ma

The major subunit of widespread competence pili exhibits a novel and conserved type IV pilin fold [Protein Structure and Folding]

Type IV filaments (T4F), which are helical assemblies of type IV pilins, constitute a superfamily of filamentous nanomachines virtually ubiquitous in prokaryotes that mediate a wide variety of functions. The competence (Com) pilus is a widespread T4F, mediating DNA uptake (the first step in natural transformation) in bacteria with one membrane (monoderms), an important mechanism of horizontal gene transfer. Here, we report the results of genomic, phylogenetic, and structural analyses of ComGC, the major pilin subunit of Com pili. By performing a global comparative analysis, we show that Com pili genes are virtually ubiquitous in Bacilli, a major monoderm class of Firmicutes. This also revealed that ComGC displays extensive sequence conservation, defining a monophyletic group among type IV pilins. We further report ComGC solution structures from two naturally competent human pathogens, Streptococcus sanguinis (ComGCSS) and Streptococcus pneumoniae (ComGCSP), revealing that this pilin displays extensive structural conservation. Strikingly, ComGCSS and ComGCSP exhibit a novel type IV pilin fold that is purely helical. Results from homology modeling analyses suggest that the unusual structure of ComGC is compatible with helical filament assembly. Because ComGC displays such a widespread distribution, these results have implications for hundreds of monoderm species.




ma

Crystallographic and kinetic analyses of the FdsBG subcomplex of the cytosolic formate dehydrogenase FdsABG from Cupriavidus necator [Molecular Biophysics]

Formate oxidation to carbon dioxide is a key reaction in one-carbon compound metabolism, and its reverse reaction represents the first step in carbon assimilation in the acetogenic and methanogenic branches of many anaerobic organisms. The molybdenum-containing dehydrogenase FdsABG is a soluble NAD+-dependent formate dehydrogenase and a member of the NADH dehydrogenase superfamily. Here, we present the first structure of the FdsBG subcomplex of the cytosolic FdsABG formate dehydrogenase from the hydrogen-oxidizing bacterium Cupriavidus necator H16 both with and without bound NADH. The structures revealed that the two iron-sulfur clusters, Fe4S4 in FdsB and Fe2S2 in FdsG, are closer to the FMN than they are in other NADH dehydrogenases. Rapid kinetic studies and EPR measurements of rapid freeze-quenched samples of the NADH reduction of FdsBG identified a neutral flavin semiquinone, FMNH•, not previously observed to participate in NADH-mediated reduction of the FdsABG holoenzyme. We found that this semiquinone forms through the transfer of one electron from the fully reduced FMNH−, initially formed via NADH-mediated reduction, to the Fe2S2 cluster. This Fe2S2 cluster is not part of the on-path chain of iron-sulfur clusters connecting the FMN of FdsB with the active-site molybdenum center of FdsA. According to the NADH-bound structure, the nicotinamide ring stacks onto the re-face of the FMN. However, NADH binding significantly reduced the electron density for the isoalloxazine ring of FMN and induced a conformational change in residues of the FMN-binding pocket that display peptide-bond flipping upon NAD+ binding in proper NADH dehydrogenases.




ma

Small-molecule agonists of the RET receptor tyrosine kinase activate biased trophic signals that are influenced by the presence of GFRa1 co-receptors [Neurobiology]

Glial cell line–derived neurotrophic factor (GDNF) is a growth factor that regulates the health and function of neurons and other cells. GDNF binds to GDNF family receptor α1 (GFRa1), and the resulting complex activates the RET receptor tyrosine kinase and subsequent downstream signals. This feature restricts GDNF activity to systems in which GFRa1 and RET are both present, a scenario that may constrain GDNF breadth of action. Furthermore, this co-dependence precludes the use of GDNF as a tool to study a putative functional cross-talk between GFRa1 and RET. Here, using biochemical techniques, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and immunohistochemistry in murine cells, tissues, or retinal organotypic cultures, we report that a naphthoquinone/quinolinedione family of small molecules (Q compounds) acts as RET agonists. We found that, like GDNF, signaling through the parental compound Q121 is GFRa1-dependent. Structural modifications of Q121 generated analogs that activated RET irrespective of GFRa1 expression. We used these analogs to examine RET–GFRa1 interactions and show that GFRa1 can influence RET-mediated signaling and enhance or diminish AKT Ser/Thr kinase or extracellular signal-regulated kinase signaling in a biased manner. In a genetic mutant model of retinitis pigmentosa, a lead compound, Q525, afforded sustained RET activation and prevented photoreceptor neuron loss in the retina. This work uncovers key components of the dynamic relationships between RET and its GFRa co-receptor and provides RET agonist scaffolds for drug development.




ma

Perturbation of phosphoglycerate kinase 1 (PGK1) only marginally affects glycolysis in cancer cells [Metabolism]

Phosphoglycerate kinase 1 (PGK1) plays important roles in glycolysis, yet its forward reaction kinetics are unknown, and its role especially in regulating cancer cell glycolysis is unclear. Here, we developed an enzyme assay to measure the kinetic parameters of the PGK1-catalyzed forward reaction. The Km values for 1,3-bisphosphoglyceric acid (1,3-BPG, the forward reaction substrate) were 4.36 μm (yeast PGK1) and 6.86 μm (human PKG1). The Km values for 3-phosphoglycerate (3-PG, the reverse reaction substrate and a serine precursor) were 146 μm (yeast PGK1) and 186 μm (human PGK1). The Vmax of the forward reaction was about 3.5- and 5.8-fold higher than that of the reverse reaction for the human and yeast enzymes, respectively. Consistently, the intracellular steady-state concentrations of 3-PG were between 180 and 550 μm in cancer cells, providing a basis for glycolysis to shuttle 3-PG to the serine synthesis pathway. Using siRNA-mediated PGK1-specific knockdown in five cancer cell lines derived from different tissues, along with titration of PGK1 in a cell-free glycolysis system, we found that the perturbation of PGK1 had no effect or only marginal effects on the glucose consumption and lactate generation. The PGK1 knockdown increased the concentrations of fructose 1,6-bisphosphate, dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, and 1,3-BPG in nearly equal proportions, controlled by the kinetic and thermodynamic states of glycolysis. We conclude that perturbation of PGK1 in cancer cells insignificantly affects the conversion of glucose to lactate in glycolysis.




ma

Genetic lineage tracing with multiple DNA recombinases: A user's guide for conducting more precise cell fate mapping studies [Methods and Resources]

Site-specific recombinases, such as Cre, are a widely used tool for genetic lineage tracing in the fields of developmental biology, neural science, stem cell biology, and regenerative medicine. However, nonspecific cell labeling by some genetic Cre tools remains a technical limitation of this recombination system, which has resulted in data misinterpretation and led to many controversies in the scientific community. In the past decade, to enhance the specificity and precision of genetic targeting, researchers have used two or more orthogonal recombinases simultaneously for labeling cell lineages. Here, we review the history of cell-tracing strategies and then elaborate on the working principle and application of a recently developed dual genetic lineage-tracing approach for cell fate studies. We place an emphasis on discussing the technical strengths and caveats of different methods, with the goal to develop more specific and efficient tracing technologies for cell fate mapping. Our review also provides several examples for how to use different types of DNA recombinase–mediated lineage-tracing strategies to improve the resolution of the cell fate mapping in order to probe and explore cell fate–related biological phenomena in the life sciences.




ma

Inflammatory and mitogenic signals drive interleukin 23 subunit alpha (IL23A) secretion independent of IL12B in intestinal epithelial cells [Signal Transduction]

The heterodimeric cytokine interleukin-23 (IL-23 or IL23A/IL12B) is produced by dendritic cells and macrophages and promotes the proinflammatory and regenerative activities of T helper 17 (Th17) and innate lymphoid cells. A recent study has reported that IL-23 is also secreted by lung adenoma cells and generates an inflammatory and immune-suppressed stroma. Here, we observed that proinflammatory tumor necrosis factor (TNF)/NF-κB and mitogen-activated protein kinase (MAPK) signaling strongly induce IL23A expression in intestinal epithelial cells. Moreover, we identified a strong crosstalk between the NF-κB and MAPK/ERK kinase (MEK) pathways, involving the formation of a transcriptional enhancer complex consisting of proto-oncogene c-Jun (c-Jun), RELA proto-oncogene NF-κB subunit (RelA), RUNX family transcription factor 1 (RUNX1), and RUNX3. Collectively, these proteins induced IL23A secretion, confirmed by immunoprecipitation of endogenous IL23A from activated human colorectal cancer (CRC) cell culture supernatants. Interestingly, IL23A was likely secreted in a noncanonical form, as it was not detected by an ELISA specific for heterodimeric IL-23 likely because IL12B expression is absent in CRC cells. Given recent evidence that IL23A promotes tumor formation, we evaluated the efficacy of MAPK/NF-κB inhibitors in attenuating IL23A expression and found that the MEK inhibitor trametinib and BAY 11–7082 (an IKKα/IκB inhibitor) effectively inhibited IL23A in a subset of human CRC lines with mutant KRAS or BRAFV600E mutations. Together, these results indicate that proinflammatory and mitogenic signals dynamically regulate IL23A in epithelial cells. They further reveal its secretion in a noncanonical form independent of IL12B and that small-molecule inhibitors can attenuate IL23A secretion.




ma

Endorepellin evokes an angiostatic stress signaling cascade in endothelial cells [Glycobiology and Extracellular Matrices]

Endorepellin, the C-terminal fragment of the heparan sulfate proteoglycan perlecan, influences various signaling pathways in endothelial cells by binding to VEGFR2. In this study, we discovered that soluble endorepellin activates the canonical stress signaling pathway consisting of PERK, eIF2α, ATF4, and GADD45α. Specifically, endorepellin evoked transient activation of VEGFR2, which, in turn, phosphorylated PERK at Thr980. Subsequently, PERK phosphorylated eIF2α at Ser51, upregulating its downstream effector proteins ATF4 and GADD45α. RNAi-mediated knockdown of PERK or eIF2α abrogated the endorepellin-mediated up-regulation of GADD45α, the ultimate effector protein of this stress signaling cascade. To functionally validate these findings, we utilized an ex vivo model of angiogenesis. Exposure of the aortic rings embedded in 3D fibrillar collagen to recombinant endorepellin for 2–4 h activated PERK and induced GADD45α vis à vis vehicle-treated counterparts. Similar effects were obtained with the established cellular stress inducer tunicamycin. Notably, chronic exposure of aortic rings to endorepellin for 7–9 days markedly suppressed vessel sprouting, an angiostatic effect that was rescued by blocking PERK kinase activity. Our findings unravel a mechanism by which an extracellular matrix protein evokes stress signaling in endothelial cells, which leads to angiostasis.




ma

Reactive dicarbonyl compounds cause Calcitonin Gene-Related Peptide release and synergize with inflammatory conditions in mouse skin and peritoneum [Molecular Bases of Disease]

The plasmas of diabetic or uremic patients and of those receiving peritoneal dialysis treatment have increased levels of the glucose-derived dicarbonyl metabolites like methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG). The elevated dicarbonyl levels can contribute to the development of painful neuropathies. Here, we used stimulated immunoreactive Calcitonin Gene–Related Peptide (iCGRP) release as a measure of nociceptor activation, and we found that each dicarbonyl metabolite induces a concentration-, TRPA1-, and Ca2+-dependent iCGRP release. MGO, GO, and 3-DG were about equally potent in the millimolar range. We hypothesized that another dicarbonyl, 3,4-dideoxyglucosone-3-ene (3,4-DGE), which is present in peritoneal dialysis (PD) solutions after heat sterilization, activates nociceptors. We also showed that at body temperatures 3,4-DGE is formed from 3-DG and that concentrations of 3,4-DGE in the micromolar range effectively induced iCGRP release from isolated murine skin. In a novel preparation of the isolated parietal peritoneum PD fluid or 3,4-DGE alone, at concentrations found in PD solutions, stimulated iCGRP release. We also tested whether inflammatory tissue conditions synergize with dicarbonyls to induce iCGRP release from isolated skin. Application of MGO together with bradykinin or prostaglandin E2 resulted in an overadditive effect on iCGRP release, whereas MGO applied at a pH of 5.2 resulted in reduced release, probably due to an MGO-mediated inhibition of transient receptor potential (TRP) V1 receptors. These results indicate that several reactive dicarbonyls activate nociceptors and potentiate inflammatory mediators. Our findings underline the roles of dicarbonyls and TRPA1 receptors in causing pain during diabetes or renal disease.




ma

Brain manganese and the balance between essential roles and neurotoxicity [Molecular Bases of Disease]

Manganese (Mn) is an essential micronutrient required for the normal development of many organs, including the brain. Although its roles as a cofactor in several enzymes and in maintaining optimal physiology are well-known, the overall biological functions of Mn are rather poorly understood. Alterations in body Mn status are associated with altered neuronal physiology and cognition in humans, and either overexposure or (more rarely) insufficiency can cause neurological dysfunction. The resultant balancing act can be viewed as a hormetic U-shaped relationship for biological Mn status and optimal brain health, with changes in the brain leading to physiological effects throughout the body and vice versa. This review discusses Mn homeostasis, biomarkers, molecular mechanisms of cellular transport, and neuropathological changes associated with disruptions of Mn homeostasis, especially in its excess, and identifies gaps in our understanding of the molecular and biochemical mechanisms underlying Mn homeostasis and neurotoxicity.




ma

Thioredoxin regulates human mercaptopyruvate sulfurtransferase at physiologically-relevant concentrations [Enzymology]

3-Mercaptopyruvate sulfur transferase (MPST) catalyzes the desulfuration of 3-mercaptopyruvate (3-MP) and transfers sulfane sulfur from an enzyme-bound persulfide intermediate to thiophilic acceptors such as thioredoxin and cysteine. Hydrogen sulfide (H2S), a signaling molecule implicated in many physiological processes, can be released from the persulfide product of the MPST reaction. Two splice variants of MPST, differing by 20 amino acids at the N terminus, give rise to the cytosolic MPST1 and mitochondrial MPST2 isoforms. Here, we characterized the poorly-studied MPST1 variant and demonstrated that substitutions in its Ser–His–Asp triad, proposed to serve a general acid–base role, minimally affect catalytic activity. We estimated the 3-MP concentration in murine liver, kidney, and brain tissues, finding that it ranges from 0.4 μmol·kg−1 in brain to 1.4 μmol·kg−1 in kidney. We also show that N-acetylcysteine, a widely-used antioxidant, is a poor substrate for MPST and is unlikely to function as a thiophilic acceptor. Thioredoxin exhibits substrate inhibition, increasing the KM for 3-MP ∼15-fold compared with other sulfur acceptors. Kinetic simulations at physiologically-relevant substrate concentrations predicted that the proportion of sulfur transfer to thioredoxin increases ∼3.5-fold as its concentration decreases from 10 to 1 μm, whereas the total MPST reaction rate increases ∼7-fold. The simulations also predicted that cysteine is a quantitatively-significant sulfane sulfur acceptor, revealing MPST's potential to generate low-molecular-weight persulfides. We conclude that the MPST1 and MPST2 isoforms are kinetically indistinguishable and that thioredoxin modulates the MPST-catalyzed reaction in a physiologically-relevant concentration range.




ma

Abnormal Fetal Echocardiogram at 33 Weeks Gestation




ma

Infant of a Diabetic Mother With an Anomaly




ma

Intrapartum Magnesium Sulfate




ma

Case 2: Mysterious Hyperkalemia in a Premature Infant of 25 Weeks Gestation




ma

Case 1: Neonatal Trauma Following Motor Vehicle Collision in Pregnancy




ma

Pathogenesis and Management of Indirect Hyperbilirubinemia in Preterm Neonates Less Than 35 Weeks: Moving Toward a Standardized Approach

Premature infants have a higher incidence of indirect hyperbilirubinemia than term infants. Management of neonatal indirect hyperbilirubinemia in late preterm and term neonates has been well addressed by recognized, consensus-based guidelines. However, the extension of these guidelines to the preterm population has been an area of uncertainty because of limited evidence. This leads to variation in clinical practice and lack of recognition of the spectrum of bilirubin-induced neurologic dysfunction (BIND) in this population. Preterm infants are metabolically immature and at higher risk for BIND at lower bilirubin levels than their term counterparts. Early use of phototherapy to eliminate BIND and minimize the need for exchange transfusion is the goal of treatment in premature neonates. Although considered relatively safe, phototherapy does have side effects, and some NICUs tend to overuse phototherapy. In this review, we describe the epidemiology and pathophysiology of BIND in preterm neonates, and discuss our approach to standardized management of indirect hyperbilirubinemia in the vulnerable preterm population. The proposed treatment charts suggest early use of phototherapy in preterm neonates with the aim of reducing exposure to high irradiance levels, minimizing the need for exchange transfusions, and preventing BIND. The charts are pragmatic and have additional curves for stopping phototherapy and escalating its intensity. Having a standardized approach would support future research and quality improvement initiatives that examine dose and duration of phototherapy exposure with relation to outcomes.




ma

Neonatal Management During the Coronavirus Disease (COVID-19) Outbreak: The Chinese Experience




ma

Geology of the Chang 7 Member oil shale of the Yanchang Formation of the Ordos Basin in central north China

We present a review of the Chang 7 Member oil shale, which occurs in the middle–late Triassic Yanchang Formation of the Ordos Basin in central north China. The oil shale has a thickness of 28 m (average), an area of around 30 000 km2 and a Ladinian age. It is mainly brown-black to black in colour with a laminar structure. It is characterized by average values of 18 wt% TOC (total organic carbon), 8 wt% oil yield, a 8.35 MJ kg–1 calorific value, 400 kg t–1 hydrocarbon productivity and kerogen of type I–II1, showing a medium quality. On average, it comprises 49% clay minerals, 29% quartz, 16% feldspar and some iron oxides, which is close to the average mineral composition of global shale. The total SiO2 and Al2O3 comprise 63.69 wt% of the whole rock, indicating a medium ash type. The Sr/Ba is 0.33, the V/Ni is 7.8, the U/Th is 4.8 and the FeO/Fe2O3 is 0.5, indicating formation in a strongly reducing, freshwater or low-salinity sedimentary environment. Multilayered intermediate-acid tuff is developed in the basin, which may have promoted the formation of the oil shale. The Ordos Basin was formed during the northwards subduction of the Qinling oceanic plate during the Ladinian–Norian in a back-arc basin context. The oil shale of the Ordos Basin has a large potential for hydrocarbon generation.

Supplementary material: Tables of oil-shale geochemical composition, proximate and organic matter analyses from the Chang 7 Member oil shale, the Ordos Basin, Central north China are available at https://doi.org/10.6084/m9.figshare.c.4411703




ma

Lithological and chemostratigraphic discrimination of facies within the Bowland Shale Formation within the Craven and Edale basins, UK

The Carboniferous Bowland Shale Formation of the UK is a proven hydrocarbon source rock and currently a target for shale gas exploration. Most existing analysis details lithofacies and geochemical assessment of a small number of boreholes. Given a paucity of relevant borehole cores, surface samples provide a valuable contribution to the assessment of this unconventional gas source. This study reviews existing literature on the formation's hydrocarbon geochemistry and provides new lithological descriptions of seven lithofacies, XRD mineralogy and hydrocarbon-specific geochemical data for 32 outcrop localities within the Craven and Edale basins, respectively in the northern and southern parts of the resource area. Low oxygen indices suggest that the majority of samples are relatively unaltered (in terms of hydrocarbon geochemistry), and therefore suitable for the characterization of the shale organic character. Total organic carbon (TOC) ranges from 0.7 to 6.5 wt%, with highest values associated with maximum flooding surfaces. Mean Tmax values of 447 and 441°C for the Edale and Craven basins, respectively, suggest that nearly all the samples were too immature to have generated appreciable amounts of dry gas. The oil saturation index is consistently below the >100 mg g–1 TOC benchmark, suggesting that they are not prospective for shale oil.

Supplementary material: A table summarizing the location, geological description and age of all of the samples in this paper is available at https://doi.org/10.6084/m9.figshare.c.4444589




ma

Reply to Discussion on 'Breakup continents at magma poor rifted margins: a seismic v. outcrop perspective. Journal of the Geological Society, London, 175, 875-882




ma

Discussion on 'Breaking up continents at magma-poor rifted margins: a seismic v. outcrop perspective Journal of the Geological Society, London, 175, 875-882




ma

Seismic imaging of melanges; Pieniny Klippen Belt case study

The authors present results of the first high-resolution deep seismic reflection survey in the Pieniny Klippen Belt (PKB) in Poland. This survey sheds new light on the matter of olistostromes and the mélange character of the PKB. The sedimentary mass-transport deposits represented by olistoliths and olistostromes manifest themselves by different petrophysical parameters of rocks (velocity, density and resistivity) and seismic attributes. Seismic attributes are very effective in the interpretation of the geology of complex mélanges. The authors used selected attributes: low-pass filter, energy, energy gradient, dip-steered median filter, Prewitt filter, Laplacian edge enhancing filter and square root of the energy gradient. These attributes emphasize changes of the seismic image inside mélange zones. The distinguished olistoliths are now inside imbricated thrust structures and they are tectonically rearranged. Polygenetic mélanges in the PKB originated as a result of sedimentary and tectonic processes. The PKB in the investigated area forms several north-vergent thrust sheets belonging to the Złatne and Hulina nappes. Both nappes contain large chaotic, non-reflective olistoliths as well as the smaller mainly high-reflective olistoliths. Olistoliths are arranged parallel to the flysch layering and thrusts. The results presented confirm the postulated two olistostrome belts within the PKB structure.

Thematic collection: This article is part of the Polygenetic mélanges collection available at: https://www.lyellcollection.org/cc/polygenetic-melanges




ma

The progressive development of microfabrics from initial deposition to slump deformation: an example from a modern sedimenary melange on the Nankai Prism

The progressive development of microfabrics from initial deposition to slump deformation and then a submarine slide was investigated in an active subduction zone using cores recovered during the Integrated Ocean Drilling Program Expedition 333. A Pleistocene–Holocene sequence was recovered at Site C0018A, which was located on a slope basin on the footwall of the megasplay fault in the Nankai Trough, SW Japan. Six mass-transport deposit units intercalated with coherent intervals were recovered from the upper 190 m of the drilled succession. The initial microfabrics in the undeformed hemipelagic sediments were characterized by random and porous fabrics composed predominantly of clay aggregations and connectors. The initial fabrics were cardhouse fabrics, which consist of clay flakes with edge-to-edge (E–E) and/or edge-to-face (E–F) contacts. These initial microfabrics developed into compacted microfabrics, which are random and consolidated fabrics (bookhouse fabrics) that consist of clay flakes with E–F and/or face-to-face (F–F) contacts and develop during burial as a pure shear deformation. During slumping, these fabrics were then deformed under simple shear to become predominantly F–F contacts and form clay chains. Thus, the microfabrics in these submarine slides are a sedimentary mélange that developed locally into a preferred clay orientation with F–F contacts.

Supplementary material: A schematic illustration showing sedimentation processes and fabrics is available at https://doi.org/10.6084/m9.figshare.c.4483385

Thematic collection: This article is part of the Polygenetic mélanges collection available at: https://www.lyellcollection.org/cc/polygenetic-melanges




ma

Recycling of heterogeneous material in the subduction factory: evidence from the sedimentary melange of the Internal Ligurian Units, Italy

In the Northern Apennine (Italy), the Internal Ligurian Units consist of Middle–Late Jurassic ophiolites covered by thick sedimentary deposits whose top is represented by the Early Paleocene Bocco Shale. This formation is characterized by mass-transport deposits interlayered with thin-bedded siliciclastic turbidites. The sedimentological and structural features of these mass-transport deposits reveal a long-lived history of recycling of heterogeneous material in a subduction setting. This history started with the frontal accretion of a fragment of oceanic crust into an accretionary prism whose lower slope was subsequently affected by tectonic erosion and consequent instability, leading to the production of mass-transport deposits and the transfer of material to the lower plate. These mass-transport deposits were subsequently underthrust and then again transferred to the base of the accretionary prism by coherent underplating, before their exhumation to the surface. The Bocco Shale is thus representative of a subduction setting where both accretionary and erosive events occurred, depending on changing boundary conditions. The reconstructed history for the Bocco Shale indicates that the sedimentary and gravitational processes both at the prism front and on the prism slope, possibly induced by alternating accretion and erosion events, are the most efficient mechanisms of lithological mixing and recycling in subduction margins.




ma

Mid-Eocene giant slope failure (sedimentary melanges) in the Ligurian accretionary wedge (NW Italy) and relationships with tectonics, global climate change and the dissociation of gas hydrates

Upper Lutetian–Bartonian sedimentary mélanges, corresponding to ancient mud-rich submarine mass transport deposits, are widely distributed over an area c. 300 km long and tens of kilometres wide along the exhumed outer part of the External Ligurian accretionary wedge in the Northern Apennines. The occurrence of methane-derived carbonate concretions (septarians) in a specific tectonostratigraphic position below these sedimentary mélanges allows us to document the relationships among a significant period of regional-scale slope failure, climate change (the Early and Mid-Eocene Optimum stages), the dissociation of gas hydrates and accretionary tectonics during the Ligurian Tectonic Phase (early–mid-Lutetian). The distribution of septarians at the core of thrust-related anticlines suggests that the dissociation of gas hydrates was triggered by accretionary tectonics rather than climate change. The different ages of slope failure emplacement and the formation of the septarians support the view that the dissociation of gas hydrates was not the most important trigger for slope failure. The latter occurred during a tectonic quiescence stage associated with a regressive depositional trend, and probably minor residual tectonic pulses, which followed the Ligurian Tectonic Phase, favouring the dynamic re-equilibrium of the External Ligurian accretionary wedge. Our findings provide useful information for a better understanding of the factors controlling giant slope failure events in modern accretionary settings, where they may cause tsunamis.




ma

Redefinition of the Ligurian Units at the Alps-Apennines junction (NW Italy) and their role in the evolution of the Ligurian accretionary wedge: constraints from melanges and broken formations

We document that the undifferentiated chaotic Ligurian Units of the Monferrato–Torino Hill sector (MO-TH) at the Alps–Apennines junction consist of three different units that are comparable with the Cassio, Caio and Sporno Units of the External Ligurian Units of the Northern Apennines. Their internal stratigraphy reflects the character of units deposited in an ocean–continent transition (OCT) zone between the northwestern termination of the Ligurian–Piedmont oceanic basin and the thinned passive margin of Adria microcontinent. The inherited wedge-shaped architecture of this OCT, which gradually closed toward the north in the present-day Canavese Zone, controlled the Late Cretaceous–early Eocene flysch deposition at the trench of the External Ligurian accretionary wedge during the oblique subduction. This favoured the formation of an accretionary wedge increasing in thickness and elevation toward the SE, from the MO-TH to the Emilia Northern Apennines. Our results therefore provide significant information on both the palaeogeographical reconstruction of the northwestern termination of the Ligurian–Piedmont oceanic basin and the role played by inherited along-strike variations (stratigraphy, structural architecture and morphology) of OCT zones in controlling subduction–accretionary processes.

Supplementary material: A spreadsheet with X-ray fluorescence spectrometry and inductively coupled plasma mass spectrometry whole-rock major and trace element composition of mantle peridotites, and photomicrographs of mantle peridotites are available at https://doi.org/10.6084/m9.figshare.c.4519643




ma

Polygenetic melanges: a glimpse on tectonic, sedimentary and diapiric recycling in convergent margins

A significant part of mélanges recognized in exhumed convergent margins around the world has been recently documented to have chiefly originated from masse transport and subsurface remobilization and disruption (i.e. mélanges, from sedimentary and mud–serpentinite diapiric processes and from in situ fluidification–disruption). Tectonic and/or sedimentary processes occurring during subsequent multiple deformational events of convergent margin evolution commonly overprint and significantly rework the primary (sedimentary or diapiric) mélange fabric, forming polygenetic mélanges. This ultimately complicates their distinction from true tectonic mélanges, masking part of the recorded tectono-sedimentary evolution of the associated convergent margin. The contributions gathered in this thematic collection explore with different approaches (from field structural and stratigraphic observations to geophysical analyses) different types of polygenetic mélange, at various scales, around the world. These studies conclude that the understanding of this type of mélange may provide crucial insights for a more detailed interpretation of the evolution of ancient and modern convergent margins, and of processes and mechanisms triggering potential natural hazards (earthquakes and tsunamis). Case studies include the Apennines in the Central Mediterranean region, the Carpathians in Central Europe and the Nankai Prism in Japan.

Thematic collection: This article is part of the ‘Polygenetic mélanges: a glimpse on tectonic sedimentary and diapiric recycling in convergent margins’ collection available at https://www.lyellcollection.org/cc/polygenetic-melanges




ma

Paleomagnetic and magnetic fabric data from Lower Triassic redbeds of the Central Western Carpathians: new constraints on the paleogeographic and tectonic evolution of the Carpathian region

In the Central Western Carpathians (CWC), most published paleomagnetic results from Permo-Mesozoic rocks document extensive remagnetizations and come from thin-skinned thrust units that have undergone multistage deformation. We present results from lower Triassic redbeds from the autochthonous cover overlying the basement that carry a primary magnetization. Petromagnetic results indicate that the dominant ferromagnetic carrier is hematite, while magnetic susceptibility and its anisotropy are controlled by both ferromagnetic and paramagnetic minerals. Magnetic fabrics document weak deformation related to Late Cretaceous shortening. The directions of the high unblocking temperature remanence components pass both reversal and fold tests, attesting to their primary nature. Paleomagnetic inclinations are flatter than expected from reference datasets, suggesting small latitudinal separation between the CWC and stable Europe. Paleomagnetic declinations are mostly clustered within individual mountain massifs, implying their tectonic coherence. They show only minor differences between the massifs, indicating a lack of significant vertical-axis tectonic rotations within the studied central parts of the CWC. The paleomagnetic declinations are therefore representative of the whole of the CWC in terms of regional paleogeographic interpretations, and imply moderate counterclockwise rotations (c. 26°) of the region with respect to stable Europe since the Early Triassic.




ma

Basement-cover relationships and deformation in the Northern Paraguai Belt, central Brazil: implications for the Neoproterozoic-early Paleozoic history of western Gondwana

The Northern Paraguai Belt, at the SE border of the Amazonian Craton, central Brazil, has been interpreted as a Brasiliano–Pan-African (c. 650–600 Ma) belt with a foreland basin, recording collisional polyphase tectonism and greenschist-facies metamorphism extending from the late Precambrian to the Cambrian–Ordovician. New structural investigations indicate that the older metasedimentary rocks of the Cuiabá Group represent a Tonian–Cryogenian basement assemblage deformed in two contemporaneous fault-bounded structural sub-domains of wrench-dominated (rake <10°) and contraction-dominated (rake ~30–40°) sinistral transpression, with tectonic vergence towards the SE. The younger late Cryogenian to early Cambrian sedimentary rocks lying to the NW of the Cuiabá Group are non-metamorphic and display only pervasive brittle transtension characterized by normal-oblique faults, fractures and forced drag folds with no consistent vergence pattern. Our analyses suggest that an unconformity separates the metasedimentary Cuiabá Group basement of the Northern Paraguai Belt from the unmetamorphosed sedimentary cover. It is proposed that the latter units were deposited during a post-glacial marine transgression (after c. 635 Ma) in a post-collisional basin. The Paraguai Belt basement and its post-collisional sedimentary cover share a number of significant geological similarities with sequences in the Bassarides Belt and Taoudéni Basin in the SW portion of the West African Craton.




ma

Geochronology and geochemistry of the Tabaquito batholith (Frontal Cordillera, Argentina): geodynamic implications and temporal correlations in the SW Gondwana margin

The Tabaquito batholith (Frontal Cordillera, western Argentina), is mainly composed of shallowly emplaced granodiorite to minor monzogranite with abundant mafic microgranular enclaves. New sensitive high-resolution ion microprobe U–Pb zircon ages of c. 337 Ma (biotite granodiorite) and c. 284 Ma (mafic dyke) along with previously published geochronological data suggest that a long-lived magmatic system formed through at least two magmatic pulses at c. 337 and c. 322 Ma with later superimposition of Permian magmatism. The Tabaquito granitoids are metaluminous, calc-alkalic and magnesian with I-type affinity. Elevated Th/Nb, Y/Nb and La/Nb ratios along with negative Nb–Ta and positive Pb anomalies are consistent with a continental arc setting. Hf, Nd and Sr isotopic composition of the Tabaquito granitoids suggests that their source could result from mixing of an old felsic crustal component and a juvenile mafic to intermediate component. New geochronological and geochemical data together with published data reveal a continuous arc setting from the Carboniferous to the Permian in Argentina, and important magmatic compositional variations through time and space controlled by episodic fluctuations in the subduction angle of the oceanic plate. Reported and compiled data allow us to infer the continuity of the Carboniferous magmatic arc along the west margin of Gondwana.

Supplementary material: Detailed petrography, analytical methods and data, zircon cathodoluminescence images and supplementary figures are available at https://doi.org/10.6084/m9.figshare.c.4763993




ma

Protein Structure Facilitates High-Resolution Immunological Mapping [Commentary]

Select agents (SA) pose unique challenges for licensing vaccines and therapies. In the case of toxin-mediated diseases, HHS assigns guidelines for SA use, oversees vaccine and therapy development, and approves animal models and approaches to identify mechanisms for toxin neutralization. In this commentary, we discuss next-generation vaccines and therapies against ricin toxin and botulinum toxin, which are regulated SA toxins that utilize structure-based approaches for countermeasures to guide rapid response to future biothreats.




ma

A Single Intramuscular Dose of a Plant-Made Virus-Like Particle Vaccine Elicits a Balanced Humoral and Cellular Response and Protects Young and Aged Mice from Influenza H1N1 Virus Challenge despite a Modest/Absent Humoral Response [Vaccines]

Virus-like-particle (VLP) influenza vaccines can be given intramuscularly (i.m.) or intranasally (i.n.) and may have advantages over split-virion formulations in the elderly. We tested a plant-made VLP vaccine candidate bearing the viral hemagglutinin (HA) delivered either i.m. or i.n. in young and aged mice. Young adult (5- to 8-week-old) and aged (16- to 20-month-old) female BALB/c mice received a single 3-μg dose based on the HA (A/California/07/2009 H1N1) content of a plant-made H1-VLP (i.m. or i.n.) split-virion vaccine (i.m.) or were left naive. After vaccination, humoral and splenocyte responses were assessed, and some mice were challenged. Both VLP and split vaccines given i.m. protected 100% of the young animals, but the VLP group lost the least weight and had stronger humoral and cellular responses. Compared to split-vaccine recipients, aged animals vaccinated i.m. with VLP were more likely to survive challenge (80% versus 60%). The lung viral load postchallenge was lowest in the VLP i.m. groups. Mice vaccinated with VLP i.n. had little detectable immune response, but survival was significantly increased. In both age groups, i.m. administration of the H1-VLP vaccine elicited more balanced humoral and cellular responses and provided better protection from homologous challenge than the split-virion vaccine.




ma

Development of an Extended-Specificity Multiplex Immunoassay for Detection of Streptococcus pneumoniae Serotype-Specific Antigen in Urine by Use of Human Monoclonal Antibodies [Diagnostic Laboratory Immunology]

Current pneumococcal vaccines cover the 10 to 23 most common serotypes of the 92 presently described. However, with the increased usage of pneumococcal-serotype-based vaccines, the risk of serotype replacement and an increase in disease caused by nonvaccine serotypes remains. Serotype surveillance of pneumococcal infections relies heavily on culture techniques, which are known to be insensitive, particularly in cases of noninvasive disease. Pneumococcal-serotype-specific urine assays offer an alternative method of serotyping for both invasive and noninvasive disease. However, the assays described previously cover mainly conjugate vaccine serotypes, give little information about circulating nonvaccine serotypes, and are currently available only in one or two specialist laboratories. Our laboratory has developed a Luminex-based extended-range antigen capture assay to detect pneumococcal-serotype-specific antigens in urine samples. The assay targets 24 distinct serotypes/serogroups plus the cell wall polysaccharide (CWP) and some cross-reactive serotypes. We report that the assay is capable of detecting all the targeted serotypes and the CWP at 0.1 ng/ml, while some serotypes are detected at concentrations as low as 0.3 pg/ml. The analytical serotype specificity was determined to be 98.4% using a panel of polysaccharide-negative urine specimens spiked with nonpneumococcal bacterial antigens. We also report clinical sensitivities of 96.2% and specificities of 89.9% established using a panel of urine specimens from patients diagnosed with community-acquired pneumonia or pneumococcal disease. This assay can be extended for testing other clinical samples and has the potential to greatly improve serotype-specific surveillance in the many cases of pneumococcal disease in which a culture is never obtained.




ma

High-Definition Mapping of Four Spatially Distinct Neutralizing Epitope Clusters on RiVax, a Candidate Ricin Toxin Subunit Vaccine [Vaccines]

RiVax is a promising recombinant ricin toxin A subunit (RTA) vaccine antigen that has been shown to be safe and immunogenic in humans and effective at protecting rhesus macaques against lethal-dose aerosolized toxin exposure. We previously used a panel of RTA-specific monoclonal antibodies (MAbs) to demonstrate, by competition enzyme-linked immunosorbent assay (ELISA), that RiVax elicits similar serum antibody profiles in humans and macaques. However, the MAb binding sites on RiVax have yet to be defined. In this study, we employed hydrogen exchange-mass spectrometry (HX-MS) to localize the epitopes on RiVax recognized by nine toxin-neutralizing MAbs and one nonneutralizing MAb. Based on strong protection from hydrogen exchange, the nine MAbs grouped into four spatially distinct epitope clusters (namely, clusters I to IV). Cluster I MAbs protected RiVax's α-helix B (residues 94 to 107), a protruding immunodominant secondary structure element known to be a target of potent toxin-neutralizing antibodies. Cluster II consisted of two subclusters located on the "back side" (relative to the active site pocket) of RiVax. One subcluster involved α-helix A (residues 14 to 24) and α-helices F-G (residues 184 to 207); the other encompassed β-strand d (residues 62 to 69) and parts of α-helices D-E (154 to 164) and the intervening loop. Cluster III involved α-helices C and G on the front side of RiVax, while cluster IV formed a sash from the front to back of RiVax, spanning strands b, c, and d (residues 35 to 59). Having a high-resolution B cell epitope map of RiVax will enable the development and optimization of competitive serum profiling assays to examine vaccine-induced antibody responses across species.




ma

High-Resolution Epitope Positioning of a Large Collection of Neutralizing and Nonneutralizing Single-Domain Antibodies on the Enzymatic and Binding Subunits of Ricin Toxin [Clinical Immunology]

We previously produced a heavy-chain-only antibody (Ab) VH domain (VHH)-displayed phage library from two alpacas that had been immunized with ricin toxoid and nontoxic mixtures of the enzymatic ricin toxin A subunit (RTA) and binding ricin toxin B subunit (RTB) (D. J. Vance, J. M. Tremblay, N. J. Mantis, and C. B. Shoemaker, J Biol Chem 288:36538–36547, 2013, https://doi.org/10.1074/jbc.M113.519207). Initial and subsequent screens of that library by direct enzyme-linked immunosorbent assay (ELISA) yielded more than two dozen unique RTA- and RTB-specific VHHs, including 10 whose structures were subsequently solved in complex with RTA. To generate a more complete antigenic map of ricin toxin and to define the epitopes associated with toxin-neutralizing activity, we subjected the VHH-displayed phage library to additional "pannings" on both receptor-bound ricin and antibody-captured ricin. We now report the full-length DNA sequences, binding affinities, and neutralizing activities of 68 unique VHHs: 31 against RTA, 33 against RTB, and 4 against ricin holotoxin. Epitope positioning was achieved through cross-competition ELISAs performed with a panel of monoclonal antibodies (MAbs) and verified, in some instances, with hydrogen-deuterium exchange mass spectrometry. The 68 VHHs grouped into more than 20 different competition bins. The RTA-specific VHHs with strong toxin-neutralizing activities were confined to bins that overlapped two previously identified neutralizing hot spots, termed clusters I and II. The four RTB-specific VHHs with potent toxin-neutralizing activity grouped within three adjacent bins situated at the RTA-RTB interface near cluster II. These results provide important insights into epitope interrelationships on the surface of ricin and delineate regions of vulnerability that can be exploited for the purpose of vaccine and therapeutic development.




ma

Stable Chromosomal Expression of Shigella flexneri 2a and 3a O-Antigens in the Live Salmonella Oral Vaccine Vector Ty21a [Vaccines]

We have been exploring the use of the live attenuated Salmonella enterica serovar Typhi Ty21a vaccine strain as a versatile oral vaccine vector for the expression and delivery of multiple foreign antigens, including Shigella O-antigens. In this study, we separately cloned genes necessary for the biosynthesis of the Shigella flexneri serotype 2a and 3a O-antigens, which have been shown to provide broad cross-protection to multiple disease-predominant S. flexneri serotypes. The cloned S. flexneri 2a rfb operon, along with bgt and gtrII, contained on the SfII bacteriophage, was sufficient in Ty21a to express the heterologous S. flexneri 2a O-antigen containing the 3,4 antigenic determinants. Further, this rfb operon, along with gtrA, gtrB, and gtrX contained on the Sfx bacteriophage and oac contained on the Sf6 bacteriophage, was sufficient to express S. flexneri 3a O-antigen containing the 6, 7, and 8 antigenic determinants. Ty21a, with these plasmid-carried or chromosomally inserted genes, demonstrated simultaneous and stable expression of homologous S. Typhi O-antigen plus the heterologous S. flexneri O-antigen. Candidate Ty21a vaccine strains expressing heterologous S. flexneri 2a or 3a lipopolysaccharide (LPS) elicited significant serum antibody responses against both homologous S. Typhi and heterologous Shigella LPS and protected mice against virulent S. flexneri 2a or 3a challenges. These new S. flexneri 2a and 3a O-antigen-expressing Ty21a vaccine strains, together with our previously constructed Ty21a strains expressing Shigella sonnei or Shigella dysenteriae 1 O-antigens, have the potential to be used together for simultaneous protection against the predominant causes of shigellosis worldwide as well as against typhoid fever.




ma

Editorial Board [Masthead]




ma

Anaplastic lymphoma kinase inhibitor-associated myositis

Anaplastic lymphoma kinase (ALK) inhibitors have been used in patients with non-small cell lung cancer (NSCLC) harboring EML4-ALK fusion gene.1 Severe skeletal muscle adverse events of ALK inhibitors, such as muscle weakness, have seldom been reported.2,3 Herein, we describe a patient who showed a severe skeletal muscle deficit after the administration of the ALK inhibitor, alectinib, and was successfully treated by corticosteroids without withdrawal from the cancer therapy.




ma

Rituximab, MS, and pregnancy

Objective

To describe the safety and efficacy of rituximab (RTX) in MS and pregnancy, we conducted a retrospective cohort study of 74 pregnancies among 55 women treated with RTX for MS and their offspring.

Methods

We used prospectively collected information from the electronic health record at Kaiser Permanente Southern California between 2012 and 2019 of mother and baby to identify treatment history, pregnancy outcomes, and relapses.

Results

Last RTX exposure before conception occurred between 1.8 and 5.2 months in 32 (49%) of 65 pregnancies and accidentally during the first trimester in 9 (12%). Among 38 live births, adverse pregnancy outcomes were as follows: 3 preterm deliveries (including 1 set of twins), 1 neonatal death (preterm twin), and 1 perinatal stroke (full-term). No stillbirths, chorioamnionitis, or major malformations were found. Fifteen (27%) women had at least one first-trimester miscarriage, of whom 8 (53%) had a history of infertility. Cumulative dose or timing of last RTX infusion was not associated with an increased risk of miscarriage. Only 2 (5.4%) women experienced relapses, one during pregnancy and the other postpartum.

Conclusion

We observed no increase in adverse pregnancy outcomes compared with expected national incidence rates and remarkably little disease activity in RTX-treated women with MS, particularly when compared with periconceptional natalizumab-treated cohorts. However, larger studies are needed to fully assess the safety of RTX use before pregnancy, especially risks associated with prolonged B-cell depletion and hypogammaglobulinemia. Until these data are available, we recommend restricting RTX use before pregnancy to women who require highly effective MS treatments.

Classification of evidence

This study provides Class IV evidence that for pregnant women with MS, RTX controls disease activity and does not increase adverse pregnancy outcomes.




ma

Single-cell RNA-seq analysis of human CSF microglia and myeloid cells in neuroinflammation

Objective

To identify and characterize myeloid cell populations within the CSF of patients with MS and anti-myelin oligodendrocyte glycoprotein (MOG) disorder by high-resolution single-cell gene expression analysis.

Methods

Single-cell RNA sequencing (scRNA-seq) was used to profile individual cells of CSF and blood from 2 subjects with relapsing-remitting MS (RRMS) and one with anti-MOG disorder. Publicly available scRNA-seq data from the blood and CSF of 2 subjects with HIV were also analyzed. An informatics pipeline was used to cluster cell populations by transcriptomic profiling. Based on gene expression by CSF myeloid cells, a flow cytometry panel was devised to examine myeloid cell populations from the CSF of 11 additional subjects, including individuals with RRMS, anti-MOG disorder, and control subjects without inflammatory demyelination.

Results

Common myeloid populations were identified within the CSF of subjects with RRMS, anti-MOG disorder, and HIV. These included monocytes, conventional and plasmacytoid dendritic cells, and cells with a transcriptomic signature matching microglia. Microglia could be discriminated from other myeloid cell populations in the CSF by flow cytometry.

Conclusions

High-resolution single-cell gene expression analysis clearly distinguishes distinct myeloid cell types present within the CSF of subjects with neuroinflammation. A population of microglia exists within the human CSF, which is detectable by surface protein expression. The function of these cells during immunity and disease requires further investigation.




ma

Clinical and imaging features of children with autoimmune encephalitis and MOG antibodies

Objective

To describe the presentations, radiologic features, and outcomes of children with autoimmune encephalitis associated with myelin oligodendrocyte glycoprotein antibodies (MOG abs).

Methods

Identification of children fulfilling the diagnostic criteria for possible autoimmune encephalitis (AE) and testing positive for serum MOG abs. Chart review and comprehensive analysis of serum MOG abs using live cell assays and rat brain immunohistochemistry.

Results

Ten children (4 girls, 6 boys) with AE and serum MOG abs were identified. The median age at onset was 8.0 years (range: 4–16 years). Children presented with a combination of encephalopathy (10/10), headache (7/10), focal neurologic signs (7/10), or seizures (6/10). CSF pleocytosis was common (9/10, median 80 white cell count/μL, range: 21–256). Imaging showed cortical and deep gray matter involvement in all in addition to juxtacortical signal alterations in 6/10 children. No involvement of other white matter structures or contrast enhancement was noted. MOG abs were detected in all children (median titer 1:640; range: 1:320–1:10,540). Nine children had a favorable outcome at discharge (modified Rankin scale of < 2). Five of 10 children had up to 3 additional demyelinating relapses associated with persisting MOG abs. One child had NMDA receptor (NMDAR) abs at initial presentation. A second child had a third demyelinating episode with MOG abs with overlapping NMDAR encephalitis.

Discussion

AE associated with serum MOG abs represents a distinct form of autoantibody-mediated encephalitis in children. We therefore recommend including MOG abs testing in the workup of children with suspected AE.




ma

Dimethyl fumarate suppresses granulocyte macrophage colony-stimulating factor-producing Th1 cells in CNS neuroinflammation

Objective

To study the immunomodulatory effect of dimethyl fumarate (DF) on granulocyte macrophage colony-stimulating factor (GM-CSF) production in CD4+ T cells in experimental autoimmune encephalomyelitis (EAE) and human peripheral blood mononuclear cells (PBMCs).

Methods

We collected splenocytes and CD4+ T cells from C57BL/6 wild-type and interferon (IFN)-–deficient mice. For human PBMCs, venous blood was collected from healthy donors, and PBMCs were collected using the Percoll gradient method. Cells were cultured with anti-CD3/28 in the presence/absence of DF for 3 to 5 days. Cells were stained and analyzed by flow cytometry. Cytokines were measured by ELISA in cell supernatants. For in vivo experiments, EAE was induced by myelin oligodendrocyte glycoprotein35–55 and mice were treated with oral DF or vehicle daily.

Results

DF acts directly on CD4+ T cells and suppresses GM-CSF–producing Th1 not Th17 or single GM-CSF+ T cells in EAE. In addition, GM-CSF suppression depends on the IFN- pathway. We also show that DF specifically suppresses Th1 and GM-CSF–producing Th1 cells in PBMCs from healthy donors.

Conclusions

We suggest that DF exclusively suppresses GM-CSF–producing Th1 cells in both animal and human CD4+ T cells through an IFN-–dependent pathway. These findings indicate that DF has a better therapeutic effect on patients with Th1-dominant immunophenotype. However, future longitudinal study to validate this finding in MS is needed.




ma

Is APOE {varepsilon}4 associated with cognitive performance in early MS?

Objective

To assess the impact of APOE polymorphisms on cognitive performance in patients newly diagnosed with clinically isolated syndrome (CIS) or relapsing-remitting MS (RRMS).

Methods

This multicenter cohort study included 552 untreated patients recently diagnosed with CIS or RRMS according to the 2005 revised McDonald criteria. The single nucleotide polymorphisms rs429358 (4) and rs7412 (2) of the APOE haplotype were assessed by allelic discrimination assays. Cognitive performance was evaluated using the 3-second paced auditory serial addition test and the Multiple Sclerosis Inventory Cognition (MUSIC). Sum scores were calculated to approximate the overall cognitive performance and memory-centered cognitive functions. The impact of the APOE carrier status on cognitive performance was assessed using multiple linear regression models, also including demographic, clinical, MRI, and lifestyle factors.

Results

APOE 4 homozygosity was associated with lower overall cognitive performance, whereas no relevant association was observed for APOE 4 heterozygosity or APOE 2 carrier status. Furthermore, higher disability levels, MRI lesion load, and depressive symptoms were associated with lower cognitive performance. Patients consuming alcohol had higher test scores than patients not consuming alcohol. Female sex, lower disability, and alcohol consumption were associated with better performance in the memory-centered subtests of MUSIC, whereas no relevant association was observed for APOE carrier status.

Conclusion

Along with parameters of a higher disease burden, APOE 4 homozygosity was identified as a potential predictor of cognitive performance in this large cohort of patients with CIS and early RRMS.




ma

Single-cycle rituximab-induced immunologic changes in children: Enhanced in neuroimmunologic disease?

Objective

To investigate the immunologic impact of a single cycle of rituximab (RTX) in children and adolescents with immune-mediated disorders, we evaluated B cells and immunoglobulin levels of 20 patients with neuroimmunologic, nephrologic, dermatologic, and rheumatologic disorders treated under recommended guidelines.

Methods

Retrospective study of immunologic changes in children (aged ≤18 years) diagnosed with immune-mediated disorders in which RTX was prescribed between June 2014 and February 2019. Patients were excluded if they had prior diagnosis of malignant disease or primary immunodeficiency. Patients were clinically and immunologically followed up every 3 months. Only patients having received a single cycle of RTX and with a follow-up greater than 12 months were included in the analysis of persistent dysgammaglobulinemia.

Results

Twenty children were included. Median age at RTX treatment was 12.8 years (interquartile range [IQR] 6.6–15.5 years). Median follow-up was 12.6 months (IQR 10.2–24 months). Of the 14 patients eligible for persistent dysgammaglobulinemia analysis (3 had received RTX retreatment, 2 had <12 months post-RTX follow-up, and in 1 data for this time point was missing), 2/14 (14%) remained with complete B-cell depletion, and 5/14 (36%) had dysgammaglobulinemia. Patients with dysgammaglobulinemia were younger (7.8 vs 15.6 years, p = 0.072), had more underlying neuroimmunologic diseases (5/5 vs 0/9, p < 0.001), and had received more frequently concentrated doses of RTX (3/5 vs 1/9, p = 0.05) than patients without dysgammaglobulinemia. Kinetics of immunoglobulins in the 20 patients revealed a decrease as early as 3 months after RTX in patients with neuroimmunologic disorders.

Conclusion

In our cohort, single-cycle RTX-induced dysgammaglobulinemia was enhanced in patients with neuroimmunologic diseases. Further studies are needed to confirm this observation.




ma

Guillain-Barre syndrome and chronic inflammatory demyelinating polyradiculoneuropathy after alemtuzumab therapy in kidney transplant recipients

Alemtuzumab is approved for the treatment of relapsing-remitting MS and is used off-label for patients with chronic lymphocytic leukemia and as induction and antirejection therapy in kidney transplant recipients.1 Guillain-Barré syndrome (GBS) or chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) complicating alemtuzumab treatment was reported in 9 patients with hematologic malignancy or MS.1–3 The risk of GBS or CIDP in solid organ transplant recipients treated with alemtuzumab is unknown.




ma

The Bruton tyrosine kinase inhibitor ibrutinib improves anti-MAG antibody polyneuropathy

Objective

To assess whether neuropathy with anti-myelin-associated glycoprotein (MAG) antibody may improve after treatment with ibrutinib, an oral inhibitor of Bruton tyrosine kinase, we prospectively treated with ibrutinib a cohort of 3 patients with anti-MAG neuropathy and Waldenström macroglobulinemia (WM).

Methods

All 3 patients underwent bone marrow biopsy showing WM, with MYD88L265P mutated and CXCR4S338X wild type, and were started on ibrutinib 420 mg/die. Patients were assessed at baseline, at 3-6-9 months, and at 12 months in 2 patients with a longer follow-up, using Inflammatory Neuropathy Cause and Treatment (INCAT) Disability Score, INCAT sensory sum score, and Medical Research Council sum score. The modified International Cooperative Ataxia Rating Scale was performed in 2 patients, whereas it was not used in the patient with Parkinson disease as a major comorbidity. Responders were considered the patients improving by at least one point in 2 clinical scales.

Results

All the patients reported an early and subjective benefit, consistent with the objective improvement, especially of the sensory symptoms as shown by clinical scales. Treatment was well tolerated.

Conclusion

These preliminary data point to a possible efficacy of ibrutinib in anti-MAG antibody neuropathy, which is the most common disabling paraproteinemic neuropathy, where active treatment is eagerly needed.

Classification of evidence

This study provides Class IV evidence that for patients with anti-MAG antibody neuropathy, ibrutinib improves neuropathy symptoms.




ma

Ocrelizumab initiation in patients with MS: A multicenter observational study

Objective

To provide first real-world experience on patients with MS treated with the B cell–depleting antibody ocrelizumab.

Methods

We retrospectively collected data of patients who had received at least 1 treatment cycle (2 infusions) of ocrelizumab at 3 large neurology centers. Patients' characteristics including premedication, clinical disease course, and documented side effects were analyzed.

Results

We could identify 210 patients (125 women, mean age ± SD, 42.1 ± 11.4 years) who had received ocrelizumab with a mean disease duration of 7.3 years and a median Expanded Disability Status Scale score of 3.75 (interquartile range 2.5–5.5; range 0–8). Twenty-six percent of these patients had a primary progressive MS (PPMS), whereas 74% had a relapsing-remitting (RRMS) or active secondary progressive (aSPMS) disease course. Twenty-four percent of all patients were treatment naive, whereas 76% had received immune therapies before. After ocrelizumab initiation (median follow-up was 200 days, range 30–1,674 days), 13% of patients with RRMS/aSPMS experienced a relapse (accounting for an annualized relapse rate of 0.17, 95% CI 0.10–0.24), and 5% of all patients with MS experienced a 12-week confirmed disability progression. Treatment was generally well tolerated, albeit only short-term side effects were recorded, including direct infusion-related reactions and mild infections.

Conclusions

We provide class IV evidence that treatment with ocrelizumab can stabilize naive and pretreated patients, indicating that ocrelizumab is an option following potent MS drugs such as natalizumab and fingolimod. Further studies are warranted to confirm these findings and to reveal safety concerns in the longer-term follow-up.

Classification of evidence

This study provides Class IV evidence that for patients with MS, ocrelizumab can stabilize both treatment-naive and previously treated patients.




ma

Intranasal midazolam for treating acute respiratory crises in a woman with stiff person syndrome

Stiff person syndrome (SPS) is a rare neurologic disorder characterized by progressively worsening rigidity and spasms of the axial and limb muscles. Dyspnea has been recently recognized as a common symptom in SPS,1 and life-threatening respiratory crises have been occasionally reported and suspected to be responsible for sudden death in these patients.2,3 The pathophysiologic mechanisms of these respiratory manifestations remain unclear. Some authors have hypothesized that rigidity and/or spasm of the muscles of the trunk could prevent normal rib cage movements and excursion of the diaphragm.1




ma

Geospatial assessment methods for geotechnical asset management of legacy railway embankments

Most British railway embankments were constructed between 120 and 180 years ago without the benefit of modern design and construction methods. This can result in undesirable load-deformation characteristics and consequent disruption to present-day railway operations, for which there is unprecedented demand. Annual rail passenger kilometres have approximately doubled in the last 20 years and freight has increased by 60% over the same period. Whereas elements such as rails or bridges can be refurbished or replaced to meet increasing demand, the same is not usually feasible for embankments. Development of techniques to assess embankment performance risks posed by operational capacity enhancements is therefore of increasing significance to railway geotechnical asset management. The two case studies presented in this paper demonstrate how geospatial analysis and data management techniques may be applied to this challenge at both strategic (regional or national) and tactical (site-specific) scales for embankments incorporating plastic clay fill. The case studies also demonstrate, in a world of ever more abundant data, the growing need for engineering geologists and geotechnical engineers to augment their traditional knowledge with comprehensive data management and geospatial analysis skills, these being essential for modern infrastructure asset management.

Thematic collection: This article is part of the ‘Ground-related risk to transportation infrastructure’ collection available at: https://www.lyellcollection.org/cc/Ground-related-risk-to-transportation-infrastructure




ma

Establishing and quantifying the causal linkage between drainage and earthworks performance for Highways England

Transportation infrastructure owners manage an array of different asset types such as bridges, road pavements, earthworks and drainage. Currently, most organization management procedures are siloed by asset type; however, there are important interactions between these asset groups that need to be managed in a cross-asset way. Although these interactions are known, there is little or no quantification of these interactions. For the first time, this paper quantifies that 74% of Highways England's earthwork failures are a result of drainage-related problems, either the lack of drainage infrastructure or the poor performance of it. The analysis undertaken is an important first step not only in moving towards more connected asset management planning for earthworks and drainage, but to also provide guidance for other owners of earthwork infrastructure assets to improve their strategic asset management procedures.

Thematic collection: This article is part of the Ground-related risk to transportation infrastructure collection available at https://www.lyellcollection.org/cc/Ground-related-risk-to-transportation-infrastructure