it

HKSAR Air Quality Health Index at : Sun, 10 May 2020 01:30:00 +0800 Current Condition :

General Stations: 1 to 2 (Health Risk: Low)

Roadside Stations: 2 (Health Risk: Low)




it

Water-splitting module a source of perpetual energy

(Rice University) Rice University researchers have integrated high-efficiency solar cells and electrode catalysts into an efficient, low-cost device that splits water to produce hydrogen fuel.




it

Brazilian and Indian scientists produce crystal with many potential applications

(Fundação de Amparo à Pesquisa do Estado de São Paulo) Thanks to its magnetic properties, the material -- zinc-doped manganese chromite -- can be used in a range of products, from gas sensors to data storage devices.




it

A big comeback for a little switch

(College of Engineering, Carnegie Mellon University) Carnegie Mellon University's Maarten de Boer and Gianluca Piazza are developing reliable, mechanical switches the size of a DNA molecule, thanks to a $2M LEAP-HI grant from the National Science Foundation.




it

Inhibiting thrombin protects against dangerous infant digestive disease

(University of South Florida (USF Health)) A new preclinical study by researchers at the University of South Florida Health (USF Health) Morsani College of Medicine and Johns Hopkins University School of Medicine offers promise of a specific treatment for NEC, a rare inflammatory bowel disease that is a leading cause of death in premature infants. The team found that inhibiting the inflammatory and blood-clotting molecule thrombin with targeted nanotherapy can protect against NEC-like injury in newborn mice.




it

Screw cancer: Microneedle sticks it to cancer tissue

(DGIST (Daegu Gyeongbuk Institute of Science and Technology)) A drug-loaded microrobotic needle effectively targets and remains attached to cancerous tissue in lab experiments without needing continuous application of a magnetic field, allowing more precise drug delivery. The details were published by researchers at DGIST's Microrobot Research Center in Korea and colleagues in the journal Advanced Healthcare Materials.




it

High color purity 3D printing

(ICFO-The Institute of Photonic Sciences) ICFO researchers report on a new method to obtain high color purity 3D objects with the use of a new class of nanoparticles.




it

New simple method for measuring the state of lithium-ion batteries

(Johannes Gutenberg Universitaet Mainz) Scientists at Johannes Gutenberg University Mainz (JGU) and the Helmholtz Institute Mainz (HIM) in Germany have presented a non-contact method for detecting the state of charge and any defects in lithium-ion batteries.





it

COVID-19 patient tests positive again

(To watch the full press briefing with sign language interpretation, click here.)

 

A recovered COVID-19 patient has tested positive for the virus again, the Hospital Authority announced today.

 

The authority’s Chief Manager (Quality & Standards) Dr Lau Ka-hin told a media briefing this afternoon that the patient was first admitted to Queen Mary Hospital on March 24 after having fever for a week. He subsequently tested positive for COVID-19.

 

He was discharged on April 16 after two consecutive negative tests for the virus.

 

Dr Lau said: "The patient presented to the Accident & Emergency Department of Queen Mary Hospital on May 5 because of some abdominal pain and diarrhoea.

 

"He was admitted to our hospital and was found to have a positive result for COVID-19 in the throat saliva, but the cycle threshold value is very high - nearly 36.

 

"The experts consider that this is the residual virus left in the patient’s body, which is not infective, and it is not likely to be a reinfection at this moment."

 

He added that the patient is in a stable condition.




it

Hospital discharge criteria explained

(To watch the full press briefing with sign language interpretation, click here.)

 

The Centre for Health Protection today said recovered COVID-19 patients or those who did not have any symptoms may be discharged from hospital 10 days after the onset of symptoms or a positive test result.

 

Its Communicable Disease Branch Head Dr Chuang Shuk-kwan told a press briefing that the revised discharge criteria was based on the latest scientific evidence.

 

“Our Scientific Committee on Emerging & Zoonotic Diseases met yesterday and examined the latest scientific evidence on whether the virus will be viable from a patient.

 

“And the available evidence showed that this virus is usually not detected after 10 days since the onset of symptoms of patients. Some patients may have persistent positive PCR (polymerase chain reaction) for a long period of time.”

 

Dr Chuang noted that patients still had to meet the criteria of having two clinical specimens test negative, or testing positive for the SARS-CoV-2 antibody to be discharged.

 

“We have revised the discharge criteria to include the patient who (must have) been staying in the hospital for at least 10 days after the onset of symptoms. So this is the additional criteria, in addition to the previous criteria of two consecutive negative specimens.

 

“We added another criteria (which is) in case a patient has stayed in the hospital for a long time, more than 10 days since the onset of symptoms, but he or she has persistent positive PCR despite the Ct (cycle threshold) value being very high, they can check their serology, the antibody. So if the antibody turns positive, usually it is after 10 days, then he or she can be discharged.

 

“So this is based on the latest scientific evidence.”




it

Caspar Tsui visits sports association

Secretary for Home Affairs Caspar Tsui visited the Physical Fitness Association of Hong Kong, China today to inspect its work in implementing the Fitness Centre Subsidy Scheme launched under the second phase of the Anti-epidemic Fund.

 

Mr Tsui said the scheme aims to provide a one-off subsidy of $100,000 to fitness centres to tide businesses over financial difficulties arising from anti-epidemic measures.

 

He thanked the association for handling the scheme’s applications.

 

Mr Tsui also expressed gratitude to the fitness industry for complying with the Government’s preventive measures, including suspension of business, in the fight against the virus.

 

Given the stabilising epidemic situation, the Government has conducted a health risk assessment and will allow premises, including fitness centres, to resume operations, Mr Tsui said, adding that he hopes the fitness industry will soon regain vitality.

 

The Home Affairs Bureau commissioned the association to assist in implementing the scheme, which opened for applications on May 4.

 

As of May 7, the association received 397 applications, of which more than half of them have been initially found to be eligible, involving subsidies of about $20 million.

 

The application period for the scheme will end on June 3.

 

Call 2302 9089 or send an email for enquiries.




it

Interview with mathematician and book author Kit Yates

"In his new book--The Math of Life & Death: 7 Mathematical Principles that Shape Our Lives--mathematician Kit Yates makes complex mathematical concepts easily accessible to anyone, and which can improve decision making in an increasingly quantitative society. In this Q&A, Yates discusses why math is relevant to everyday life." See "Mathematician Kit Yates on Anti Vaxxer Movement, Air Travel Germs and Samoa's Measles Outbreak," by Meredith Wold Schizer, Newsweek, December 23, 2019.




it

Math Students + Habitat for Humanity build homes

Students in a math class at Columbine High School in Colorado used geometry to work with Habitat for Humanity to build homes for those in need. See the video segment at "Students Build Houses For Families In Need...In Math Class," by Shaun Boyd, CBS4 Denver TV, December 23, 2019.




it

Hannah Fry to show strengths and weaknesses of algorithms

"Driverless cars, robot butlers and reusable rockets--if the big inventions of the past decade and the artificial intelligence developed to create them have taught us anything, it's that maths is undeniably cool. And if you’re still not convinced, chances are you’ve never had it explained to you via a live experiment with a pigeon before. Temporary pigeon handler and queen of making numbers fun is Dr Hannah Fry, the host of this year's annual Royal Institution Christmas Lectures." Learn more in "Christmas Lectures presenter Dr Hannah Fry on pigeons, AI and the awesome power of maths," by Rachael Pells, inews, December 23, 2019.




it

2020 Mathematical Art Exhibition Awards

The 2020 Mathematical Art Exhibition Awards were made at the Joint Mathematics Meetings last week "for aesthetically pleasing works that combine mathematics and art." The chosen works were selected from the exhibition of juried works in various media by over 90 mathematicians and artists from around the world.

"Suspended Helical Stair," by Mark Donohue (California College of the Arts, San Francisco, CA), was awarded Best textile, sculpture, or other medium. "A unique cable system to suspend a stair was developed in collaboration with a leading structural engineer. The suspended cables form a double helicoid nested within an ascending spiral hyperboloid to create the necessary points of support for the gravity loads and lateral bracing for the seismic loads. Each concrete stair tread was designed as an independent element that is strung together with the stairs above and below it to form a single spiral stair when the steel cables that run through them are post tensioned. The entire stair tread and suspension cable system can be understood as a play of ruled surfaces with each part related to the other through their shared geometric lineage." The work is string and plywood,45 x 23 x 23 cm, 2018.

2018

"A Unit Domino," by Douglas McKenna (Mathemaesthetics, Inc., Boulder, CO), was awarded Best photograph, painting, or print. "This piece is based upon an artist-discovered "half-domino" space-filling curve. The drawing comprises some half-million connected line segments, arranged in two perfectly recursive levels of double-spiral pairs, slowly changing color, in a single, over-one-mile-long self-avoiding path from lower left to lower right (the lower right square that sticks out is an integral part of its self-negative structure). The limiting curve covers a self-similar gasket tile with an infinitely long, almost-everywhere linear border. With an upside-down copy of itself, two such gaskets of unit area exactly cover a 1x2 domino, without overlap. The artist's app/eBook "Hilbert Curves" for iPad/iPhone explains how he discovered these beautiful constructions." The work is a glicée print,106 x 66 cm, 2015.

"Computational Wings," by David Bachman (Pitzer College, Claremont, CA), received Honorable Mention. "The body of this dragonfly is taken from a photograph, while the wings were computationally generated. A variety of algorithms were used to create them. First, a set of points were randomly populated across each wing and moved by a circle packing algorithm, where the radius of each circle was inversely proportional to the distance from the body. Next, those points were used to create a Voronoi diagram. Main veins were located by a shortest walk algorithm through the edges of this diagram, and those veins were given a variable thickness according to the distance travelled as you traverse them outward from the body." The work is laser etched acrylic, 23 x 35 x 3 cm, 2019.

(Click on the thumbnails to see larger versions of the images.)

The Mathematical Art Exhibition Award "for aesthetically pleasing works that combine mathematics and art" was established in 2008 through an endowment provided to the American Mathematical Society by an anonymous donor who wishes to acknowledge those whose works demonstrate the beauty and elegance of mathematics expressed in a visual art form. The awards are $400 for Best photograph, painting, or print; $400 for Best textile, sculpture, or other medium; and $200 for Honorable Mention. The Mathematical Art Exhibition of juried works in various media is held at the annual Joint Mathematics Meetings of the American Mathematical Society (AMS) and Mathematical Association of America (MAA). a gallery of works in the 2020 exhibition will be on AMS Mathematical Imagery.

Find out more about the Mathematical Art Exhibition Award and see past recipients.

[% ams_include('pao-contact') %]

***

The American Mathematical Society is dedicated to advancing research and connecting the diverse global mathematical community through our publications, meetings and conferences, MathSciNet, professional services, advocacy, and awareness programs.




it

Wish you were here: Meetings, no meetings, meeting reports [Editorial]

We've all been saying it: These are unprecedented times. The impacts of the COVID-19 pandemic are incredibly wide-ranging and affect all facets of life. One that is hitting the scientific community very hard is the cancellation of meetings, large and small. While we are well-versed in connecting with colleagues and collaborators across a variety of online platforms, these do not replace the immensely gratifying aspects of attending meetings in person: the pleasure of catching up with old friends and making new ones, the insights gained from having real-time conversations with others working on the same topic but with different expertise and perspectives, and the stimulating new scientific ideas we carry home. We have all been feeling the disappointment as we learn that one meeting after another is forced to cancel, from the vibrant ASBMB annual meeting to summer conferences of all types.Another loss from the appropriate but painful decision to cancel the ASBMB annual meeting was the chance to hear from our Herbert Tabor Early Career Investigator Awardees, who represent the best science published in JBC in the preceding year. This year, the competition was particularly fierce. We hope and anticipate that we will be able to hear from the winners at next year's ASBMB annual meeting. But in the meantime, we want to raise a toast to Wenchao Zhao, Yue Yang, Manisha Dagar, Febin Varghese, and Ayumi Nagashima-Kasahara as our 2020 winners. We've captured their award-winning 2019 papers (1–5) on the JBC website (6), and extended profiles of the...




it

Correction: Mitochondrial and nuclear genomic responses to loss of LRPPRC expression. [Additions and Corrections]

VOLUME 285 (2010) PAGES 13742–13747In Fig. 1E, passage 10, the splicing of a non-adjacent lane from the same immunoblot was not marked. This error has now been corrected and does not affect the results or conclusions of this work.jbc;295/16/5533/F1F1F1Figure 1E.




it

Biosynthesis of depsipeptides with a 3-hydroxybenzoate moiety and selective anticancer activities involves a chorismatase [Metabolism]

Neoantimycins are anticancer compounds of 15-membered ring antimycin-type depsipeptides. They are biosynthesized by a hybrid multimodular protein complex of nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS), typically from the starting precursor 3-formamidosalicylate. Examining fermentation extracts of Streptomyces conglobatus, here we discovered four new neoantimycin analogs, unantimycins B–E, in which 3-formamidosalicylates are replaced by an unusual 3-hydroxybenzoate (3-HBA) moiety. Unantimycins B–E exhibited levels of anticancer activities similar to those of the chemotherapeutic drug cisplatin in human lung cancer, colorectal cancer, and melanoma cells. Notably, they mostly displayed no significant toxicity toward noncancerous cells, unlike the serious toxicities generally reported for antimycin-type natural products. Using site-directed mutagenesis and heterologous expression, we found that unantimycin productions are correlated with the activity of a chorismatase homolog, the nat-hyg5 gene, from a type I PKS gene cluster. Biochemical analysis confirmed that the catalytic activity of Nat-hyg5 generates 3-HBA from chorismate. Finally, we achieved selective production of unantimycins B and C by engineering a chassis host. On the basis of these findings, we propose that unantimycin biosynthesis is directed by the neoantimycin-producing NRPS–PKS complex and initiated with the starter unit of 3-HBA. The elucidation of the biosynthetic unantimycin pathway reported here paves the way to improve the yield of these compounds for evaluation in oncotherapeutic applications.




it

Repression of sphingosine kinase (SK)-interacting protein (SKIP) in acute myeloid leukemia diminishes SK activity and its re-expression restores SK function [Molecular Bases of Disease]

Previous studies have shown that sphingosine kinase interacting protein (SKIP) inhibits sphingosine kinase (SK) function in fibroblasts. SK phosphorylates sphingosine producing the potent signaling molecule sphingosine-1-phosphate (S1P). SKIP gene (SPHKAP) expression is silenced by hypermethylation of its promoter in acute myeloid leukemia (AML). However, why SKIP activity is silenced in primary AML cells is unclear. Here, we investigated the consequences of SKIP down-regulation in AML primary cells and the effects of SKIP re-expression in leukemic cell lines. Using targeted ultra-HPLC-tandem MS (UPLC-MS/MS), we measured sphingolipids (including S1P and ceramides) in AML and control cells. Primary AML cells had significantly lower SK activity and intracellular S1P concentrations than control cells, and SKIP-transfected leukemia cell lines exhibited increased SK activity. These findings show that SKIP re-expression enhances SK activity in leukemia cells. Furthermore, other bioactive sphingolipids such as ceramide were also down-regulated in primary AML cells. Of note, SKIP re-expression in leukemia cells increased ceramide levels 2-fold, inactivated the key signaling protein extracellular signal-regulated kinase, and increased apoptosis following serum deprivation or chemotherapy. These results indicate that SKIP down-regulation in AML reduces SK activity and ceramide levels, an effect that ultimately inhibits apoptosis in leukemia cells. The findings of our study contrast with previous results indicating that SKIP inhibits SK function in fibroblasts and therefore challenge the notion that SKIP always inhibits SK activity.




it

Inhibition of the erythropoietin-producing receptor EPHB4 antagonizes androgen receptor overexpression and reduces enzalutamide resistance [Molecular Bases of Disease]

Prostate cancer (PCa) cells heavily rely on an active androgen receptor (AR) pathway for their survival. Enzalutamide (MDV3100) is a second-generation antiandrogenic drug that was approved by the Food and Drug Administration in 2012 to treat patients with castration-resistant prostate cancer (CRPC). However, emergence of resistance against this drug is inevitable, and it has been a major challenge to develop interventions that help manage enzalutamide-resistant CRPC. Erythropoietin-producing human hepatocellular (Eph) receptors are targeted by ephrin protein ligands and have a broad range of functions. Increasing evidence indicates that this signaling pathway plays an important role in tumorigenesis. Overexpression of EPH receptor B4 (EPHB4) has been observed in multiple types of cancer, being closely associated with proliferation, invasion, and metastasis of tumors. Here, using RNA-Seq analyses of clinical and preclinical samples, along with several biochemical and molecular methods, we report that enzalutamide-resistant PCa requires an active EPHB4 pathway that supports drug resistance of this tumor type. Using a small kinase inhibitor and RNAi-based gene silencing to disrupt EPHB4 activity, we found that these disruptions re-sensitize enzalutamide-resistant PCa to the drug both in vitro and in vivo. Mechanistically, we found that EPHB4 stimulates the AR by inducing proto-oncogene c-Myc (c-Myc) expression. Taken together, these results provide critical insight into the mechanism of enzalutamide resistance in PCa, potentially offering a therapeutic avenue for enhancing the efficacy of enzalutamide to better manage this common malignancy.




it

Cell-specific expression of the transcriptional regulator RHAMM provides a timing mechanism that controls appropriate wound re-epithelialization [Glycobiology and Extracellular Matrices]

Prevention of aberrant cutaneous wound repair and appropriate regeneration of an intact and functional integument require the coordinated timing of fibroblast and keratinocyte migration. Here, we identified a mechanism whereby opposing cell-specific motogenic functions of a multifunctional intracellular and extracellular protein, the receptor for hyaluronan-mediated motility (RHAMM), coordinates fibroblast and keratinocyte migration speed and ensures appropriate timing of excisional wound closure. We found that, unlike in WT mice, in Rhamm-null mice, keratinocyte migration initiates prematurely in the excisional wounds, resulting in wounds that have re-surfaced before the formation of normal granulation tissue, leading to a defective epidermal architecture. We also noted aberrant keratinocyte and fibroblast migration in the Rhamm-null mice, indicating that RHAMM suppresses keratinocyte motility but increases fibroblast motility. This cell context–dependent effect resulted from cell-specific regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) activation and expression of a RHAMM target gene encoding matrix metalloprotease 9 (MMP-9). In fibroblasts, RHAMM promoted ERK1/2 activation and MMP-9 expression, whereas in keratinocytes, RHAMM suppressed these activities. In keratinocytes, loss of RHAMM function or expression promoted epidermal growth factor receptor–regulated MMP-9 expression via ERK1/2, which resulted in cleavage of the ectodomain of the RHAMM partner protein CD44 and thereby increased keratinocyte motility. These results identify RHAMM as a key factor that integrates the timing of wound repair by controlling cell migration.




it

{gamma}-Hydroxybutyrate does not mediate glucose inhibition of glucagon secretion [Signal Transduction]

Hypersecretion of glucagon from pancreatic α-cells strongly contributes to diabetic hyperglycemia. Moreover, failure of α-cells to increase glucagon secretion in response to falling blood glucose concentrations compromises the defense against hypoglycemia, a common complication in diabetes therapy. However, the mechanisms underlying glucose regulation of glucagon secretion are poorly understood and likely involve both α-cell–intrinsic and intraislet paracrine signaling. Among paracrine factors, glucose-stimulated release of the GABA metabolite γ-hydroxybutyric acid (GHB) from pancreatic β-cells might mediate glucose suppression of glucagon release via GHB receptors on α-cells. However, the direct effects of GHB on α-cell signaling and glucagon release have not been investigated. Here, we found that GHB (4–10 μm) lacked effects on the cytoplasmic concentrations of the secretion-regulating messengers Ca2+ and cAMP in mouse α-cells. Glucagon secretion from perifused mouse islets was also unaffected by GHB at both 1 and 7 mm glucose. The GHB receptor agonist 3-chloropropanoic acid and the antagonist NCS-382 had no effects on glucagon secretion and did not affect stimulation of secretion induced by a drop in glucose from 7 to 1 mm. Inhibition of endogenous GHB formation with the GABA transaminase inhibitor vigabatrin also failed to influence glucagon secretion at 1 mm glucose and did not prevent the suppressive effect of 7 mm glucose. In human islets, GHB tended to stimulate glucagon secretion at 1 mm glucose, an effect mimicked by 3-chloropropanoic acid. We conclude that GHB does not mediate the inhibitory effect of glucose on glucagon secretion.




it

Structural basis of specific inhibition of extracellular activation of pro- or latent myostatin by the monoclonal antibody SRK-015 [Molecular Biophysics]

Myostatin (or growth/differentiation factor 8 (GDF8)) is a member of the transforming growth factor β superfamily of growth factors and negatively regulates skeletal muscle growth. Its dysregulation is implicated in muscle wasting diseases. SRK-015 is a clinical-stage mAb that prevents extracellular proteolytic activation of pro- and latent myostatin. Here we used integrated structural and biochemical approaches to elucidate the molecular mechanism of antibody-mediated neutralization of pro-myostatin activation. The crystal structure of pro-myostatin in complex with 29H4-16 Fab, a high-affinity variant of SRK-015, at 2.79 Å resolution revealed that the antibody binds to a conformational epitope in the arm region of the prodomain distant from the proteolytic cleavage sites. This epitope is highly sequence-divergent, having only limited similarity to other closely related members of the transforming growth factor β superfamily. Hydrogen/deuterium exchange MS experiments indicated that antibody binding induces conformational changes in pro- and latent myostatin that span the arm region, the loops contiguous to the protease cleavage sites, and the latency-associated structural elements. Moreover, negative-stain EM with full-length antibodies disclosed a stable, ring-like antigen–antibody structure in which the two Fab arms of a single antibody occupy the two arm regions of the prodomain in the pro- and latent myostatin homodimers, suggesting a 1:1 (antibody:myostatin homodimer) binding stoichiometry. These results suggest that SRK-015 binding stabilizes the latent conformation and limits the accessibility of protease cleavage sites within the prodomain. These findings shed light on approaches that specifically block the extracellular activation of growth factors by targeting their precursor forms.




it

Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes [Enzymology]

Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles.




it

The transcriptional regulator IscR integrates host-derived nitrosative stress and iron starvation in activation of the vvhBA operon in Vibrio vulnificus [Gene Regulation]

For successful infection of their hosts, pathogenic bacteria recognize host-derived signals that induce the expression of virulence factors in a spatiotemporal manner. The fulminating food-borne pathogen Vibrio vulnificus produces a cytolysin/hemolysin protein encoded by the vvhBA operon, which is a virulence factor preferentially expressed upon exposure to murine blood and macrophages. The Fe-S cluster containing transcriptional regulator IscR activates the vvhBA operon in response to nitrosative stress and iron starvation, during which the cellular IscR protein level increases. Here, electrophoretic mobility shift and DNase I protection assays revealed that IscR directly binds downstream of the vvhBA promoter PvvhBA, which is unusual for a positive regulator. We found that in addition to IscR, the transcriptional regulator HlyU activates vvhBA transcription by directly binding upstream of PvvhBA, whereas the histone-like nucleoid-structuring protein (H-NS) represses vvhBA by extensively binding to both downstream and upstream regions of its promoter. Of note, the binding sites of IscR and HlyU overlapped with those of H-NS. We further substantiated that IscR and HlyU outcompete H-NS for binding to the PvvhBA regulatory region, resulting in the release of H-NS repression and vvhBA induction. We conclude that concurrent antirepression by IscR and HlyU at regions both downstream and upstream of PvvhBA provides V. vulnificus with the means of integrating host-derived signal(s) such as nitrosative stress and iron starvation for precise regulation of vvhBA transcription, thereby enabling successful host infection.




it

Proline-rich 11 (PRR11) drives F-actin assembly by recruiting the actin-related protein 2/3 complex in human non-small cell lung carcinoma [DNA and Chromosomes]

The actin cytoskeleton is extremely dynamic and supports diverse cellular functions in many physiological and pathological processes, including tumorigenesis. However, the mechanisms that regulate the actin-related protein 2/3 (ARP2/3) complex and thereby promote actin polymerization and organization in cancer cells are not well-understood. We previously implicated the proline-rich 11 (PRR11) protein in lung cancer development. In this study, using immunofluorescence staining, actin polymerization assays, and siRNA-mediated gene silencing, we uncovered that cytoplasmic PRR11 is involved in F-actin polymerization and organization. We found that dysregulation of PRR11 expression results in F-actin rearrangement and nuclear instability in non-small cell lung cancer cells. Results from molecular mechanistic experiments indicated that PRR11 associates with and recruits the ARP2/3 complex, facilitates F-actin polymerization, and thereby disrupts the F-actin cytoskeleton, leading to abnormal nuclear lamina assembly and chromatin reorganization. Inhibition of the ARP2/3 complex activity abolished irregular F-actin polymerization, lamina assembly, and chromatin reorganization due to PRR11 overexpression. Notably, experiments with truncated PRR11 variants revealed that PRR11 regulates F-actin through different regions. We found that deletion of either the N or C terminus of PRR11 abrogates its effects on F-actin polymerization and nuclear instability and that deletion of amino acid residues 100–184 or 100–200 strongly induces an F-actin structure called the actin comet tail, not observed with WT PRR11. Our findings indicate that cytoplasmic PRR11 plays an essential role in regulating F-actin assembly and nuclear stability by recruiting the ARP2/3 complex in human non-small cell lung carcinoma cells.




it

Structures of the MHC-I molecule BF2*1501 disclose the preferred presentation of an H5N1 virus-derived epitope [Protein Structure and Folding]

Lethal infections by strains of the highly-pathogenic avian influenza virus (HPAIV) H5N1 pose serious threats to both the poultry industry and public health worldwide. A lack of confirmed HPAIV epitopes recognized by cytotoxic T lymphocytes (CTLs) has hindered the utilization of CD8+ T-cell–mediated immunity and has precluded the development of effectively diversified epitope-based vaccination approaches. In particular, an HPAIV H5N1 CTL-recognized epitope based on the peptide MHC-I–β2m (pMHC-I) complex has not yet been designed. Here, screening a collection of selected peptides of several HPAIV strains against a specific pathogen-free pMHC-I (pBF2*1501), we identified a highly-conserved HPAIV H5N1 CTL epitope, named HPAIV–PA123–130. We determined the structure of the BF2*1501–PA123–130 complex at 2.1 Å resolution to elucidate the molecular mechanisms of a preferential presentation of the highly-conserved PA123–130 epitope in the chicken B15 lineage. Conformational characteristics of the PA123–130 epitope with a protruding Tyr-7 residue indicated that this epitope has great potential to be recognized by specific TCRs. Moreover, significantly increased numbers of CD8+ T cells specific for the HPAIV–PA123–130 epitope in peptide-immunized chickens indicated that a repertoire of CD8+ T cells can specifically respond to this epitope. We anticipate that the identification and structural characterization of the PA123–130 epitope reported here could enable further studies of CTL immunity against HPAIV H5N1. Such studies may aid in the development of vaccine development strategies using well-conserved internal viral antigens in chickens.




it

Inter-{alpha}-inhibitor heavy chain-1 has an integrin-like 3D structure mediating immune regulatory activities and matrix stabilization during ovulation [Glycobiology and Extracellular Matrices]

Inter-α-inhibitor is a proteoglycan essential for mammalian reproduction and also plays a less well-characterized role in inflammation. It comprises two homologous “heavy chains” (HC1 and HC2) covalently attached to chondroitin sulfate on the bikunin core protein. Before ovulation, HCs are transferred onto the polysaccharide hyaluronan (HA) to form covalent HC·HA complexes, thereby stabilizing an extracellular matrix around the oocyte required for fertilization. Additionally, such complexes form during inflammatory processes and mediate leukocyte adhesion in the synovial fluids of arthritis patients and protect against sepsis. Here using X-ray crystallography, we show that human HC1 has a structure similar to integrin β-chains, with a von Willebrand factor A domain containing a functional metal ion-dependent adhesion site (MIDAS) and an associated hybrid domain. A comparison of the WT protein and a variant with an impaired MIDAS (but otherwise structurally identical) by small-angle X-ray scattering and analytical ultracentrifugation revealed that HC1 self-associates in a cation-dependent manner, providing a mechanism for HC·HA cross-linking and matrix stabilization. Surprisingly, unlike integrins, HC1 interacted with RGD-containing ligands, such as fibronectin, vitronectin, and the latency-associated peptides of transforming growth factor β, in a MIDAS/cation-independent manner. However, HC1 utilizes its MIDAS motif to bind to and inhibit the cleavage of complement C3, and small-angle X-ray scattering–based modeling indicates that this occurs through the inhibition of the alternative pathway C3 convertase. These findings provide detailed structural and functional insights into HC1 as a regulator of innate immunity and further elucidate the role of HC·HA complexes in inflammation and ovulation.




it

Glucocerebrosidases catalyze a transgalactosylation reaction that yields a newly-identified brain sterol metabolite, galactosylated cholesterol [Glycobiology and Extracellular Matrices]

β-Glucocerebrosidase (GBA) hydrolyzes glucosylceramide (GlcCer) to generate ceramide. Previously, we demonstrated that lysosomal GBA1 and nonlysosomal GBA2 possess not only GlcCer hydrolase activity, but also transglucosylation activity to transfer the glucose residue from GlcCer to cholesterol to form β-cholesterylglucoside (β-GlcChol) in vitro. β-GlcChol is a member of sterylglycosides present in diverse species. How GBA1 and GBA2 mediate β-GlcChol metabolism in the brain is unknown. Here, we purified and characterized sterylglycosides from rodent and fish brains. Although glucose is thought to be the sole carbohydrate component of sterylglycosides in vertebrates, structural analysis of rat brain sterylglycosides revealed the presence of galactosylated cholesterol (β-GalChol), in addition to β-GlcChol. Analyses of brain tissues from GBA2-deficient mice and GBA1- and/or GBA2-deficient Japanese rice fish (Oryzias latipes) revealed that GBA1 and GBA2 are responsible for β-GlcChol degradation and formation, respectively, and that both GBA1 and GBA2 are responsible for β-GalChol formation. Liquid chromatography–tandem MS revealed that β-GlcChol and β-GalChol are present throughout development from embryo to adult in the mouse brain. We found that β-GalChol expression depends on galactosylceramide (GalCer), and developmental onset of β-GalChol biosynthesis appeared to be during myelination. We also found that β-GlcChol and β-GalChol are secreted from neurons and glial cells in association with exosomes. In vitro enzyme assays confirmed that GBA1 and GBA2 have transgalactosylation activity to transfer the galactose residue from GalCer to cholesterol to form β-GalChol. This is the first report of the existence of β-GalChol in vertebrates and how β-GlcChol and β-GalChol are formed in the brain.




it

Substrate recognition and ATPase activity of the E. coli cysteine/cystine ABC transporter YecSC-FliY [Microbiology]

Sulfur is essential for biological processes such as amino acid biogenesis, iron–sulfur cluster formation, and redox homeostasis. To acquire sulfur-containing compounds from the environment, bacteria have evolved high-affinity uptake systems, predominant among which is the ABC transporter family. Theses membrane-embedded enzymes use the energy of ATP hydrolysis for transmembrane transport of a wide range of biomolecules against concentration gradients. Three distinct bacterial ABC import systems of sulfur-containing compounds have been identified, but the molecular details of their transport mechanism remain poorly characterized. Here we provide results from a biochemical analysis of the purified Escherichia coli YecSC-FliY cysteine/cystine import system. We found that the substrate-binding protein FliY binds l-cystine, l-cysteine, and d-cysteine with micromolar affinities. However, binding of the l- and d-enantiomers induced different conformational changes of FliY, where the l- enantiomer–substrate-binding protein complex interacted more efficiently with the YecSC transporter. YecSC had low basal ATPase activity that was moderately stimulated by apo FliY, more strongly by d-cysteine–bound FliY, and maximally by l-cysteine– or l-cystine–bound FliY. However, at high FliY concentrations, YecSC reached maximal ATPase rates independent of the presence or nature of the substrate. These results suggest that FliY exists in a conformational equilibrium between an open, unliganded form that does not bind to the YecSC transporter and closed, unliganded and closed, liganded forms that bind this transporter with variable affinities but equally stimulate its ATPase activity. These findings differ from previous observations for similar ABC transporters, highlighting the extent of mechanistic diversity in this large protein family.




it

Dopamine transporter trafficking and Rit2 GTPase: Mechanism of action and in vivo impact [Neurobiology]

Following its evoked release, dopamine (DA) signaling is rapidly terminated by presynaptic reuptake, mediated by the cocaine-sensitive DA transporter (DAT). DAT surface availability is dynamically regulated by endocytic trafficking, and direct protein kinase C (PKC) activation acutely diminishes DAT surface expression by accelerating DAT internalization. Previous cell line studies demonstrated that PKC-stimulated DAT endocytosis requires both Ack1 inactivation, which releases a DAT-specific endocytic brake, and the neuronal GTPase, Rit2, which binds DAT. However, it is unknown whether Rit2 is required for PKC-stimulated DAT endocytosis in DAergic terminals or whether there are region- and/or sex-dependent differences in PKC-stimulated DAT trafficking. Moreover, the mechanisms by which Rit2 controls PKC-stimulated DAT endocytosis are unknown. Here, we directly examined these important questions. Ex vivo studies revealed that PKC activation acutely decreased DAT surface expression selectively in ventral, but not dorsal, striatum. AAV-mediated, conditional Rit2 knockdown in DAergic neurons impacted baseline DAT surface:intracellular distribution in DAergic terminals from female ventral, but not dorsal, striatum. Further, Rit2 was required for PKC-stimulated DAT internalization in both male and female ventral striatum. FRET and surface pulldown studies in cell lines revealed that PKC activation drives DAT-Rit2 surface dissociation and that the DAT N terminus is required for both PKC-mediated DAT-Rit2 dissociation and DAT internalization. Finally, we found that Rit2 and Ack1 independently converge on DAT to facilitate PKC-stimulated DAT endocytosis. Together, our data provide greater insight into mechanisms that mediate PKC-regulated DAT internalization and reveal unexpected region-specific differences in PKC-stimulated DAT trafficking in bona fide DAergic terminals.




it

ABC transporters control ATP release through cholesterol-dependent volume-regulated anion channel activity [Signal Transduction]

Purinergic signaling by extracellular ATP regulates a variety of cellular events and is implicated in both normal physiology and pathophysiology. Several molecules have been associated with the release of ATP and other small molecules, but their precise contributions have been difficult to assess because of their complexity and heterogeneity. Here, we report on the results of a gain-of-function screen for modulators of hypotonicity-induced ATP release using HEK-293 cells and murine cerebellar granule neurons, along with bioluminescence, calcium FLIPR, and short hairpin RNA–based gene-silencing assays. This screen utilized the most extensive genome-wide ORF collection to date, covering 90% of human, nonredundant, protein-encoding genes. We identified two ABCG1 (ABC subfamily G member 1) variants, which regulate cellular cholesterol, as modulators of hypotonicity-induced ATP release. We found that cholesterol levels control volume-regulated anion channel–dependent ATP release. These findings reveal novel mechanisms for the regulation of ATP release and volume-regulated anion channel activity and provide critical links among cellular status, cholesterol, and purinergic signaling.




it

The heme-regulatory motifs of heme oxygenase-2 contribute to the transfer of heme to the catalytic site for degradation [Protein Structure and Folding]

Heme-regulatory motifs (HRMs) are present in many proteins that are involved in diverse biological functions. The C-terminal tail region of human heme oxygenase-2 (HO2) contains two HRMs whose cysteine residues form a disulfide bond; when reduced, these cysteines are available to bind Fe3+-heme. Heme binding to the HRMs occurs independently of the HO2 catalytic active site in the core of the protein, where heme binds with high affinity and is degraded to biliverdin. Here, we describe the reversible, protein-mediated transfer of heme between the HRMs and the HO2 core. Using hydrogen-deuterium exchange (HDX)-MS to monitor the dynamics of HO2 with and without Fe3+-heme bound to the HRMs and to the core, we detected conformational changes in the catalytic core only in one state of the catalytic cycle—when Fe3+-heme is bound to the HRMs and the core is in the apo state. These conformational changes were consistent with transfer of heme between binding sites. Indeed, we observed that HRM-bound Fe3+-heme is transferred to the apo-core either upon independent expression of the core and of a construct spanning the HRM-containing tail or after a single turnover of heme at the core. Moreover, we observed transfer of heme from the core to the HRMs and equilibration of heme between the core and HRMs. We therefore propose an Fe3+-heme transfer model in which HRM-bound heme is readily transferred to the catalytic site for degradation to facilitate turnover but can also equilibrate between the sites to maintain heme homeostasis.




it

Correction: A dual druggable genome-wide siRNA and compound library screening approach identifies modulators of parkin recruitment to mitochondria. [Additions and Corrections]

VOLUME 295 (2020) PAGES 3285–3300An incorrect graph was used in Fig. 5C. This error has now been corrected. Additionally, some of the statistics reported in the legend and text referring to Fig. 5C were incorrect. The F statistics for Fig. 5C should state Fken(3,16) = 7.454, p < 0.01; FCCCP(1,16) = 102.9, p < 0.0001; Finteraction(3,16) = 7.480, p < 0.01. This correction does not affect the results or conclusions of this work.jbc;295/17/5835/F5F1F5Figure 5C.




it

Correction: Metabolic fingerprinting for diagnosis of fibromyalgia and other rheumatologic disorders. [Additions and Corrections]

VOLUME 294 (2019) PAGES 2555–2568Due to publisher error, “150 l/mm” was changed to “150 liters/mm” in the second paragraph of the “Vibrational spectroscopy of samples” section under “Experimental Procedures.” The correct phrase should be “150 l/mm.”




it

X-ray structures of catalytic intermediates of cytochrome c oxidase provide insights into its O2 activation and unidirectional proton-pump mechanisms [Molecular Biophysics]

Cytochrome c oxidase (CcO) reduces O2 to water, coupled with a proton-pumping process. The structure of the O2-reduction site of CcO contains two reducing equivalents, Fea32+ and CuB1+, and suggests that a peroxide-bound state (Fea33+–O−–O−–CuB2+) rather than an O2-bound state (Fea32+–O2) is the initial catalytic intermediate. Unexpectedly, however, resonance Raman spectroscopy results have shown that the initial intermediate is Fea32+–O2, whereas Fea33+–O−–O−–CuB2+ is undetectable. Based on X-ray structures of static noncatalytic CcO forms and mutation analyses for bovine CcO, a proton-pumping mechanism has been proposed. It involves a proton-conducting pathway (the H-pathway) comprising a tandem hydrogen-bond network and a water channel located between the N- and P-side surfaces. However, a system for unidirectional proton-transport has not been experimentally identified. Here, an essentially identical X-ray structure for the two catalytic intermediates (P and F) of bovine CcO was determined at 1.8 Å resolution. A 1.70 Å Fe–O distance of the ferryl center could best be described as Fea34+ = O2−, not as Fea34+–OH−. The distance suggests an ∼800-cm−1 Raman stretching band. We found an interstitial water molecule that could trigger a rapid proton-coupled electron transfer from tyrosine-OH to the slowly forming Fea33+–O−–O−–CuB2+ state, preventing its detection, consistent with the unexpected Raman results. The H-pathway structures of both intermediates indicated that during proton-pumping from the hydrogen-bond network to the P-side, a transmembrane helix closes the water channel connecting the N-side with the hydrogen-bond network, facilitating unidirectional proton-pumping during the P-to-F transition.




it

Structural insight into the recognition of pathogen-derived phosphoglycolipids by C-type lectin receptor DCAR [Protein Structure and Folding]

The C-type lectin receptors (CLRs) form a family of pattern recognition receptors that recognize numerous pathogens, such as bacteria and fungi, and trigger innate immune responses. The extracellular carbohydrate-recognition domain (CRD) of CLRs forms a globular structure that can coordinate a Ca2+ ion, allowing receptor interactions with sugar-containing ligands. Although well-conserved, the CRD fold can also display differences that directly affect the specificity of the receptors for their ligands. Here, we report crystal structures at 1.8–2.3 Å resolutions of the CRD of murine dendritic cell-immunoactivating receptor (DCAR, or Clec4b1), the CLR that binds phosphoglycolipids such as acylated phosphatidyl-myo-inositol mannosides (AcPIMs) of mycobacteria. Using mutagenesis analysis, we identified critical residues, Ala136 and Gln198, on the surface surrounding the ligand-binding site of DCAR, as well as an atypical Ca2+-binding motif (Glu-Pro-Ser/EPS168–170). By chemically synthesizing a water-soluble ligand analog, inositol-monophosphate dimannose (IPM2), we confirmed the direct interaction of DCAR with the polar moiety of AcPIMs by biolayer interferometry and co-crystallization approaches. We also observed a hydrophobic groove extending from the ligand-binding site that is in a suitable position to interact with the lipid portion of whole AcPIMs. These results suggest that the hydroxyl group-binding ability and hydrophobic groove of DCAR mediate its specific binding to pathogen-derived phosphoglycolipids such as mycobacterial AcPIMs.




it

Structural and mutational analyses of the bifunctional arginine dihydrolase and ornithine cyclodeaminase AgrE from the cyanobacterium Anabaena [Enzymology]

In cyanobacteria, metabolic pathways that use the nitrogen-rich amino acid arginine play a pivotal role in nitrogen storage and mobilization. The N-terminal domains of two recently identified bacterial enzymes: ArgZ from Synechocystis and AgrE from Anabaena, have been found to contain an arginine dihydrolase. This enzyme provides catabolic activity that converts arginine to ornithine, resulting in concomitant release of CO2 and ammonia. In Synechocystis, the ArgZ-mediated ornithine–ammonia cycle plays a central role in nitrogen storage and remobilization. The C-terminal domain of AgrE contains an ornithine cyclodeaminase responsible for the formation of proline from ornithine and ammonia production, indicating that AgrE is a bifunctional enzyme catalyzing two sequential reactions in arginine catabolism. Here, the crystal structures of AgrE in three different ligation states revealed that it has a tetrameric conformation, possesses a binding site for the arginine dihydrolase substrate l-arginine and product l-ornithine, and contains a binding site for the coenzyme NAD(H) required for ornithine cyclodeaminase activity. Structure–function analyses indicated that the structure and catalytic mechanism of arginine dihydrolase in AgrE are highly homologous with those of a known bacterial arginine hydrolase. We found that in addition to other active-site residues, Asn-71 is essential for AgrE's dihydrolase activity. Further analysis suggested the presence of a passage for substrate channeling between the two distinct AgrE active sites, which are situated ∼45 Å apart. These results provide structural and functional insights into the bifunctional arginine dihydrolase–ornithine cyclodeaminase enzyme AgrE required for arginine catabolism in Anabaena.




it

Reduction of protein phosphatase 2A (PP2A) complexity reveals cellular functions and dephosphorylation motifs of the PP2A/B'{delta} holoenzyme [Enzymology]

Protein phosphatase 2A (PP2A) is a large enzyme family responsible for most cellular Ser/Thr dephosphorylation events. PP2A substrate specificity, localization, and regulation by second messengers rely on more than a dozen regulatory subunits (including B/R2, B'/R5, and B″/R3), which form the PP2A heterotrimeric holoenzyme by associating with a dimer comprising scaffolding (A) and catalytic (C) subunits. Because of partial redundancy and high endogenous expression of PP2A holoenzymes, traditional approaches of overexpressing, knocking down, or knocking out PP2A regulatory subunits have yielded only limited insights into their biological roles and substrates. To this end, here we sought to reduce the complexity of cellular PP2A holoenzymes. We used tetracycline-inducible expression of pairs of scaffolding and regulatory subunits with complementary charge-reversal substitutions in their interaction interfaces. For each of the three regulatory subunit families, we engineered A/B charge–swap variants that could bind to one another, but not to endogenous A and B subunits. Because endogenous Aα was targeted by a co-induced shRNA, endogenous B subunits were rapidly degraded, resulting in expression of predominantly a single PP2A heterotrimer composed of the A/B charge–swap pair and the endogenous catalytic subunit. Using B'δ/PPP2R5D, we show that PP2A complexity reduction, but not PP2A overexpression, reveals a role of this holoenzyme in suppression of extracellular signal–regulated kinase signaling and protein kinase A substrate dephosphorylation. When combined with global phosphoproteomics, the PP2A/B'δ reduction approach identified consensus dephosphorylation motifs in its substrates and suggested that residues surrounding the phosphorylation site play roles in PP2A substrate specificity.




it

Structure of an ancestral mammalian family 1B1 cytochrome P450 with increased thermostability [Enzymology]

Mammalian cytochrome P450 enzymes often metabolize many pharmaceuticals and other xenobiotics, a feature that is valuable in a biotechnology setting. However, extant P450 enzymes are typically relatively unstable, with T50 values of ∼30–40 °C. Reconstructed ancestral cytochrome P450 enzymes tend to have variable substrate selectivity compared with related extant forms, but they also have higher thermostability and therefore may be excellent tools for commercial biosynthesis of important intermediates, final drug molecules, or drug metabolites. The mammalian ancestor of the cytochrome P450 1B subfamily was herein characterized structurally and functionally, revealing differences from the extant human CYP1B1 in ligand binding, metabolism, and potential molecular contributors to its thermostability. Whereas extant human CYP1B1 has one molecule of α-naphthoflavone in a closed active site, we observed that subtle amino acid substitutions outside the active site in the ancestor CYP1B enzyme yielded an open active site with four ligand copies. A structure of the ancestor with 17β-estradiol revealed only one molecule in the active site, which still had the same open conformation. Detailed comparisons between the extant and ancestor forms revealed increases in electrostatic and aromatic interactions between distinct secondary structure elements in the ancestral forms that may contribute to their thermostability. To the best of our knowledge, this represents the first structural evaluation of a reconstructed ancestral cytochrome P450, revealing key features that appear to contribute to its thermostability.




it

Processivity of dextransucrases synthesizing very-high-molar-mass dextran is mediated by sugar-binding pockets in domain V [Glycobiology and Extracellular Matrices]

The dextransucrase DSR-OK from the Gram-positive bacterium Oenococcus kitaharae DSM17330 produces a dextran of the highest molar mass reported to date (∼109 g/mol). In this study, we selected a recombinant form, DSR-OKΔ1, to identify molecular determinants involved in the sugar polymerization mechanism and that confer its ability to produce a very-high-molar-mass polymer. In domain V of DSR-OK, we identified seven putative sugar-binding pockets characteristic of glycoside hydrolase 70 (GH70) glucansucrases that are known to be involved in glucan binding. We investigated their role in polymer synthesis through several approaches, including monitoring of dextran synthesis, affinity assays, sugar binding pocket deletions, site-directed mutagenesis, and construction of chimeric enzymes. Substitution of only two stacking aromatic residues in two consecutive sugar-binding pockets (variant DSR-OKΔ1-Y1162A-F1228A) induced quasi-complete loss of very-high-molar-mass dextran synthesis, resulting in production of only 10–13 kg/mol polymers. Moreover, the double mutation completely switched the semiprocessive mode of DSR-OKΔ1 toward a distributive one, highlighting the strong influence of these pockets on enzyme processivity. Finally, the position of each pocket relative to the active site also appeared to be important for polymer elongation. We propose that sugar-binding pockets spatially closer to the catalytic domain play a major role in the control of processivity. A deep structural characterization, if possible with large-molar-mass sugar ligands, would allow confirming this hypothesis.




it

The mitochondrial protein PGAM5 suppresses energy consumption in brown adipocytes by repressing expression of uncoupling protein 1 [Metabolism]

Accumulating evidence suggests that brown adipose tissue (BAT) is a potential therapeutic target for managing obesity and related diseases. PGAM family member 5, mitochondrial serine/threonine protein phosphatase (PGAM5), is a protein phosphatase that resides in the mitochondria and regulates many biological processes, including cell death, mitophagy, and immune responses. Because BAT is a mitochondria-rich tissue, we have hypothesized that PGAM5 has a physiological function in BAT. We previously reported that PGAM5-knockout (KO) mice are resistant to severe metabolic stress. Importantly, lipid accumulation is suppressed in PGAM5-KO BAT, even under unstressed conditions, raising the possibility that PGAM5 deficiency stimulates lipid consumption. However, the mechanism underlying this observation is undetermined. Here, using an array of biochemical approaches, including quantitative RT-PCR, immunoblotting, and oxygen consumption assays, we show that PGAM5 negatively regulates energy expenditure in brown adipocytes. We found that PGAM5-KO brown adipocytes have an enhanced oxygen consumption rate and increased expression of uncoupling protein 1 (UCP1), a protein that increases energy consumption in the mitochondria. Mechanistically, we found that PGAM5 phosphatase activity and intramembrane cleavage are required for suppression of UCP1 activity. Furthermore, utilizing a genome-wide siRNA screen in HeLa cells to search for regulators of PGAM5 cleavage, we identified a set of candidate genes, including phosphatidylserine decarboxylase (PISD), which catalyzes the formation of phosphatidylethanolamine at the mitochondrial membrane. Taken together, these results indicate that PGAM5 suppresses mitochondrial energy expenditure by down-regulating UCP1 expression in brown adipocytes and that its phosphatase activity and intramembrane cleavage are required for UCP1 suppression.




it

Single-molecule level structural dynamics of DNA unwinding by human mitochondrial Twinkle helicase [Molecular Biophysics]

Knowledge of the molecular events in mitochondrial DNA (mtDNA) replication is crucial to understanding the origins of human disorders arising from mitochondrial dysfunction. Twinkle helicase is an essential component of mtDNA replication. Here, we employed atomic force microscopy imaging in air and liquids to visualize ring assembly, DNA binding, and unwinding activity of individual Twinkle hexamers at the single-molecule level. We observed that the Twinkle subunits self-assemble into hexamers and higher-order complexes that can switch between open and closed-ring configurations in the absence of DNA. Our analyses helped visualize Twinkle loading onto and unloading from DNA in an open-ringed configuration. They also revealed that closed-ring conformers bind and unwind several hundred base pairs of duplex DNA at an average rate of ∼240 bp/min. We found that the addition of mitochondrial single-stranded (ss) DNA–binding protein both influences the ways Twinkle loads onto defined DNA substrates and stabilizes the unwound ssDNA product, resulting in a ∼5-fold stimulation of the apparent DNA-unwinding rate. Mitochondrial ssDNA-binding protein also increased the estimated translocation processivity from 1750 to >9000 bp before helicase disassociation, suggesting that more than half of the mitochondrial genome could be unwound by Twinkle during a single DNA-binding event. The strategies used in this work provide a new platform to examine Twinkle disease variants and the core mtDNA replication machinery. They also offer an enhanced framework to investigate molecular mechanisms underlying deletion and depletion of the mitochondrial genome as observed in mitochondrial diseases.




it

G{alpha}q splice variants mediate phototransduction, rhodopsin synthesis, and retinal integrity in Drosophila [Signal Transduction]

Heterotrimeric G proteins mediate a variety of signaling processes by coupling G protein–coupled receptors to intracellular effector molecules. In Drosophila, the Gαq gene encodes several Gαq splice variants, with the Gαq1 isoform protein playing a major role in fly phototransduction. However, Gαq1 null mutant flies still exhibit a residual light response, indicating that other Gαq splice variants or additional Gq α subunits are involved in phototransduction. Here, we isolated a mutant fly with no detectable light responses, decreased rhodopsin (Rh) levels, and rapid retinal degeneration. Using electrophysiological and genetic studies, biochemical assays, immunoblotting, real-time RT-PCR, and EM analysis, we found that mutations in the Gαq gene disrupt light responses and demonstrate that the Gαq3 isoform protein is responsible for the residual light response in Gαq1 null mutants. Moreover, we report that Gαq3 mediates rhodopsin synthesis. Depletion of all Gαq splice variants led to rapid light-dependent retinal degeneration, due to the formation stable Rh1-arrestin 2 (Arr2) complexes. Our findings clarify essential roles of several different Gαq splice variants in phototransduction and retinal integrity in Drosophila and reveal that Gαq3 functions in rhodopsin synthesis.




it

Correction: Comparative structure-function analysis of bromodomain and extraterminal motif (BET) proteins in a gene-complementation system. [Additions and Corrections]

VOLUME 295 (2020) PAGES 1898–1914Yichen Zhong's name was misspelled. The correct spelling is shown above.




it

Withdrawal: miR-21-mediated radioresistance occurs via promoting repair of DNA double strand breaks. [Withdrawals/Retractions]

VOLUME 292 (2017) PAGES 3531–3540This article has been withdrawn by Shuofeng Hu, Xiaomin Ying, Xiangming Zhang, and Ya Wang. Baocheng Hu, Xiang Wang, Ping Wang, Jian Wang, and Hongyan Wang could not be reached. In Fig. 1C, the DAPI and merged images for the no IR control were switched. The DNA-PKcs and actin immunoblots on the left appear to have been spliced. In Fig. 4C, the DNA-PKcs immunoblot appears to have been spliced. In Fig. 4D, lanes 1 and 5; lanes 2, 6, and 8; and lanes 3 and 7 of the DNA-PKcs immunoblot are the same. In the p-DNA-PKcs immunoblot, lanes 1 and 8, lanes 2 and 6, and lanes 3 and 7 are the same. In the CRY2 immunoblot, lanes 5 and 7 are the same. In the CDC25A immunoblot, lanes 3 and 8 are the same. In the GSK3B immunoblot, lanes 1 and 5 and lanes 3 and 7 are the same. Also in the GSK3B immunoblot, the upper GSK3B bands in lanes 6 and 8 are the same. Lanes 4 and 8 of the cyclin D1 immunoblot are the same. In Fig. 5A, the CDC25A immunoblot appears to have been spliced. Also in Fig. 5A, lanes 2–4 and lanes 6–8 of the CDC25A immunoblot are the same. Lanes 4–6 and 7–9 of the actin immunoblot are the same. In Fig. 5C, lane 1 of the CDC25A immunoblot was reused in lane 5, and lanes 3 and 4 were reused in lanes 7 and 8. In the...




it

Withdrawal: Distinct roles of Ape1 protein, an enzyme involved in DNA repair, in high or low linear energy transfer ionizing radiation-induced cell killing. [Withdrawals/Retractions]

VOLUME 289 (2014) PAGES 30635–30644This article has been withdrawn by Guangnan Chen, Dongkyoo Park, Francis A. Cucinotta, David S. Yu, Xingming Deng, William S. Dynan, Paul W. Doetsch, and Ya Wang. Hongyan Wang, Xiang Wang, Xiangming Zhang, and Xiaobing Tang could not be reached. The last two lanes of the actin immunoblot in Fig. 1A were reused in the last two lanes of the actin immunoblot in Fig. 1C. In Fig. 2A, the γ-H2AX and the merge with DAPI images for no IR treatment do not match. In Fig. 3A, lanes 3 and 4 of the γ-H2AX immunoblot were reused in lanes 7 and 8, and lanes 5 and 6 of the H2A immunoblot were reused in lanes 7 and 8. In Fig. 3B, lanes 5 and 6 of the H2A immunoblot were reused in lanes 7 and 8. In Fig. 3C, lanes 5 and 6 of the γ-H2AX immunoblot were reused in lanes 7 and 8. Additionally, lanes 1 and 2 of the H2A immunoblot were reused in lanes 3 and 4. In Fig. 3D, lanes 1 and 2 of the Mre11 immunoblot from lysates were reused in lanes 4 and 5. In the γ-H2AX immunoblot, lane 3 was reused in lane 7, and lane 4 was reused in lanes 6 and 8. Also in the H2A immunoblot, lanes 1 and 2 were reused in lanes 3 and 4. In Fig. 4B, lanes 2 and 6 of the Mre11 immunoblot from Ogg1−/− cells are the same. In the Ape1...




it

The Escherichia coli cellulose synthase subunit G (BcsG) is a Zn2+-dependent phosphoethanolamine transferase [Glycobiology and Extracellular Matrices]

Bacterial biofilms are cellular communities that produce an adherent matrix. Exopolysaccharides are key structural components of this matrix and are required for the assembly and architecture of biofilms produced by a wide variety of microorganisms. The human bacterial pathogens Escherichia coli and Salmonella enterica produce a biofilm matrix composed primarily of the exopolysaccharide phosphoethanolamine (pEtN) cellulose. Once thought to be composed of only underivatized cellulose, the pEtN modification present in these matrices has been implicated in the overall architecture and integrity of the biofilm. However, an understanding of the mechanism underlying pEtN derivatization of the cellulose exopolysaccharide remains elusive. The bacterial cellulose synthase subunit G (BcsG) is a predicted inner membrane–localized metalloenzyme that has been proposed to catalyze the transfer of the pEtN group from membrane phospholipids to cellulose. Here we present evidence that the C-terminal domain of BcsG from E. coli (EcBcsGΔN) functions as a phosphoethanolamine transferase in vitro with substrate preference for cellulosic materials. Structural characterization of EcBcsGΔN revealed that it belongs to the alkaline phosphatase superfamily, contains a Zn2+ ion at its active center, and is structurally similar to characterized enzymes that confer colistin resistance in Gram-negative bacteria. Informed by our structural studies, we present a functional complementation experiment in E. coli AR3110, indicating that the activity of the BcsG C-terminal domain is essential for integrity of the pellicular biofilm. Furthermore, our results established a similar but distinct active-site architecture and catalytic mechanism shared between BcsG and the colistin resistance enzymes.




it

A Legionella effector kinase is activated by host inositol hexakisphosphate [Enzymology]

The transfer of a phosphate from ATP to a protein substrate, a modification known as protein phosphorylation, is catalyzed by protein kinases. Protein kinases play a crucial role in virtually every cellular activity. Recent studies of atypical protein kinases have highlighted the structural similarity of the kinase superfamily despite notable differences in primary amino acid sequence. Here, using a bioinformatics screen, we searched for putative protein kinases in the intracellular bacterial pathogen Legionella pneumophila and identified the type 4 secretion system effector Lpg2603 as a remote member of the protein kinase superfamily. Employing an array of biochemical and structural biology approaches, including in vitro kinase assays and isothermal titration calorimetry, we show that Lpg2603 is an active protein kinase with several atypical structural features. Importantly, we found that the eukaryote-specific host signaling molecule inositol hexakisphosphate (IP6) is required for Lpg2603 kinase activity. Crystal structures of Lpg2603 in the apo-form and when bound to IP6 revealed an active-site rearrangement that allows for ATP binding and catalysis. Our results on the structure and activity of Lpg2603 reveal a unique mode of regulation of a protein kinase, provide the first example of a bacterial kinase that requires IP6 for its activation, and may aid future work on the function of this effector during Legionella pathogenesis.