. How these variable subunits affect the function of the cohesin complex is still unclear. STAG1- and STAG2-cohesin were initially proposed to organize cohesion at telomeres and centromeres, respectively. Here, we uncover redundant and specific roles of STAG1 and STAG2 in gene regulation and chromatin looping using HCT116 cells with an auxin-inducible degron (AID) tag fused to either STAG1 or STAG2. Following rapid depletion of either subunit, we perform high-resolution Hi-C, gene expression, and sequential ChIP studies to show that STAG1 and STAG2 do not co-occupy individual binding sites and have distinct ways by which they affect looping and gene expression. These findings are further supported by single-molecule localizations via direct stochastic optical reconstruction microscopy (dSTORM) super-resolution imaging. Since somatic and congenital mutations of the STAG subunits are associated with cancer (STAG2) and intellectual disability syndromes with congenital abnormalities (STAG1 and STAG2), we verified STAG1-/STAG2-dependencies using human neural stem cells, hence highlighting their importance in particular disease contexts. Full Article
ma Complex Rab4-Mediated Regulation of Endosomal Size and EGFR Activation By mcr.aacrjournals.org Published On :: 2020-05-04T05:40:21-07:00 Early sorting endosomes are responsible for the trafficking and function of transferrin receptor (TfR) and EGFR. These receptors play important roles in iron uptake and signaling and are critical for breast cancer development. However, the role of morphology, receptor composition, and signaling of early endosomes in breast cancer remains poorly understood. A novel population of enlarged early endosomes was identified in breast cancer cells and tumor xenografts but not in noncancerous MCF10A cells. Quantitative analysis of endosomal morphology, cargo sorting, EGFR activation, and Rab GTPase regulation was performed using super-resolution and confocal microscopy followed by 3D rendering. MDA-MB-231 breast cancer cells have fewer, but larger EEA1-positive early endosomes compared with MCF10A cells. Live-cell imaging indicated dysregulated cargo sorting, because EGF and Tf traffic together via enlarged endosomes in MDA-MB-231, but not in MCF10A. Large EEA1-positive MDA-MB-231 endosomes exhibited prolonged and increased EGF-induced activation of EGFR upon phosphorylation at tyrosine-1068 (EGFR-p1068). Rab4A overexpression in MCF10A cells produced EEA1-positive enlarged endosomes that displayed prolonged and amplified EGF-induced EGFR-p1068 activation. Knockdown of Rab4A lead to increased endosomal size in MCF10A, but not in MDA-MB-231 cells. Nevertheless, Rab4A knockdown resulted in enhanced EGF-induced activation of EGFR-p1068 in MDA-MB-231 as well as downstream signaling in MCF10A cells. Altogether, this extensive characterization of early endosomes in breast cancer cells has identified a Rab4-modulated enlarged early endosomal compartment as the site of prolonged and increased EGFR activation. Implications: Enlarged early endosomes play a Rab4-modulated role in regulation of EGFR activation in breast cancer cells. Full Article
ma Circular RNA hsa_circ_0014130 Inhibits Apoptosis in Non-Small Cell Lung Cancer by Sponging miR-136-5p and Upregulating BCL2 By mcr.aacrjournals.org Published On :: 2020-05-04T05:40:21-07:00 Previous studies indicated that circular RNAs (circRNA) played vital roles in the development of non–small cell lung cancer (NSCLC). Although hsa_circ_0014130 might be a potential NSCLC biomarker, its function in NSCLC remains unknown. Thus, this study aimed to investigate the role of hsa_circ_0014130 in the progression of NSCLC. The levels of hsa_circ_0014130 in NSCLC tissues and adjacent normal tissues were determined by qRT-PCR. In addition, the expressions of Bcl-2 and cleaved caspase-3 in A549 cells were detected with Western blot analysis. Meanwhile, the dual luciferase reporter system assay was used to determine the interaction of hsa_circ_0014130 and miR-136-5p or Bcl-2 and miR-136-5p in NSCLC, respectively. The level of hsa_circ_0014130 was significantly upregulated in NSCLC tissues. Downregulation of hsa_circ_0014130 markedly inhibited the proliferation and invasion of A549 cells via inducing apoptosis. In addition, downregulation of hsa_circ_0014130 inhibited the tumorigenesis of subcutaneous A549 xenograft in mice in vivo. Meanwhile, mechanistic analysis indicated that downregulation of hsa_circ_0014130 decreased the expression of miR-136-5p–targeted gene Bcl-2 via acting as a competitive "sponge" of miR-136-5p. In this study, we found that hsa_circ_0014130 was upregulated in NSCLC tissues. In addition, hsa_circ_0014130 functions as a tumor promoter in NSCLC to promote tumor growth through upregulating Bcl-2 partially via "sponging" miR-136-5p. Implications: In conclusion, hsa_circ_0014130 might function as a prognostic factor for patients with NSCLC and might be a therapeutic target for the treatment of NSCLC in future. Full Article
ma Endogenous PAD4 in Breast Cancer Cells Mediates Cancer Extracellular Chromatin Network Formation and Promotes Lung Metastasis By mcr.aacrjournals.org Published On :: 2020-05-04T05:40:21-07:00 Peptidyl arginine deiminase 4 (PAD4/PADI4) is a posttranslational modification enzyme that converts protein arginine or mono-methylarginine to citrulline. The PAD4-mediated hypercitrullination reaction in neutrophils causes the release of nuclear chromatin to form a chromatin network termed neutrophil extracellular traps (NET). NETs were first described as antimicrobial fibers that bind and kill bacteria. However, it is not known whether PAD4 can mediate the release of chromatin DNA into the extracellular space of cancer cells. Here, we report that murine breast cancer 4T1 cells expressing high levels of PADI4 can release cancer extracellular chromatin networks (CECN) in vitro and in vivo. Deletion of Padi4 using CRISPR/Cas9 abolished CECN formation in 4T1 cells. Padi4 deletion from 4T1 cells also reduced the rate of tumor growth in an allograft model, and decreased lung metastasis by 4T1 breast cancers. DNase I treatment, which degrades extracellular DNA including CECNs, also reduced breast to lung metastasis of Padi4 wild-type 4T1 cells in allograft experiments in the Padi4-knockout mice. We further demonstrated that DNase I treatment in this mouse model did not alter circulating tumor cells but decreased metastasis through steps after intravasation. Taken together, our genetic studies show that PAD4 plays a cell autonomous role in cancer metastasis, thus revealing a novel strategy for preventing cancer metastasis by inhibiting cancer cell endogenous PAD4. Implications: This study shows that PADI4 can mediate the formation of CECNs in 4T1 cells, and that endogenous PADI4 plays an essential role in breast cancer lung metastasis. Visual Overview: http://mcr.aacrjournals.org/content/molcanres/18/5/735/F1.large.jpg. Full Article
ma Nucleostemin Modulates Outcomes of Hepatocellular Carcinoma via a Tumor Adaptive Mechanism to Genomic Stress By mcr.aacrjournals.org Published On :: 2020-05-04T05:40:21-07:00 Hepatocellular carcinomas (HCC) are adapted to survive extreme genomic stress conditions imposed by hyperactive DNA replication and genotoxic drug treatment. The underlying mechanisms remain unclear, but may involve intensified DNA damage response/repair programs. Here, we investigate a new role of nucleostemin (NS) in allowing HCC to survive its own malignancy, as NS was previously shown to promote liver regeneration via a damage repair mechanism. We first established that a higher NS transcript level correlates with high-HCC grades and poor prognostic signatures, and is an independent predictor of shorter overall and progression-free survival specifically for HCC and kidney cancer but not for others. Immunostaining confirmed that NS is most abundantly expressed in high-grade and metastatic HCCs. Genome-wide analyses revealed that NS is coenriched with MYC target and homologous recombination (HR) repair genes in human HCC samples and functionally intersects with those involved in replication stress response and HR repair in yeasts. In support, NS-high HCCs are more reliant on the replicative/oxidative stress response pathways, whereas NS-low HCCs depend more on the mTOR pathway. Perturbation studies showed NS function in protecting human HCC cells from replication- and drug-induced DNA damage. Notably, NS depletion in HCC cells increases the amounts of physical DNA damage and cytosolic double-stranded DNA, leading to a reactive increase of cytokines and PD-L1. This study shows that NS provides an essential mechanism for HCC to adapt to high genomic stress for oncogenic maintenance and propagation. NS deficiency sensitizes HCC cells to chemotherapy but also triggers tumor immune responses. Implications: HCC employs a novel, nucleostemin (NS)-mediated-mediated adaptive mechanism to survive high genomic stress conditions, a deficiency of which sensitizes HCC cells to chemotherapy but also triggers tumor immune responses. Full Article
ma Constitutive CHK1 Expression Drives a pSTAT3-CIP2A Circuit that Promotes Glioblastoma Cell Survival and Growth By mcr.aacrjournals.org Published On :: 2020-05-04T05:40:21-07:00 High-constitutive activity of the DNA damage response protein checkpoint kinase 1 (CHK1) has been shown in glioblastoma (GBM) cell lines and in tissue sections. However, whether constitutive activation and overexpression of CHK1 in GBM plays a functional role in tumorigenesis or has prognostic significance is not known. We interrogated multiple glioma patient cohorts for expression levels of CHK1 and the oncogene cancerous inhibitor of protein phosphatase 2A (CIP2A), a known target of high-CHK1 activity, and examined the relationship between these two proteins in GBM. Expression levels of CHK1 and CIP2A were independent predictors for reduced overall survival across multiple glioma patient cohorts. Using siRNA and pharmacologic inhibitors we evaluated the impact of their depletion using both in vitro and in vivo models and sought a mechanistic explanation for high CIP2A in the presence of high-CHK1 levels in GBM and show that; (i) CHK1 and pSTAT3 positively regulate CIP2A gene expression; (ii) pSTAT3 and CIP2A form a recursively wired transcriptional circuit; and (iii) perturbing CIP2A expression induces GBM cell senescence and retards tumor growth in vitro and in vivo. Taken together, we have identified an oncogenic transcriptional circuit in GBM that can be destabilized by targeting CIP2A. Implications: High expression of CIP2A in gliomas is maintained by a CHK1-dependent pSTAT3–CIP2A recursive loop; interrupting CIP2A induces cell senescence and slows GBM growth adding impetus to the development of CIP2A as an anticancer drug target. Full Article
ma 27-Hydroxycholesterol Impairs Plasma Membrane Lipid Raft Signaling as Evidenced by Inhibition of IL6-JAK-STAT3 Signaling in Prostate Cancer Cells By mcr.aacrjournals.org Published On :: 2020-05-04T05:40:21-07:00 We recently reported that restoring the CYP27A1–27hydroxycholesterol axis had antitumor properties. Thus, we sought to determine the mechanism by which 27HC exerts its anti–prostate cancer effects. As cholesterol is a major component of membrane microdomains known as lipid rafts, which localize receptors and facilitate cellular signaling, we hypothesized 27HC would impair lipid rafts, using the IL6–JAK–STAT3 axis as a model given its prominent role in prostate cancer. As revealed by single molecule imaging of DU145 prostate cancer cells, 27HC treatment significantly reduced detected cholesterol density on the plasma membranes. Further, 27HC treatment of constitutively active STAT3 DU145 prostate cancer cells reduced STAT3 activation and slowed tumor growth in vitro and in vivo. 27HC also blocked IL6-mediated STAT3 phosphorylation in nonconstitutively active STAT3 cells. Mechanistically, 27HC reduced STAT3 homodimerization, nuclear translocation, and decreased STAT3 DNA occupancy at target gene promoters. Combined treatment with 27HC and STAT3 targeting molecules had additive and synergistic effects on proliferation and migration, respectively. Hallmark IL6–JAK–STAT gene signatures positively correlated with CYP27A1 gene expression in a large set of human metastatic castrate-resistant prostate cancers and in an aggressive prostate cancer subtype. This suggests STAT3 activation may be a resistance mechanism for aggressive prostate cancers that retain CYP27A1 expression. In summary, our study establishes a key mechanism by which 27HC inhibits prostate cancer by disrupting lipid rafts and blocking STAT3 activation. Implications: Collectively, these data show that modulation of intracellular cholesterol by 27HC can inhibit IL6–JAK–STAT signaling and may synergize with STAT3-targeted compounds. Full Article
ma Pre-eclamptic Fetal Programming Alters Neuroinflammatory and Cardiovascular Consequences of Endotoxemia in Sex-Specific Manners [Neuropharmacology] By jpet.aspetjournals.org Published On :: 2020-04-22T07:50:42-07:00 Pre-eclampsia (PE)-induced fetal programming predisposes offspring to health hazards in adult life. Here, we tested the hypothesis that pre-eclamptic fetal programming elicits sexually dimorphic inflammatory and cardiovascular complications to endotoxemia in adult rat offspring. PE was induced by oral administration of L-NAME (50 mg/kg per day for seven consecutive days) starting from day 14 of conception. Cardiovascular studies were performed in conscious adult male and female offspring preinstrumented with femoral indwelling catheters. Compared with non-PE male counterparts, intravenous administration of lipopolysaccharide (LPS, 5 mg/kg) to PE male offspring caused significantly greater 1) falls in blood pressure, 2) increases in heart rate, 3) rises in arterial dP/dtmax, a correlate of left ventricular contractility, and 4) decreases in time- and frequency-domain indices of heart rate variability (HRV). By contrast, the hypotensive and tachycardic actions of LPS in female offspring were independent of the pre-eclamptic state and no clear changes in HRV or dP/dtmax were noted. Measurement of arterial baroreflex activity by vasoactive method revealed no sex specificity in baroreflex dysfunction induced by LPS. Immunohistochemical studies showed increased protein expression of toll-like receptor 4 in heart as well as in brainstem neuronal pools of the nucleus of solitary tract and rostral ventrolateral medulla in endotoxic PE male, but not female, offspring. Enhanced myocardial, but not neuronal, expression of monocyte chemoattractant protein-1 was also demonstrated in LPS-treated male offspring. Together, pre-eclamptic fetal programming aggravates endotoxic manifestations of hypotension and autonomic dysfunction in male offspring via exacerbating myocardial and neuromedullary inflammatory pathways. SIGNIFICANCE STATEMENT Current molecular and neuroanatomical evidence highlights a key role for pre-eclamptic fetal programming in offspring predisposition to health hazards induced by endotoxemia in adult life. Pre-eclampsia accentuates endotoxic manifestations of hypotension, tachycardia, and cardiac autonomic dysfunction in male offspring via exacerbating myocardial and central inflammatory pathways. The absence of such detrimental effects in female littermates suggests sexual dimorphism in the interaction of pre-eclamptic fetal programming with endotoxemia. Full Article
ma Pharmacological Characterization of the Novel and Selective {alpha}7 Nicotinic Acetylcholine Receptor-Positive Allosteric Modulator BNC375 [Neuropharmacology] By jpet.aspetjournals.org Published On :: 2020-04-21T11:17:48-07:00 Treatments for cognitive deficits associated with central nervous system (CNS) disorders such as Alzheimer disease and schizophrenia remain significant unmet medical needs that incur substantial pressure on the health care system. The α7 nicotinic acetylcholine receptor (nAChR) has garnered substantial attention as a target for cognitive deficits based on receptor localization, robust preclinical effects, genetics implicating its involvement in cognitive disorders, and encouraging, albeit mixed, clinical data with α7 nAChR orthosteric agonists. Importantly, previous orthosteric agonists at this receptor suffered from off-target activity, receptor desensitization, and an inverted U-shaped dose-effect curve in preclinical assays that limit their clinical utility. To overcome the challenges with orthosteric agonists, we have identified a novel selective α7 positive allosteric modulator (PAM), BNC375. This compound is selective over related receptors and potentiates acetylcholine-evoked α7 currents with only marginal effect on the receptor desensitization kinetics. In addition, BNC375 enhances long-term potentiation of electrically evoked synaptic responses in rat hippocampal slices and in vivo. Systemic administration of BNC375 reverses scopolamine-induced cognitive deficits in rat novel object recognition and rhesus monkey object retrieval detour (ORD) task over a wide range of exposures, showing no evidence of an inverted U-shaped dose-effect curve. The compound also improves performance in the ORD task in aged African green monkeys. Moreover, ex vivo 13C-NMR analysis indicates that BNC375 treatment can enhance neurotransmitter release in rat medial prefrontal cortex. These findings suggest that α7 nAChR PAMs have multiple advantages over orthosteric α7 nAChR agonists for the treatment of cognitive dysfunction associated with CNS diseases. SIGNIFICANCE STATEMENT BNC375 is a novel and selective α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator (PAM) that potentiates acetylcholine-evoked α7 currents in in vitro assays with little to no effect on the desensitization kinetics. In vivo, BNC375 demonstrated robust procognitive effects in multiple preclinical models across a wide exposure range. These results suggest that α7 nAChR PAMs have therapeutic potential in central nervous system diseases with cognitive impairments. Full Article
ma Cinnamaldehyde Inhibits Inflammation of Human Synoviocyte Cells Through Regulation of Jak/Stat Pathway and Ameliorates Collagen-Induced Arthritis in Rats [Inflammation, Immunopharmacology, and Asthma] By jpet.aspetjournals.org Published On :: 2020-04-21T11:17:48-07:00 Cinnamaldehyde (Cin), a bioactive cinnamon essential oil from traditional Chinese medicine herb Cinnamomum cassia, has been reported to have multipharmacological activities including anti-inflammation. However, its role and molecular mechanism of anti-inflammatory activity in musculoskeletal tissues remains unclear. Here, we first investigated the effects and molecular mechanisms of Cin in human synoviocyte cells. Then in vivo therapeutic effect of Cin on collagen-induced arthritis (CIA) also studied. Cell Counting Kit CCK-8 assay was performed to evaluate the cell cytotoxicity. Proinflammatory cytokine expression was evaluated using quantitative polymerase chain reaction and ELISA. Protein expression was measured by western blotting. The in vivo effect of Cin (75 mg/kg per day) was evaluated in rats with CIA by gavage administration. Disease progression was assessed by clinical scoring, radiographic, and histologic examinations. Cin significantly inhibited interleukin (IL)-1β–induced IL-6, IL-8, and tumor necrosis factor-α release from human synoviocyte cells. The molecular analysis revealed that Cin impaired IL-6–induced activation of Janus kinase 2 (JAK2), signal transducer and activator of transcription 1 (STAT1), and STAT3 signaling pathway by inhibiting the phosphorylation of JAK2, STAT1, and STAT3, without affecting NF-B pathway. Cin reduced collagen-induced swollen paw volume of arthritic rats. The anti-inflammation effects of Cin were associated with decreased severity of arthritis, joint swelling, and reduced bone erosion and destruction. Furthermore, serum IL-6 level was decreased when Cin administered therapeutically to CIA rats. Cin suppresses IL-1β–induced inflammation in synoviocytes through the JAK/STAT pathway and alleviated collagen-induced arthritis in rats. These data indicated that Cin might be a potential traditional Chinese medicine–derived, disease-modifying, antirheumatic herbal drug. SIGNIFICANCE STATEMENT In this study, we found that cinnamaldehyde (Cin) suppressed proinflammatory cytokines secretion in rheumatology arthritis synoviocyte cells by Janus kinase/signal transducer and activator of transcription pathway. The in vivo results showed that Cin ameliorated collagen-induced arthritis in rats. These findings indicate that Cin is a potential traditional Chinese medicine–derived, disease-modifying, antirheumatic herbal drug. Full Article
ma Distinct Regulation of {sigma}1 Receptor Multimerization by Its Agonists and Antagonists in Transfected Cells and Rat Liver Membranes [Cellular and Molecular] By jpet.aspetjournals.org Published On :: 2020-04-21T11:17:48-07:00 Extensive studies have shown that the 1 receptor (1R) interacts with and modulates the activity of multiple proteins with important biological functions. Recent crystal structures of 1R as a homotrimer differ from a dimer-tetramer model postulated earlier. It remains inconclusive whether ligand binding regulates 1R oligomerization. Here, novel nondenaturing gel methods and mutational analysis were used to examine 1R oligomerization. In transfected cells, 1R exhibited as multimers, dimers, and monomers. Overall, 1R agonists decreased, whereas 1R antagonists increased 1R multimers, suggesting that agonists and antagonists differentially affect the stability of 1R multimers. Endogenous 1R in rat liver membranes also showed similar regulation of oligomerization as in cells. Mutations at key residues lining the trimerization interface (Arg119, Asp195, Phe191, Trp136, and Gly91) abolished multimerization without disrupting dimerization. Intriguingly, truncation of the N terminus reduced 1R to apparent monomer. These results demonstrate that multiple domains play crucial roles in coordinating high-order quaternary organization of 1R. The E102Q 1R mutant implicated in juvenile amyotrophic lateral sclerosis formed dimers only, suggesting that dysregulation of 1R multimeric assembly may impair its function. Interestingly, oligomerization of 1R was pH-dependent and correlated with changes in [3H](+)-pentazocine binding affinity and Bmax. Combined with mutational analysis, it is reasoned that 1R multimers possess high-affinity and high-capacity [3H](+)-pentazocine binding, whereas monomers likely lack binding. These results suggest that 1R may exist in interconvertible oligomeric states in a dynamic equilibrium. Further exploration of ligand-regulated 1R multimerization may provide novel approaches to modulate the function of 1R and its interacting proteins. SIGNIFICANCE STATEMENT The 1 receptor (1R) modulates the activities of various partner proteins. Recently, crystal structures of 1R were elucidated as homotrimers. This study used novel nondenaturing gel methods to examine 1R oligomerization in transfected cells and rat liver membranes. Overall, agonist binding decreased, whereas antagonist binding increased 1R multimers, which comprised trimers and larger units. 1R multimers were shown to bind [3H](+)-pentazocine with high affinity and high capacity. Furthermore, mutational analysis revealed a crucial role of its N-terminal domain in 1R multimerization. Full Article
ma Cordycepin Inhibits Cancer Cell Proliferation and Angiogenesis through a DEK Interaction via ERK Signaling in Cholangiocarcinoma [Gastrointestinal, Hepatic, Pulmonary, and Renal] By jpet.aspetjournals.org Published On :: 2020-04-21T06:02:31-07:00 Cholangiocarcinoma (CCA) is a malignant tumor that arises from the epithelial cells of the bile duct and is notorious for its poor prognosis. The clinical outcome remains disappointing, and thus more effective therapeutic options are urgently required. Cordycepin, a traditional Chinese medicine, provides multiple pharmacological strategies in antitumors, but its mechanisms have not been fully elucidated. In this study, we reported that cordycepin inhibited the viability and proliferation capacity of CCA cells in a time- and dose-dependent manner determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and colony formation assay. Flow cytometry and Hoechst dye showed that cordycepin induced cancer cell apoptosis via extracellular signal-regulated kinase (ERK) 1/2 deactivation. Moreover, cordycepin significantly reduced the angiogenetic capabilities of CCA in vitro as examined by tube formation assay. We also discovered that cordycepin inhibited DEK expression by using Western blot assay. DEK serves as an oncogenic protein that is overexpressed in various gastrointestinal tumors. DEK silencing inhibited CCA cell viability and angiogenesis but not apoptosis induction determined by Western blot and flow cytometry. Furthermore, cordycepin significantly inhibited tumor growth and angiogenic capacities in a xenograft model by downregulating the expression of DEK, phosphorylated ERK1/2 CD31 and von Willebrand factor (vWF). Taken together, we demonstrated that cordycepin inhibited CCA cell proliferation and angiogenesis with a DEK interaction via downregulation in ERK signaling. These data indicate that cordycepin may serve as a novel agent for CCA clinical treatment and prognosis improvement. SIGNIFICANCE STATEMENT Cordycepin provides multiple strategies in antitumors, but its mechanisms are not fully elucidated, especially on cholangiocarcinoma (CCA). We reported that cordycepin inhibited the viability of CCA cells, induced apoptosis via extracellular signal-regulated kinase 1/2 deactivation and DEK inhibition, and reduced the angiogenetic capabilities of CCA both in vivo and in vitro. Full Article
ma Dose Frequency Optimization of the Dual Amylin and Calcitonin Receptor Agonist KBP-088: Long-Lasting Improvement in Food Preference and Body Weight Loss [Behavioral Pharmacology] By jpet.aspetjournals.org Published On :: 2020-04-21T06:02:31-07:00 Dual amylin and calcitonin receptor agonists (DACRAs) are novel candidates for treatment of type 2 diabetes and obesity because of their beneficial effects on body weight, blood glucose, insulin sensitivity, and food preference, at least short-term. DACRAs activate the receptors for a prolonged time period, resulting in metabolic effects superior to those of amylin. Because of the prolonged receptor activation, different dosing intervals and, hence, less frequent receptor activation might change the efficacy of DACRA treatment in terms of weight loss and food preference. In this study, we compared daily dosing to dosing every other day with the aim of understanding the optimal balance between efficacy and tolerability. Obese and lean male Sprague-Dawley rats were treated with the DACRA KBP-088, applying two different dosing intervals (1.5 nmol/kg once daily and 3 nmol/kg every other day) to assess the effect on body weight, food intake, glucose tolerance, and food preference when given the choice between chow (13% fat) and a high-fat diet (60% fat). Treatment with KBP-088 induced significant weight loss, reduction in adiposity, improvement in glucose control, and altered food preference toward food that is less calorie-dense. KBP-088 dosed every other day (3 nmol/kg) was superior to KBP-088 once daily (1.5 nmol/kg) in terms of weight loss and improvement of food preference. The beneficial effects were evident in both lean and obese rats. Hence, dosing KBP-088 every other day positively affects overall efficacy on metabolic parameters regardless of the lean/obese state, suggesting that less-frequent dosing with KBP-088 could be feasible. SIGNIFICANCE STATEMENT Here, we show that food preference can be altered chronically toward choices that are less calorie-dense by pharmacological treatment. Further, pharmacological dosing regimens affect the efficacy differently, as dosing every other day improved body weight loss and alterations in food preference compared with daily dosing. This suggest that alterations of the dosing regimens could be feasible in the treatment of obesity. Full Article
ma Hepatic Transporter Alterations by Nuclear Receptor Agonist T0901317 in Sandwich-Cultured Human Hepatocytes: Proteomic Analysis and PBPK Modeling to Evaluate Drug-Drug Interaction Risk [Metabolism, Transport, and Pharmacogenomics] By jpet.aspetjournals.org Published On :: 2020-04-21T06:02:31-07:00 In vitro approaches for predicting drug-drug interactions (DDIs) caused by alterations in transporter protein regulation are not well established. However, reports of transporter regulation via nuclear receptor (NR) modulation by drugs are increasing. This study examined alterations in transporter protein levels in sandwich-cultured human hepatocytes (SCHH; n = 3 donors) measured by liquid chromatography–tandem mass spectrometry–based proteomic analysis after treatment with N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-N-(2,2,2-trifluoroethyl)benzenesulfonamide (T0901317), the first described synthetic liver X receptor agonist. T0901317 treatment (10 μM, 48 hours) decreased the levels of organic cation transporter (OCT) 1 (0.22-, 0.43-, and 0.71-fold of control) and organic anion transporter (OAT) 2 (0.38-, 0.38-, and 0.53-fold of control) and increased multidrug resistance protein (MDR) 1 (1.37-, 1.48-, and 1.59-fold of control). The induction of NR downstream gene expression supports the hypothesis that T0901317 off-target effects on farnesoid X receptor and pregnane X receptor activation are responsible for the unexpected changes in OCT1, OAT2, and MDR1. Uptake of the OCT1 substrate metformin in SCHH was decreased by T0901317 treatment. Effects of decreased OCT1 levels on metformin were simulated using a physiologically-based pharmacokinetic (PBPK) model. Simulations showed a clear decrease in metformin hepatic exposure resulting in a decreased pharmacodynamic effect. This DDI would not be predicted by the modest changes in simulated metformin plasma concentrations. Altogether, the current study demonstrated that an approach combining SCHH, proteomic analysis, and PBPK modeling is useful for revealing tissue concentration–based DDIs caused by unexpected regulation of hepatic transporters by NR modulators. SIGNIFICANCE STATEMENT This study utilized an approach combining sandwich-cultured human hepatocytes, proteomic analysis, and physiologically based pharmacokinetic modeling to evaluate alterations in pharmacokinetics (PK) and pharmacodynamics (PD) caused by transporter regulation by nuclear receptor modulators. The importance of this approach from a mechanistic and clinically relevant perspective is that it can reveal drug-drug interactions (DDIs) caused by unexpected regulation of hepatic transporters and enable prediction of altered PK and PD changes, especially for tissue concentration–based DDIs. Full Article
ma Translational Pharmacokinetic-Pharmacodynamic Modeling for an Orally Available Novel Inhibitor of Epigenetic Regulator Enhancer of Zeste Homolog 2 [Drug Discovery and Translational Medicine] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 PF06821497 has been identified as an orally available small-molecule enhancer of zeste homolog 2 inhibitor. The objectives of the present study were to characterize pharmacokinetic-pharmacodynamic-disease relationships of PF06821497 in xenograft mouse models with diffuse large B-cell lymphoma (Karpas422). An indirect-response model reasonably fit dose-dependent pharmacodynamic responses [histone H3 on lysine 27 (H3K27) me3 inhibition] with an unbound EC50 of 76 nM, whereas a signal-transduction model sufficiently fit dose-dependent disease responses (tumor growth inhibition) with an unbound tumor stasis concentration (Tsc) of 168 nM. Thus, effective concentration for 70% of maximal effect (EC70) for H3K27me3 inhibition was roughly comparable to Tsc, suggesting that 70% H3K27me3 inhibition could be required for tumor stasis. Consistently, an integrated pharmacokinetic-pharmacodynamic-disease model adequately describing tumor growth inhibition also suggested that ~70% H3K27me3 inhibition was associated with tumor stasis. Based on these results, we would propose that an EC70 estimate for H3K27me3 inhibition corresponding to tumor stasis could be considered a minimum target efficacious concentration of PF06821497 in cancer patients. SIGNIFICANCE STATEMENT Using a mathematical modeling approach, the quantitative relationships of an orally available anticancer small-molecule enhancer of zeste homolog 2 inhibitor, PF06821497, were characterized among pharmacokinetics, pharmacodynamic biomarker inhibition, and disease responses in nonclinical xenograft models with diffuse large B-cell lymphoma. The modeling results suggest that >70% histone H3 on lysine 27 (H3K27) me3 inhibition would be required for tumor stasis (i.e., 100% tumor growth inhibition). Accordingly, we would propose that an effective concentration for 70% of maximal effect estimate for H3K27me3 inhibition could be considered a minimum target efficacious concentration of PF06821497 in cancer patients. Full Article
ma Pharmacological Characterization of Apraglutide, a Novel Long-Acting Peptidic Glucagon-Like Peptide-2 Agonist, for the Treatment of Short Bowel Syndrome [Drug Discovery and Translational Medicine] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 Glucagon-like peptide-2 (GLP-2) agonists have therapeutic potential in clinical indications in which the integrity or absorptive function of the intestinal mucosa is compromised, such as in short bowel syndrome (SBS). Native hGLP-2, a 33–amino acid peptide secreted from the small intestine, contributes to nutritional absorption but has a very short half-life because of enzymatic cleavage and renal clearance and thus is of limited therapeutic value. The GLP-2 analog teduglutide (Revestive/Gattex; Shire Inc.) has been approved for use in SBS since 2012 but has a once-daily injection regimen. Pharmacokinetic (PK) and pharmacodynamic studies confirm that apraglutide, a novel GLP-2 analog, has very low clearance, long elimination half-life, and high plasma protein binding compared with GLP-2 analogs teduglutide and glepaglutide. Apraglutide and teduglutide retain potency and selectivity at the GLP-2 receptor comparable to native hGLP-2, whereas glepaglutide was less potent and less selective. In rat intravenous PK studies, hGLP-2, teduglutide, glepaglutide, and apraglutide had clearances of 25, 9.9, 2.8, and 0.27 ml/kg per minute, respectively, and elimination half-lives of 6.4, 19, 16, and 159 minutes, respectively. The unique PK profile of apraglutide administered via intravenous and subcutaneous routes was confirmed in monkey and minipig and translated into significantly greater in vivo pharmacodynamic activity, measured as small intestinal growth in rats. Apraglutide showed greater intestinotrophic activity than the other peptides when administered at less-frequent dosing intervals because of its prolonged half-life. We postulate that apraglutide offers several advantages over existing GLP-2 analogs and is an excellent candidate for the treatment of gastrointestinal diseases, such as SBS. SIGNIFICANCE STATEMENT Apraglutide is a potent and selective GLP-2 agonist with an extremely low clearance and prolonged elimination half-life, which differentiates it from teduglutide (the only approved GLP-2 agonist). The enhanced pharmacokinetics of apraglutide will benefit patients by enabling a reduced dosing frequency and removing the need for daily injections. Full Article
ma A Mechanistic and Translational Pharmacokinetic-Pharmacodynamic Model of Abicipar Pegol and Vascular Endothelial Growth Factor Inhibition [Drug Discovery and Translational Medicine] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 Abicipar pegol (abicipar) is a novel DARPin therapeutic and highly potent vascular endothelial growth factor (VEGF) inhibitor intended for the treatment of neovascular age-related macular degeneration (nAMD). Here we develop a translational pharmacokinetic/pharmacodynamic (PK/PD) model for abicipar to guide dosing regimens in the clinic. The model incorporated abicipar-VEGF binding kinetics, VEGF expression levels, and VEGF turnover rates to describe the ocular and systemic PK data collected from the vitreous, aqueous humor (AH), choroid, retina, and serum of rabbits after a 1-mg abicipar intravitreal (IVT) dose. The model was translated to humans using human-specific mechanistic parameters and refitted to human serum and AH concentrations from patients with diabetic macular edema and nAMD. The model was then used to simulate 8-, 12- (quarterly), and 16-week dosing intervals in the clinic. Simulations of 2 mg abicipar IVT at 8-week or quarterly dosing in humans indicates minimum steady-state vitreal concentrations are maintained above both in vitro IC50 and in vivo human IC50 values. The model predicted virtually complete VEGF inhibition for the 8-week and quarterly dosing schedule during the 52-week treatment period. In the 16-week schedule, clinically significant VEGF inhibition was maintained during the 52-week period. The model quantitatively described abicipar-VEGF target engagement leading to rapid reduction of VEGF and a long duration of VEGF inhibition demonstrating the clinical feasibility of up to a 16-week dosing interval. Abicipar is predicted to reduce IVT dosing compared with other anti-VEGF therapies with the potential to lessen patient treatment burden. SIGNIFICANCE STATEMENT Current anti-VEGF treatments for neovascular age-related macular degeneration require frequent (monthly) intravitreal injections and monitoring, which increases patient burden. We developed a mechanistic pharmakinetic/pharmadynamic model to describe the interaction between abicipar (a novel VEGF inhibitor) and VEGF to evaluate the duration of action. The model demonstrates extended abicipar-VEGF target engagement leading to clinical feasibility of up to a 16-week dosing interval. Our model predicted that abicipar 8-week and quarterly dosing schedules maintain virtually complete VEGF inhibition during the 52-week period. Full Article
ma Journal of Pharmacology and Experimental Therapeutics By jpet.aspetjournals.org Published On :: Full Article
ma Rapid acquisition through fast mapping: stable memory over time and role of prior knowledge [RESEARCH] By learnmem.cshlp.org Published On :: 2020-04-15T06:30:12-07:00 In recent years, there have been intensive debates on whether healthy adults acquire new word knowledge through fast mapping (FM) by a different mechanism from explicit encoding (EE). In this study, we focused on this issue and investigated to what extent retention interval, prior knowledge (PK), and lure type modulated memory after FM and EE. Healthy young participants were asked to learn novel word-picture associations through both FM and EE. Half of the pictures were from familiar categories (i.e., high PK) and the other half were from unfamiliar categories (i.e., low PK). After 10 min and 1 wk, the participants were tested by forced-choice (FC) tasks, with lures from different categories (Experiment 1) or from the same categories of the target pictures (Experiment 2). Pseudowords were used to denote names of the novel pictures and baseline performance was controlled for each task. The results showed that in both Experiments 1 and 2, memory performance remained stable after FM, while it declined after EE from 10 min to 1 wk. Moreover, the effect of PK appeared at 10 min after FM while at 1 wk after EE in Experiment 2. PK enhanced memory of word-picture associations when the lures were from the same categories (Experiment 2), rather than from different categories (Experiment 1). These results were largely confirmed in Experiment 3 when encoding condition was manipulated as a between-subjects factor, while lure type as a within-subjects factor. The findings suggest that different from EE, FM facilitates rapid acquisition and consolidation of word-picture knowledge, and highlight that PK plays an important role in this process by enhancing access to detailed information. Full Article
ma The mammalian cytosolic thioredoxin reductase pathway acts via a membrane protein to reduce ER-localised proteins [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-30T01:09:45-07:00 Xiaofei Cao, Sergio Lilla, Zhenbo Cao, Marie Anne Pringle, Ojore B. V. Oka, Philip J. Robinson, Tomasz Szmaja, Marcel van Lith, Sara Zanivan, and Neil J. Bulleid Folding of proteins entering the mammalian secretory pathway requires the insertion of the correct disulfides. Disulfide formation involves both an oxidative pathway for their insertion and a reductive pathway to remove incorrectly formed disulfides. Reduction of these disulfides is crucial for correct folding and degradation of misfolded proteins. Previously, we showed that the reductive pathway is driven by NADPH generated in the cytosol. Here, by reconstituting the pathway using purified proteins and ER microsomal membranes, we demonstrate that the thioredoxin reductase system provides the minimal cytosolic components required for reducing proteins within the ER lumen. In particular, saturation of the pathway and its protease sensitivity demonstrates the requirement for a membrane protein to shuttle electrons from the cytosol to the ER. These results provide compelling evidence for the crucial role of the cytosol in regulating ER redox homeostasis, ensuring correct protein folding and facilitating the degradation of misfolded ER proteins. Full Article
ma Characterization of unconventional kinetochore kinases KKT10 and KKT19 in Trypanosoma brucei [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-29T03:28:24-07:00 Midori Ishii and Bungo Akiyoshi The kinetochore is a macromolecular protein complex that drives chromosome segregation in eukaryotes. Unlike most eukaryotes that have canonical kinetochore proteins, evolutionarily divergent kinetoplastids, such as Trypanosoma brucei, have unconventional kinetochore proteins. T. brucei also lacks a canonical spindle checkpoint system, and it therefore remains unknown how mitotic progression is regulated in this organism. Here, we characterized, in the procyclic form of T. brucei, two paralogous kinetochore proteins with a CLK-like kinase domain, KKT10 and KKT19, which localize at kinetochores in metaphase but disappear at the onset of anaphase. We found that these proteins are functionally redundant. Double knockdown of KKT10 and KKT19 led to a significant delay in the metaphase to anaphase transition. We also found that phosphorylation of two kinetochore proteins, KKT4 and KKT7, depended on KKT10 and KKT19 in vivo. Finally, we showed that the N-terminal part of KKT7 directly interacts with KKT10 and that kinetochore localization of KKT10 depends not only on KKT7 but also on the KKT8 complex. Our results reveal that kinetochore localization of KKT10 and KKT19 is tightly controlled to regulate the metaphase to anaphase transition in T. brucei. This article has an associated First Person interview with the first author of the paper. Full Article
ma STIM1 interacts with termini of Orai channels in a sequential manner [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-29T03:28:24-07:00 Liling Niu, Fuyun Wu, Kaili Li, Jing Li, Shenyuan L. Zhang, Junjie Hu, and Qian Wang Store-operated Ca2+ entry (SOCE) is critical for numerous Ca2+-related processes. The activation of SOCE requires engagement between stromal interaction molecule 1 (STIM1) molecules on the endoplasmic reticulum and Ca2+ release-activated channel (CRAC) Orai on the plasma membrane. However, the molecular details of their interactions remain elusive. Here, we analyzed STIM1-Orai interactions using synthetic peptides derived from the N- and C-termini of Orai channels (Orai-NT and Orai-CT, respectively) and purified fragments of STIM1. The binding of STIM1 to Orai-NT is hydrophilic based, whereas binding to the Orai-CT is mostly hydrophobic. STIM1 decreases its affinity for Orai-CT when Orai-NT is present, supporting a stepwise interaction. Orai3-CT exhibits stronger binding to STIM1 than Orai1-CT, largely due to the shortness of one helical turn. The role of newly identified residues was confirmed by co-immunoprecipitation and Ca2+ imaging using full-length molecules. Our results provide important insight into CRAC gating by STIM1. Full Article