sea

Hematopoiesis is regulated by cholesterol efflux pathways and lipid rafts: connections with cardiovascular diseases [Thematic Reviews]

Lipid rafts are highly ordered regions of the plasma membrane that are enriched in cholesterol and sphingolipids and play important roles in many cells. In hematopoietic stem and progenitor cells (HSPCs), lipid rafts house receptors critical for normal hematopoiesis. Lipid rafts also can bind and sequester kinases that induce negative feedback pathways to limit proliferative cytokine receptor cycling back to the cell membrane. Modulation of lipid rafts occurs through an array of mechanisms, with optimal cholesterol efflux one of the major regulators. As such, cholesterol homeostasis also regulates hematopoiesis. Increased lipid raft content, which occurs in response to changes in cholesterol efflux in the membrane, can result in prolonged receptor occupancy in the cell membrane and enhanced signaling. In addition, certain diseases, like diabetes, may contribute to lipid raft formation and affect cholesterol retention in rafts. In this review, we explore the role of lipid raft-related mechanisms in hematopoiesis and CVD (specifically, atherosclerosis) and discuss how defective cholesterol efflux pathways in HSPCs contribute to expansion of lipid rafts, thereby promoting myelopoiesis and thrombopoiesis. We also discuss the utility of cholesterol acceptors in contributing to lipid raft regulation and disruption, and highlight the potential to manipulate these pathways for therapeutic gain in CVD as well as other disorders with aberrant hematopoiesis.




sea

Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases [Thematic Reviews]

Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson’s, Huntington’s, and Alzheimer’s diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.




sea

GPIHBP1, a partner protein for lipoprotein lipase, is expressed only in capillary endothelial cells [Images In Lipid Research]




sea

Images in Lipid Research [Editorials]




sea

The Journal of Lipid Research




sea

Collaborative Cross Mice Yield Genetic Modifiers for Pseudomonas aeruginosa Infection in Human Lung Disease

ABSTRACT

Human genetics influence a range of pathological and clinical phenotypes in respiratory infections; however, the contributions of disease modifiers remain underappreciated. We exploited the Collaborative Cross (CC) mouse genetic-reference population to map genetic modifiers that affect the severity of Pseudomonas aeruginosa lung infection. Screening for P. aeruginosa respiratory infection in a cohort of 39 CC lines exhibits distinct disease phenotypes ranging from complete resistance to lethal disease. Based on major changes in the survival times, a quantitative-trait locus (QTL) was mapped on murine chromosome 3 to the genomic interval of Mb 110.4 to 120.5. Within this locus, composed of 31 protein-coding genes, two candidate genes, namely, dihydropyrimidine dehydrogenase (Dpyd) and sphingosine-1-phosphate receptor 1 (S1pr1), were identified according to the level of genome-wide significance and disease gene prioritization. Functional validation of the S1pr1 gene by pharmacological targeting in C57BL/6NCrl mice confirmed its relevance in P. aeruginosa pathophysiology. However, in a cohort of Canadian patients with cystic fibrosis (CF) disease, regional genetic-association analysis of the syntenic human locus on chromosome 1 (Mb 97.0 to 105.0) identified two single-nucleotide polymorphisms (rs10875080 and rs11582736) annotated to the Dpyd gene that were significantly associated with age at first P. aeruginosa infection. Thus, there is evidence that both genes might be implicated in this disease. Our results demonstrate that the discovery of murine modifier loci may generate information that is relevant to human disease progression.

IMPORTANCE Respiratory infection caused by P. aeruginosa is one of the most critical health burdens worldwide. People affected by P. aeruginosa infection include patients with a weakened immune system, such as those with cystic fibrosis (CF) genetic disease or non-CF bronchiectasis. Disease outcomes range from fatal pneumonia to chronic life-threatening infection and inflammation leading to the progressive deterioration of pulmonary function. The development of these respiratory infections is mediated by multiple causes. However, the genetic factors underlying infection susceptibility are poorly known and difficult to predict. Our study employed novel approaches and improved mouse disease models to identify genetic modifiers that affect the severity of P. aeruginosa lung infection. We identified candidate genes to enhance our understanding of P. aeruginosa infection in humans and provide a proof of concept that could be exploited for other human pathologies mediated by bacterial infection.




sea

Global Transcriptome Analysis Identifies a Diagnostic Signature for Early Disseminated Lyme Disease and Its Resolution

ABSTRACT

A bioinformatics approach was employed to identify transcriptome alterations in the peripheral blood mononuclear cells of well-characterized human subjects who were diagnosed with early disseminated Lyme disease (LD) based on stringent microbiological and clinical criteria. Transcriptomes were assessed at the time of presentation and also at approximately 1 month (early convalescence) and 6 months (late convalescence) after initiation of an appropriate antibiotic regimen. Comparative transcriptomics identified 335 transcripts, representing 233 unique genes, with significant alterations of at least 2-fold expression in acute- or convalescent-phase blood samples from LD subjects relative to healthy donors. Acute-phase blood samples from LD subjects had the largest number of differentially expressed transcripts (187 induced, 54 repressed). This transcriptional profile, which was dominated by interferon-regulated genes, was sustained during early convalescence. 6 months after antibiotic treatment the transcriptome of LD subjects was indistinguishable from that of healthy controls based on two separate methods of analysis. Return of the LD expression profile to levels found in control subjects was concordant with disease outcome; 82% of subjects with LD experienced at least one symptom at the baseline visit compared to 43% at the early convalescence time point and only a single patient (9%) at the 6-month convalescence time point. Using the random forest machine learning algorithm, we developed an efficient computational framework to identify sets of 20 classifier genes that discriminated LD from other bacterial and viral infections. These novel LD biomarkers not only differentiated subjects with acute disseminated LD from healthy controls with 96% accuracy but also distinguished between subjects with acute and resolved (late convalescent) disease with 97% accuracy.

IMPORTANCE Lyme disease (LD), caused by Borrelia burgdorferi, is the most common tick-borne infectious disease in the United States. We examined gene expression patterns in the blood of individuals with early disseminated LD at the time of diagnosis (acute) and also at approximately 1 month and 6 months following antibiotic treatment. A distinct acute LD profile was observed that was sustained during early convalescence (1 month) but returned to control levels 6 months after treatment. Using a computer learning algorithm, we identified sets of 20 classifier genes that discriminate LD from other bacterial and viral infections. In addition, these novel LD biomarkers are highly accurate in distinguishing patients with acute LD from healthy subjects and in discriminating between individuals with active and resolved infection. This computational approach offers the potential for more accurate diagnosis of early disseminated Lyme disease. It may also allow improved monitoring of treatment efficacy and disease resolution.




sea

A Virus Hosted in Malaria-Infected Blood Protects against T Cell-Mediated Inflammatory Diseases by Impairing DC Function in a Type I IFN-Dependent Manner

ABSTRACT

Coinfections shape immunity and influence the development of inflammatory diseases, resulting in detrimental or beneficial outcome. Coinfections with concurrent Plasmodium species can alter malaria clinical evolution, and malaria infection itself can modulate autoimmune reactions. Yet, the underlying mechanisms remain ill defined. Here, we demonstrate that the protective effects of some rodent malaria strains on T cell-mediated inflammatory pathologies are due to an RNA virus cohosted in malaria-parasitized blood. We show that live and extracts of blood parasitized by Plasmodium berghei K173 or Plasmodium yoelii 17X YM, protect against P. berghei ANKA-induced experimental cerebral malaria (ECM) and myelin oligodendrocyte glycoprotein (MOG)/complete Freund’s adjuvant (CFA)-induced experimental autoimmune encephalomyelitis (EAE), and that protection is associated with a strong type I interferon (IFN-I) signature. We detected the presence of the RNA virus lactate dehydrogenase-elevating virus (LDV) in the protective Plasmodium stabilates and we established that LDV infection alone was necessary and sufficient to recapitulate the protective effects on ECM and EAE. In ECM, protection resulted from an IFN-I-mediated reduction in the abundance of splenic conventional dendritic cell and impairment of their ability to produce interleukin (IL)-12p70, leading to a decrease in pathogenic CD4+ Th1 responses. In EAE, LDV infection induced IFN-I-mediated abrogation of IL-23, thereby preventing the differentiation of granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing encephalitogenic CD4+ T cells. Our work identifies a virus cohosted in several Plasmodium stabilates across the community and deciphers its major consequences on the host immune system. More generally, our data emphasize the importance of considering contemporaneous infections for the understanding of malaria-associated and autoimmune diseases.

IMPORTANCE Any infection modifies the host immune status, potentially ameliorating or aggravating the pathophysiology of a simultaneous inflammatory condition. In the course of investigating how malaria infection modulates the severity of contemporaneous inflammatory diseases, we identified a nonpathogenic mouse virus in stabilates of two widely used rodent parasite lines: Plasmodium berghei K173 and Plasmodium yoelii 17X YM. We established that the protective effects of these Plasmodium lines on cerebral malaria and multiple sclerosis are exclusively due to this virus. The virus induces a massive type I interferon (IFN-I) response and causes quantitative and qualitative defects in the ability of dendritic cells to promote pathogenic T cell responses. Beyond revealing a possible confounding factor in rodent malaria models, our work uncovers some bases by which a seemingly innocuous viral (co)infection profoundly changes the immunopathophysiology of inflammatory diseases.




sea

Coping with COVID: How a Research Team Learned To Stay Engaged in This Time of Physical Distancing

ABSTRACT

Physical distancing imposed by the COVID-19 pandemic has led to alterations in routines and new responsibilities for much of the research community. We provide some tips for how research teams can cope with physical distancing, some of which require a change in how we define productivity. Importantly, we need to maintain and strengthen social connections in this time when we can’t be physically together.




sea

Many people face high risk of PTSD after being injured, research finds

A significant number of injury survivors experience post-traumatic stress disorder, and better screening practices could help connect them to mental health services.




sea

CDC: Vaccine for recent flu season cut visits to doctors by nearly half

This season’s flu vaccine was 45% effective overall and 55% effective among children and teens, the Centers for Disease Control and Prevention reported in February.




sea

Federal funding for gun violence prevention research sparks hopes: Priorities, direction being explored

After more than 20 years of minimal funding, the U.S. is opening its purse strings to research on gun violence prevention.




sea

Digging deeper: The influence of historical mining on Glasgow's subsurface thermal state to inform geothermal research

Studies of the former NE England coalfield in Tyneside demonstrated that heat flow perturbations in boreholes were due to the entrainment and lateral dispersion of heat from deeper in the subsurface through flooded mine workings. This work assesses the influence of historical mining on geothermal observations across Greater Glasgow. The regional heat flow for Glasgow is 60 mW m–2 and, after correction for palaeoclimate, is estimated as c. 80 mW m–2. An example of reduced heat flow above mine workings is observed at Hallside (c. 10 km SE of Glasgow), where the heat flow through a 352 m deep borehole is c. 14 mW m–2. Similarly, the heat flow across the 199 m deep GGC01 borehole in the Glasgow Geothermal Energy Research Field Site is c. 44 mW m–2. The differences between these values and the expected regional heat flow suggest a significant component of horizontal heat flow into surrounding flooded mine workings. This deduction also influences the quantification of deeper geothermal resources, as extrapolation of the temperature gradient above mine workings would underestimate the temperature at depth. Future projects should consider the influence of historical mining on heat flow when temperature datasets such as these are used in the design of geothermal developments.

Supplementary material: Background information on the chronology of historical mining at each borehole location and a summary of groundwater flow in mine workings beneath Glasgow are available at https://doi.org/10.6084/m9.figshare.c.4681100

Thematic collection: This article is part of the ‘Early Career Research’ available at: https://www.lyellcollection.org/cc/SJG-early-career-research





sea

MtSSPdb: A New Database for the Small Secreted Peptide Research Community




sea

Severe Pulmonary Hypertension Management Across Europe (PHAROS): an ERS Clinical Research Collaboration

The past 20 years have seen major advances in the understanding and treatment of pulmonary arterial hypertension (PAH; group 1 of the pulmonary hypertension (PH) clinical classification) [1]. A strong basis of knowledge has been acquired in: 1) large randomised clinical trials for drug development; 2) national registries for epidemiology and outcome; and 3) smaller studies on the pathophysiological mechanisms of the disease. This knowledge has been reviewed at World Symposia on Pulmonary Hypertension (the most recent in 2018 [2]) and summarised in European Respiratory Society (ERS)/European Society of Cardiology (ESC) clinical guidelines (the most recent in 2015 [3, 4]). We are, however, much less knowledgeable on specific aspects such as 1) the implementation of guidelines and access to therapies in different European countries; 2) the management of PH crises and progressive (acute on chronic) heart failure; and 3) other groups of PH, such as PH due to lung diseases. Therapeutic strategies also need to be optimised, in particular regarding the combination of drugs, the use of anticoagulants, the place for new medications targeting different pathophysiological pathways, etc.




sea

Levodopa-induced dyskinesia in dementia with Lewy bodies and Parkinson disease with dementia

Objective

To investigate the frequency of levodopa-induced dyskinesia in dementia with Lewy bodies (DLBs) and Parkinson disease with dementia (PDD) and compare these frequencies with patients with incident Parkinson disease (PD) through a population-based cohort study.

Methods

We identified all patients with DLB, PDD, and PD without dementia in a 1991–2010 population-based parkinsonism-incident cohort, in Olmsted County, Minnesota. We abstracted information about levodopa-induced dyskinesia. We compared patients with DLB and PDD with dyskinesia with patients with PD from the same cohort.

Results

Levodopa use and dyskinesia data were available for 141/143 (98.6%) patients with a diagnosis of either DLB or PDD; 87 (61.7%), treated with levodopa. Dyskinesia was documented in 12.6% (8 DLB and 3 PDD) of levodopa-treated patients. Among these patients, median parkinsonism diagnosis age was 74 years (range: 64–80 years); 63.6%, male. The median interval from levodopa initiation to dyskinesia onset was 2 years (range: 3 months–4 years); the median daily levodopa dosage was 600 mg (range: 50–1,600 mg). Dyskinesia severity led to levodopa adjustments in 5 patients, and all improved. Patients with dyskinesia were diagnosed with parkinsonism at a significantly younger age compared with patients without dyskinesia (p < 0.001). Levodopa dosage was unrelated to increased risk of dyskinesias among DLB and PDD. In contrast, 30.1% of levodopa-treated patients with PD developed dyskinesia. In age-, sex-, and levodopa dosage–adjusted models, Patients with DLB and PDD each had lower odds of developing dyskinesia than patients with PD (odds ratio = 0.42, 95% CI 0.21–0.88; p = 0.02).

Conclusions

The dyskinesia risk for levodopa-treated patients with DLB or PDD was substantially less than for levodopa-treated patients with PD.




sea

Cerebral venous thrombosis: Associations between disease severity and cardiac markers

Background

Plasma cardiac troponin (cTn) elevation occurs in acute ischemic stroke and intracranial hemorrhage and can suggest a poor prognosis. Because acute cerebral venous thrombosis (CVT) might lead to venous stasis, which could result in cardiac stress, it is important to evaluate whether cTn elevation occurs in patients with CVT.

Methods

Inpatients at Johns Hopkins Hospital from 2005 to 2015 meeting the following criteria were included: CVT (ICD-9 codes with radiologic confirmation) and available admission electrocardiogram (ECG) and cTn level. In regression models, presence of ECG abnormalities and cTn elevation (>0.06 ng/mL) were evaluated as dependent variables in separate models, with location and severity of CVT involvement as independent variables, adjusted for age, sex, and hypertension.

Results

Of 81 patients with CVST, 53 (66%) met the inclusion criteria. Participants were, on average, aged 42 years, white (71%), and female (66%). The left transverse sinus was most commonly thrombosed (47%), with 66% having >2 veins thrombosed. Twenty-two (41%) had cTn elevation. Odds of cTn elevation increased per each additional vein thrombosed (adjusted OR 2.79, 95% CI [1.08–7.23]). Of those with deep venous involvement, 37.5% had cTn elevation compared with 4.4% without deep clots (p = 0.02). Venous infarction (n = 15) was associated with a higher mean cTn (0.14 vs 0.02 ng/mL, p = 0.009) and was predictive of a higher cTn in adjusted models (β = 0.15, 95% CI [0.06–0.25]).

Conclusions

In this single-center cohort study, markers of CVT severity were associated with increased odds of cTn elevation; further investigation is needed to elucidate causality and significance.




sea

Author response: Symptom burden among individuals with Parkinson disease: A national survey

We appreciate the readers' comments on the prevalence and impact of apathy on quality of life among individuals with Parkinson disease. In constructing our survey instrument, we discussed the inclusion of apathy as a symptom. However, we ultimately opted against inclusion because of concerns about the specificity of terminology in our online survey. Patients and care partners may not be familiar with the term "apathy,"and near-synonyms such as "reduced motivation" have substantial overlap with other nonmotor features. Still, as the readers point out, apathy is extremely common and under-recognized. Similar to many of the nonmotor symptoms identified in our study,1 we agree that clinicians should be screening for apathy among those with Parkinson disease.




sea

Reader response: Symptom burden among individuals with Parkinson disease: A national survey

We read with great interest the study by Tarolli et al.,1 which explored the burden of disease in Parkinson disease (PD) by evaluating the prevalence of nonmotor symptoms and their association with quality of life. The authors selected nonmotor symptoms based on literature review, expert opinions, and patient interviews. We note that apathy, which has major consequences for patients and carers, was not included as a relevant nonmotor symptom in their study. We performed a subcohort analysis of 60 patients from a study of pain in PD in 110 outpatients (PaCoMo-study, registered trial number: NL6311402917 [toetsingonline.nl]). We retrospectively reviewed the medical records to check whether the clinician identified apathy in these patients in the previous year, which was the case in 15% of the patients (n = 9). Blind to those results, patients were examined with the Apathy Scale (AS).2 In total, 63.3% (n = 38) of the patients scored positive on the AS. Only 18.4% of the patients who scored positive on the AS were also classified or mentioned with apathy in the medical records by clinicians.




sea

Implicit Bias in Pediatrics: An Emerging Focus in Health Equity Research




sea

Leishmania donovani Subverts Host Immune Response by Epigenetic Reprogramming of Macrophage M(Lipopolysaccharides + IFN-{gamma})/M(IL-10) Polarization [INFECTIOUS DISEASE AND HOST RESPONSE]

Key Points

  • L. donovani induces histone lysine methyltransferases/demethylases in the host.

  • L. donovani–induced epigenetic enzymes induce host M(IL-10) polarization.

  • Knockdown of epigenetic enzymes inhibited parasite multiplication in infected host.




    sea

    T Follicular Helper Cells Regulate Humoral Response for Host Protection against Intestinal Citrobacter rodentium Infection [INFECTIOUS DISEASE AND HOST RESPONSE]

    Key Points

  • Lack of Tfh cells renders the mice susceptible to C. rodentium infection.

  • Tfh cell–dependent protective Abs are essential to control C. rodentium.

  • Tfh cells regulate IgG1 response to C. rodentium infection.




    sea

    Development and Characterization of an Avirulent Leishmania major Strain [INFECTIOUS DISEASE AND HOST RESPONSE]

    Key Points

  • Virulent and avirulent parasites significantly differ in their proteome profiles.

  • Avirulent parasites fail to inhibit CD40 signaling.

  • Avirulent parasite strain is a potential antileishmanial vaccine candidate.




    sea

    Cytomegalovirus Coinfection Is Associated with Increased Vascular-Homing CD57+ CD4 T Cells in HIV Infection [INFECTIOUS DISEASE AND HOST RESPONSE]

    Key Points

  • CMV coinfection promotes the generation of CD57+ CD4 Tmem in PLWH.

  • CD2/LFA-3 costimulation enhances the functionality of CD57+ CD4 Tmem.

  • IL-15 and TNF enhance chemoattraction of CD57+ CD4 Tmem to CX3CL1+ endothelial cells.




    sea

    Complexes between C-Reactive Protein and Very Low Density Lipoprotein Delay Bacterial Clearance in Sepsis [INFECTIOUS DISEASE AND HOST RESPONSE]

    Key Points

  • Kupffer cells phagocytose both bacteria and CRP–VLDL complexes.

  • High levels of CRP–VLDL complexes delay bacterial clearance.

  • Pch disrupts CRP–VLDL complexes to improve bacterial clearance.




    sea

    The Factor H-Binding Site of CspZ as a Protective Target against Multistrain, Tick-Transmitted Lyme Disease [Microbial Immunity and Vaccines]

    The spirochete Borrelia burgdorferi sensu lato is the causative agent of Lyme disease (LD). The spirochetes produce the CspZ protein that binds to a complement regulator, factor H (FH). Such binding downregulates activation of host complement to facilitate spirochete evasion of complement killing. However, vaccination with CspZ does not protect against LD infection. In this study, we demonstrated that immunization with CspZ-YA, a CspZ mutant protein with no FH-binding activity, protected mice from infection by several spirochete genotypes introduced via tick feeding. We found that the sera from CspZ-YA-vaccinated mice more efficiently eliminated spirochetes and blocked CspZ FH-binding activity than sera from CspZ-immunized mice. We also found that vaccination with CspZ, but not CspZ-YA, triggered the production of anti-FH antibodies, justifying CspZ-YA as an LD vaccine candidate. The mechanistic and efficacy information derived from this study provides insights into the development of a CspZ-based LD vaccine.




    sea

    Heterogeneous Nuclear Ribonucleoprotein L Negatively Regulates Foot-and-Mouth Disease Virus Replication through Inhibition of Viral RNA Synthesis by Interacting with the Internal Ribosome Entry Site in the 5' Untranslated Region [Virus-Cell Interactio

    Upon infection, the highly structured 5' untranslated region (5' UTR) of picornavirus is involved in viral protein translation and RNA synthesis. As a critical element in the 5' UTR, the internal ribosome entry site (IRES) binds to various cellular proteins to function in the processes of picornavirus replication. Foot-and-mouth disease virus (FMDV) is an important member in the family Picornaviridae, and its 5' UTR contains a functional IRES element. In this study, the cellular heterogeneous nuclear ribonucleoprotein L (hnRNP L) was identified as an IRES-binding protein for FMDV by biotinylated RNA pulldown assays, mass spectrometry (MS) analysis, and determination of hnRNP L-IRES interaction regions. Further, we found that hnRNP L inhibited the growth of FMDV through binding to the viral IRES and that the inhibitory effect of hnRNP L on FMDV growth was not due to FMDV IRES-mediated translation, but to influence on viral RNA synthesis. Finally, hnRNP L was demonstrated to coimmunoprecipitate with RNA-dependent RNA polymerase (3Dpol) in an FMDV RNA-dependent manner in the infected cells. Thus, our results suggest that hnRNP L, as a critical IRES-binding protein, negatively regulates FMDV replication by inhibiting viral RNA synthesis, possibly by remaining in the replication complex.

    IMPORTANCE Picornaviruses, as a large family of human and animal pathogens, cause a bewildering array of disease syndromes. Many host factors are implicated in the pathogenesis of these viruses, and some proteins interact with the viral IRES elements to affect function. Here, we report for the first time that cellular hnRNP L specifically interacts with the IRES of the picornavirus FMDV and negatively regulates FMDV replication through inhibiting viral RNA synthesis. Further, our results showed that hnRNP L coimmunoprecipitates with FMDV 3Dpol in a viral RNA-dependent manner, suggesting that it may remain in the replication complex to function. The data presented here would facilitate further understanding of virus-host interactions and the pathogenesis of picornavirus infections.




    sea

    NF-{kappa}B and Keap1 Interaction Represses Nrf2-Mediated Antioxidant Response in Rabbit Hemorrhagic Disease Virus Infection [Pathogenesis and Immunity]

    The rabbit hemorrhagic disease virus (RHDV), which belongs to the family Caliciviridae and the genus Lagovirus, causes lethal fulminant hepatitis in rabbits. RHDV decreases the activity of antioxidant enzymes regulated by Nrf2 in the liver. Antioxidants are important for the maintenance of cellular integrity and cytoprotection. However, the mechanism underlying the regulation of the Nrf2-antioxidant response element (ARE) signaling pathway by RHDV remains unclear. Using isobaric tags for relative and absolute quantification (iTRAQ) technology, the current study demonstrated that RHDV inhibits the induction of ARE-regulated genes and increases the expression of the p50 subunit of the NF-B transcription factor. We showed that RHDV replication causes a remarkable increase in reactive oxygen species (ROS), which is simultaneously accompanied by a significant decrease in Nrf2. It was found that nuclear translocation of Keap1 plays a key role in the nuclear export of Nrf2, leading to the inhibition of Nrf2 transcriptional activity. The p50 protein partners with Keap1 to form the Keap1-p50/p65 complex, which is involved in the nuclear translocation of Keap1. Moreover, upregulation of Nrf2 protein levels in liver cell nuclei by tert-butylhydroquinone (tBHQ) delayed rabbit deaths due to RHDV infection. Considered together, our findings suggest that RHDV inhibits the Nrf2-dependent antioxidant response via nuclear translocation of Keap1-NF-B complex and nuclear export of Nrf2 and provide new insight into the importance of oxidative stress during RHDV infection.

    IMPORTANCE Recent studies have reported that rabbit hemorrhagic disease virus (RHDV) infection reduced Nrf2-related antioxidant function. However, the regulatory mechanisms underlying this process remain unclear. The current study showed that the NF-B p50 subunit partners with Keap1 to form the Keap1-NF-B complex, which plays a key role in the inhibition of Nrf2 transcriptional activity. More importantly, upregulated Nrf2 activity delayed the death of RHDV-infected rabbits, strongly indicating the importance of oxidative damage during RHDV infection. These findings may provide novel insights into the pathogenesis of RHDV.




    sea

    Seasonal timing adaptation across the geographic range of Arabidopsis thaliana [Evolution]

    The most fundamental genetic program of an annual plant defines when to grow and reproduce and when to remain dormant in the soil as a seed. With the right timing, plants can even live in hostile regions with only a few months of growth-favorable abundant rains and mild temperatures. To...




    sea

    NRF3-POMP-20S Proteasome Assembly Axis Promotes Cancer Development via Ubiquitin-Independent Proteolysis of p53 and Retinoblastoma Protein [Research Article]

    Proteasomes are essential protease complexes that maintain cellular homeostasis, and aberrant proteasomal activity supports cancer development. The regulatory mechanisms and biological function of the ubiquitin-26S proteasome have been studied extensively, while those of the ubiquitin-independent 20S proteasome system remain obscure. Here, we show that the cap ’n’ collar (CNC) family transcription factor NRF3 specifically enhances 20S proteasome assembly in cancer cells and that 20S proteasomes contribute to colorectal cancer development through ubiquitin-independent proteolysis of the tumor suppressor p53 and retinoblastoma (Rb) proteins. The NRF3 gene is highly expressed in many cancer tissues and cell lines and is important for cancer cell growth. In cancer cells, NRF3 upregulates the assembly of the 20S proteasome by directly inducing the gene expression of the 20S proteasome maturation protein POMP. Interestingly, NRF3 knockdown not only increases p53 and Rb protein levels but also increases p53 activities for tumor suppression, including cell cycle arrest and induction of apoptosis. Furthermore, protein stability and cell viability assays using two distinct proteasome inhibitor anticancer drugs, the 20S proteasome inhibitor bortezomib and the ubiquitin-activating enzyme E1 inhibitor TAK-243, show that the upregulation of the NRF3-POMP axis leads to ubiquitin-independent proteolysis of p53 and Rb and to impaired sensitivity to bortezomib but not TAK-243. More importantly, the NRF3-POMP axis supports tumorigenesis and metastasis, with higher NRF3/POMP expression levels correlating with poor prognoses in patients with colorectal or rectal adenocarcinoma. These results suggest that the NRF3-POMP-20S proteasome assembly axis is significant for cancer development via ubiquitin-independent proteolysis of tumor suppressor proteins.




    sea

    Requirement of the Cep57-Cep63 Interaction for Proper Cep152 Recruitment and Centriole Duplication [Research Article]

    Cep57 has been characterized as a component of a pericentriolar complex containing Cep63 and Cep152. Interestingly, Cep63 and Cep152 self-assemble into a pericentriolar cylindrical architecture, and this event is critical for the orderly recruitment of Plk4, a key regulator of centriole duplication. However, the way in which Cep57 interacts with the Cep63-Cep152 complex and contributes to the structure and function of Cep63-Cep152 self-assembly remains unknown. We demonstrate that Cep57 interacts with Cep63 through N-terminal motifs and associates with Cep152 via Cep63. Three-dimensional structured illumination microscopy (3D-SIM) analyses suggested that the Cep57-Cep63-Cep152 complex is concentrically arranged around a centriole in a Cep57-in and Cep152-out manner. Cep57 mutant cells defective in Cep63 binding exhibited improper Cep63 and Cep152 localization and impaired Sas6 recruitment for procentriole assembly, proving the significance of the Cep57-Cep63 interaction. Intriguingly, Cep63 fused to a microtubule (MT)-binding domain of Cep57 functioned in concert with Cep152 to assemble around stabilized MTs in vitro. Thus, Cep57 plays a key role in architecting the Cep63-Cep152 assembly around centriolar MTs and promoting centriole biogenesis. This study may offer a platform to investigate how the organization and function of the pericentriolar architecture are altered by disease-associated mutations found in the Cep57-Cep63-Cep152 complex.




    sea

    E2F6-Mediated Downregulation of MIR22HG Facilitates the Progression of Laryngocarcinoma by Targeting the miR-5000-3p/FBXW7 Axis [Research Article]

    Recently, abundant evidence has clarified that long noncoding RNAs (lncRNAs) play an oncogenic or anticancer role in the tumorigenesis and development of diverse human cancers. Described as a crucial regulator in some cancers, MIR22HG has not yet been studied in laryngocarcinoma and therefore the underlying regulatory role of MIR22HG in laryngocarcinoma is worth detecting. In this study, MIR22HG expression in laryngocarcinoma cells was confirmed to be downregulated, and upregulated MIR22HG expression led to suppressive effects on laryngocarcinoma cell proliferation and migration. Molecular mechanism assays revealed that MIR22HG sponges miR-5000-3p in laryngocarcinoma cells. Besides, decreased expression of miR-5000-3p suppressed laryngocarcinoma cell proliferation and migration. Moreover, the FBXW7 gene was reported to be a downstream target gene of miR-5000-3p in laryngocarcinoma cells. More importantly, rescue assays verified that FBXW7 depletion or miR-5000-3p upregulation countervailed the repressive effects of MIR22HG overexpression on laryngocarcinoma progression. In addition, E2F6 was proved to be capable of inhibiting MIR22HG transcription in laryngocarcinoma cells. To sum up, E2F6-induced downregulation of MIR22HG promotes laryngocarcinoma progression through the miR-5000-3p/FBXW7 axis.




    sea

    AKT Regulates Mitotic Progression of Mammalian Cells by Phosphorylating MASTL, Leading to Protein Phosphatase 2A Inactivation [Research Article]

    Microtubule-associated serine/threonine kinase like (MASTL), also known as Greatwall (Gwl) kinase, has an important role in the regulation of mitosis. By inhibiting protein phosphatase 2A (PP2A), it plays a crucial role in activating one of the most important mitotic kinases, known as cyclin-dependent kinase 1 (CDK1). MASTL has been seen to be upregulated in various types of cancers and is also involved in tumor recurrence. It is activated by CDK1 through phosphorylations in the activation/T-loop, but the complete mechanism of its activation is still unclear. Here, we report that AKT phosphorylates MASTL at residue T299, which plays a critical role in its activation. Our results suggest that AKT increases CDK1-mediated phosphorylation and hence the activity of MASTL, which, in turn, promotes mitotic progression through PP2A inhibition. We also show that the oncogenic potential of AKT is augmented by MASTL activation, since AKT-mediated proliferation in colorectal cell lines can be attenuated by inhibiting and/or silencing MASTL. In brief, we report that AKT plays an important role in the progression of mitosis in mammalian cells and that it does so through the phosphorylation and activation of MASTL.




    sea

    Determining the Bioenergetic Capacity for Fatty Acid Oxidation in the Mammalian Nervous System [Research Article]

    The metabolic state of the brain can greatly impact neurologic function. Evidence of this includes the therapeutic benefit of a ketogenic diet in neurologic diseases, including epilepsy. However, brain lipid bioenergetics remain largely uncharacterized. The existence, capacity, and relevance of mitochondrial fatty acid β-oxidation (FAO) in the brain are highly controversial, with few genetic tools available to evaluate the question. We have provided evidence for the capacity of brain FAO using a pan-brain-specific conditional knockout (KO) mouse incapable of FAO due to the loss of carnitine palmitoyltransferase 2, the product of an obligate gene for FAO (CPT2B–/–). Loss of central nervous system (CNS) FAO did not result in gross neuroanatomical changes or systemic differences in metabolism. Loss of CPT2 in the brain did not result in robustly impaired behavior. We demonstrate by unbiased and targeted metabolomics that the mammalian brain oxidizes a substantial quantity of long-chain fatty acids in vitro and in vivo. Loss of CNS FAO results in robust accumulation of long-chain acylcarnitines in the brain, suggesting that the mammalian brain mobilizes fatty acids for their oxidation, irrespective of diet or metabolic state. Together, these data demonstrate that the mammalian brain oxidizes fatty acids under normal circumstances with little influence from or on peripheral tissues.




    sea

    Inhaled Corticosteroid Treatment in Chronic Obstructive Pulmonary Disease (COPD): Boon or Bane?

    Inhaled corticosteroid (ICS)–based therapy is often used for patients with chronic obstructive pulmonary disease (COPD). However, this approach is under scrutiny because of ICS overuse in patients for whom it is not recommended and because of concerns about adverse events, particularly pneumonia, with long-term ICS use. Evidence suggests ICS may be beneficial in specific patients, namely, those with high blood eosinophil counts (eg, ≥300 cells/µL) or who are at a high risk of exacerbations. According to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2020 ABCD assessment tool, these patients belong in group D. For these patients, recommended initial treatment includes ICS in combination with long-acting β2-agonists (LABAs) when blood eosinophil counts are ≥300 cells/µL or LABA + long-acting muscarinic antagonist (LAMA) when patients are highly symptomatic, that is, with greater dyspnea and/or exercise limitation. Follow-up treatments for patients with persistent dyspnea and/or exacerbations may include LABA + ICS, LABA + LAMA, or LABA + LAMA + ICS, with use of ICS being guided by blood eosinophil counts. In this review, differences in the inflammatory mechanism underlying COPD and asthma and the role of ICS treatment in COPD are summarized. Furthermore, findings from recent clinical trials where use of ICS-based dual or triple therapy in COPD was compared with LABA + LAMA therapy and trials in which ICS withdrawal was evaluated in patients with COPD are reviewed. Finally, a step-by-step guide for ICS withdrawal in patients who are unlikely to benefit from this treatment is proposed. A video of the author discussing the overall takeaway of the review article could be downloaded from the link provided: https://www.youtube.com/watch?v=Uq7Sr5jqPDI.




    sea

    The glue produced by Drosophila melanogaster for pupa adhesion is universal [RESEARCH ARTICLE]

    Flora Borne, Alexander Kovalev, Stanislav Gorb, and Virginie Courtier-Orgogozo

    Insects produce a variety of adhesives for diverse functions such as locomotion, mating, and egg or pupal anchorage to substrates. Although they are important for the biology of organisms and potentially represent a great resource for developing new materials, insect adhesives have been little studied so far. Here, we examined the adhesive properties of the larval glue of Drosophila melanogaster. This glue is made of glycosylated proteins and allows the animal to adhere to a substrate during metamorphosis. We designed an adhesion test to measure the pull-off force required to detach a pupa from a substrate and to evaluate the contact area covered by the glue. We found that the pupa adheres with similar forces to a variety of substrates (with distinct roughness, hydrophilic and charge properties). We obtained an average pull-off force of 217 mN, corresponding to 15,500 times the weight of a pupa and an adhesion strength of 137–244 kPa. Surprisingly, the pull-off forces did not depend on the contact area. Our study paves the way for a genetic dissection of the components of D. melanogaster glue that confer its particular adhesive properties.




    sea

    Microclimate buffering and thermal tolerance across elevations in a tropical butterfly [RESEARCH ARTICLE]

    Gabriela Montejo-Kovacevich, Simon H. Martin, Joana I. Meier, Caroline N. Bacquet, Monica Monllor, Chris D. Jiggins, and Nicola J. Nadeau

    Microclimatic variability in tropical forests plays a key role in shaping species distributions and their ability to cope with environmental change, especially for ectotherms. Nonetheless, currently available climatic datasets lack data from the forest interior and, furthermore, our knowledge of thermal tolerance among tropical ectotherms is limited. We therefore studied natural variation in the microclimate experienced by tropical butterflies in the genus Heliconius across their Andean range in a single year. We found that the forest strongly buffers temperature and humidity in the understorey, especially in the lowlands, where temperatures are more extreme. There were systematic differences between our yearly records and macroclimate databases (WorldClim2), with lower interpolated minimum temperatures and maximum temperatures higher than expected. We then assessed thermal tolerance of 10 Heliconius butterfly species in the wild and found that populations at high elevations had significantly lower heat tolerance than those at lower elevations. However, when we reared populations of the widespread H. erato from high and low elevations in a common-garden environment, the difference in heat tolerance across elevations was reduced, indicating plasticity in this trait. Microclimate buffering is not currently captured in publicly available datasets, but could be crucial for enabling upland shifting of species sensitive to heat such as highland Heliconius. Plasticity in thermal tolerance may alleviate the effects of global warming on some widespread ectotherm species, but more research is needed to understand the long-term consequences of plasticity on populations and species.




    sea

    Body surface temperature responses to food restriction in wild and captive great tits [RESEARCH ARTICLE]

    Lucy A. Winder, Stewart A. White, Andreas Nord, Barbara Helm, and Dominic J. McCafferty

    During winter at temperate and high latitudes, the low ambient temperatures, limited food supplies and short foraging periods mean small passerines show behavioural, morphological and physiological adaptations to reduce the risk of facing energy shortages. Peripheral tissues vasoconstrict in low ambient temperatures to reduce heat loss and cold injury. Peripheral vasoconstriction has been observed with food restriction in captivity but has yet to be explored in free-ranging animals. We experimentally food restricted both wild and captive great tits (Parus major) during winter months and measured surface temperatures of the bill and eye region using thermal imaging, to investigate whether birds show rapid local heterothermic responses, which may reduce their thermoregulatory costs when facing a perceived imminent food shortage. Our results of a continuously filmed wild population showed that bill temperature was immediately reduced in response to food restriction compared with when food was available ad libitum, an apparent autonomic response. Such immediacy implies a ‘pre-emptive’ response before the bird experiences any shortfalls in energy reserves. We also demonstrate temporal variation in vasoconstriction of the bill, with bill temperature gradually rising throughout the food restriction after the initial drop. Eye-region temperature in the wild birds remained at similar levels throughout food restriction compared with unrestricted birds, possibly reflecting the need to maintain steady circulation to the central nervous and visual systems. Our findings provide evidence that birds selectively allow the bill to cool when a predictable food supply is suddenly disrupted, probably as a means of minimising depletion of body reserves for a perceived future shortage in energy.




    sea

    Experimental facilitation of heat loss affects work rate and innate immune function in a breeding passerine bird [RESEARCH ARTICLE]

    Fredrik Andreasson, Arne Hegemann, Andreas Nord, and Jan-Ake Nilsson

    The capacity to get rid of excess heat produced during hard work is a possible constraint on parental effort during reproduction [heat dissipation limit (HDL) theory]. We released hard-working blue tits (Cyanistes caeruleus) from this constraint by experimentally removing ventral plumage. We then assessed whether this changed their reproductive effort (feeding rate and nestling size) and levels of self-maintenance (change in body mass and innate immune function). Feather-clipped females reduced the number of feeding visits and increased levels of constitutive innate immunity compared with unclipped females but did not fledge smaller nestlings. Thus, they increased self-maintenance without compromising current reproductive output. In contrast, feather clipping did not affect the number of feeding visits or innate immune function in males, despite increased heat loss rate. Our results show that analyses of physiological parameters, such as constitutive innate immune function, can be important when trying to understand sources of variation in investment in self-maintenance versus reproductive effort and that risk of overheating can influence innate immune function during reproduction.




    sea

    Habituation of the cardiovascular response to restraint stress is inhibited by exposure to other stressor stimuli and exercise training [RESEARCH ARTICLE]

    Ricardo Benini, Leandro A. Oliveira, Lucas Gomes-de-Souza, Bruno Rodrigues, and Carlos C. Crestani

    This study evaluated the effect of exposure to either a chronic variable stress (CVS) protocol or social isolation, as well as treadmill exercise training, in the habituation of the cardiovascular response upon repeated exposure to restraint stress in rats. The habituation of the corticosterone response to repeated restraint stress was also evaluated. For this, animals were subjected to either acute or 10 daily sessions of 60 min of restraint stress. CVS and social isolation protocols lasted for 10 consecutive days, whereas treadmill training was performed for 1 h per day, 5 days per week for 8 weeks. We observed that the increase in serum corticosterone was reduced during both the stress and the recovery period of the 10th session of restraint. Habituation of the cardiovascular response was identified in terms of a faster return of heart rate to baseline values during the recovery period of the 10th session of restraint. The increase in blood pressure and the decrease in tail skin temperature were similar at the 1st and 10th session of restraint. Exposure to CVS, social isolation or treadmill exercise training inhibited the habituation of the restraint-evoked tachycardia. Additionally, CVS increased the blood pressure response at the 10th session of restraint, whereas social isolation enhanced both the tachycardia during the first session and the drop in skin temperature at the 10th session of restraint. Taken together, these findings provide new evidence that pathologies evoked by stress might be related to impairment in the habituation process to homotypic stressors.




    sea

    Reduced immune responsiveness contributes to winter energy conservation in an Arctic bird [RESEARCH ARTICLE]

    Andreas Nord, Arne Hegemann, and Lars P. Folkow

    Animals in seasonal environments must prudently manage energy expenditure to survive the winter. This may be achieved through reductions in the allocation of energy for various purposes (e.g. thermoregulation, locomotion, etc.). We studied whether such trade-offs also include suppression of the innate immune response, by subjecting captive male Svalbard ptarmigan (Lagopus muta hyperborea) to bacterial lipopolysaccharide (LPS) during exposure to either mild temperature (0°C) or cold snaps (acute exposure to –20°C), in constant winter darkness when birds were in energy-conserving mode, and in constant daylight in spring. The innate immune response was mostly unaffected by temperature. However, energy expenditure was below baseline when birds were immune challenged in winter, but significantly above baseline in spring. This suggests that the energetic component of the innate immune response was reduced in winter, possibly contributing to energy conservation. Immunological parameters decreased (agglutination, lysis, bacteriostatic capacity) or did not change (haptoglobin/PIT54) after the challenge, and behavioural modifications (anorexia, mass loss) were lengthy (9 days). While we did not study the mechanisms explaining these weak, or slow, responses, it is tempting to speculate they may reflect the consequences of having evolved in an environment where pathogen transmission rate is presumably low for most of the year. This is an important consideration if climate change and increased exploitation of the Arctic would alter pathogen communities at a pace outwith counter-adaption in wildlife.




    sea

    Consequences of being phenotypically mismatched with the environment: no evidence of oxidative stress in cold- and warm-acclimated birds facing a cold spell [RESEARCH ARTICLE]

    Ana Gabriela Jimenez, Emily Cornelius Ruhs, Kailey J. Tobin, Katie N. Anderson, Audrey Le Pogam, Lyette Regimbald, and Francois Vezina

    Seasonal changes in maximal thermogenic capacity (Msum) in wild black-capped chickadees suggests that adjustments in metabolic performance are slow and begin to take place before winter peaks. However, when mean minimal ambient temperature (Ta) reaches –10°C, the chickadee phenotype appears to provide enough spare capacity to endure days with colder Ta, down to –20°C or below. This suggests that birds could also maintain a higher antioxidant capacity as part of their cold-acclimated phenotype to deal with sudden decreases in temperature. Here, we tested how environmental mismatch affected oxidative stress by comparing cold-acclimated (–5°C) and transition (20°C) phenotypes in chickadees exposed to an acute 15°C drop in temperature with that of control individuals. We measured superoxide dismutase, catalase and glutathione peroxidase activities, as well as lipid peroxidation damage and antioxidant scavenging capacity in pectoralis muscle, brain, intestine and liver. We generally found differences between seasonal phenotypes and across tissues, but no differences with respect to an acute cold drop treatment. Our data suggest oxidative stress is closely matched to whole-animal physiology in cold-acclimated birds compared with transition birds, implying that changes to the oxidative stress system happen slowly.




    sea

    Temperature has a causal and plastic effect on timing of breeding in a small songbird [RESEARCH ARTICLE]

    Irene Verhagen, Barbara M. Tomotani, Phillip Gienapp, and Marcel E. Visser

    Phenotypic plasticity is an important mechanism by which an individual can adapt its seasonal timing to predictable, short-term environmental changes by using predictive cues. Identification of these cues is crucial to forecast the response of species to long-term environmental change and to study their potential to adapt. Individual great tits (Parus major) start reproduction early under warmer conditions in the wild, but whether this effect is causal is not well known. We housed 36 pairs of great tits in climate-controlled aviaries and 40 pairs in outdoor aviaries, where they bred under artificial contrasting temperature treatments or in semi-natural conditions, respectively, for two consecutive years, using birds from lines selected for early and late egg laying. We thus obtained laying dates in two different thermal environments for each female. Females bred earlier under warmer conditions in climate-controlled aviaries, but not in outdoor aviaries. The latter was inconsistent with laying dates from our wild population. Further, early selection line females initiated egg laying consistently ~9 days earlier than late selection line females in outdoor aviaries, but we found no difference in the degree of plasticity (i.e. the sensitivity to temperature) in laying date between selection lines. Because we found that temperature causally affects laying date, climate change will lead to earlier laying. This advancement is, however, unlikely to be sufficient, thereby leading to selection for earlier laying. Our results suggest that natural selection may lead to a change in mean phenotype, but not to a change in the sensitivity of laying dates to temperature.




    sea

    Skeletal muscle thermogenesis induction by exposure to predator odor [RESEARCH ARTICLE]

    Erin Gorrell, Ashley Shemery, Jesse Kowalski, Miranda Bodziony, Nhlalala Mavundza, Amber R. Titus, Mark Yoder, Sarah Mull, Lydia A. Heemstra, Jacob G. Wagner, Megan Gibson, Olivia Carey, Diamond Daniel, Nicholas Harvey, Meredith Zendlo, Megan Rich, Scott Everett, Chaitanya K. Gavini, Tariq I. Almundarij, Diane Lorton, and Colleen M. Novak

    Non-shivering thermogenesis can promote negative energy balance and weight loss. In this study, we identified a contextual stimulus that induces rapid and robust thermogenesis in skeletal muscle. Rats exposed to the odor of a natural predator (ferret) showed elevated skeletal muscle temperatures detectable as quickly as 2 min after exposure, reaching maximum thermogenesis of >1.5°C at 10–15 min. Mice exhibited a similar thermogenic response to the same odor. Ferret odor induced a significantly larger and qualitatively different response from that of novel or aversive odors, fox odor or moderate restraint stress. Exposure to predator odor increased energy expenditure, and both the thermogenic and energetic effects persisted when physical activity levels were controlled. Predator odor-induced muscle thermogenesis is subject to associative learning as exposure to a conditioned stimulus provoked a rise in muscle temperature in the absence of the odor. The ability of predator odor to induce thermogenesis is predominantly controlled by sympathetic nervous system activation of β-adrenergic receptors, as unilateral sympathetic lumbar denervation and a peripherally acting β-adrenergic antagonist significantly inhibited predator odor-induced muscle thermogenesis. The potential survival value of predator odor-induced changes in muscle physiology is reflected in an enhanced resistance to running fatigue. Lastly, predator odor-induced muscle thermogenesis imparts a meaningful impact on energy expenditure as daily predator odor exposure significantly enhanced weight loss with mild calorie restriction. This evidence signifies contextually provoked, centrally mediated muscle thermogenesis that meaningfully impacts energy balance.




    sea

    Emergent properties of branching morphologies modulate the sensitivity of coral calcification to high PCO2 [RESEARCH ARTICLE]

    Peter J. Edmunds and Scott C. Burgess

    Experiments with coral fragments (i.e. nubbins) have shown that net calcification is depressed by elevated PCO2. Evaluating the implications of this finding requires scaling of results from nubbins to colonies, yet the experiments to codify this process have not been carried out. Building from our previous research demonstrating that net calcification of Pocillopora verrucosa (2–13 cm diameter) was unaffected by PCO2 (400 and 1000 µatm) and temperature (26.5 and 29.7°C), we sought generality to this outcome by testing how colony size modulates PCO2 and temperature sensitivity in a branching acroporid. Together, these taxa represent two of the dominant lineages of branching corals on Indo-Pacific coral reefs. Two trials conducted over 2 years tested the hypothesis that the seasonal range in seawater temperature (26.5 and 29.2°C) and a future PCO2 (1062 µatm versus an ambient level of 461 µatm) affect net calcification of an ecologically relevant size range (5–20 cm diameter) of colonies of Acropora hyacinthus. As for P. verrucosa, the effects of temperature and PCO2 on net calcification (mg day–1) of A. verrucosa were not statistically detectable. These results support the generality of a null outcome on net calcification of exposing intact colonies of branching corals to environmental conditions contrasting seasonal variation in temperature and predicted future variation in PCO2. While there is a need to expand beyond an experimental culture relying on coral nubbins as tractable replicates, rigorously responding to this need poses substantial ethical and logistical challenges.




    sea

    Neev, a novel long non-coding RNA, is expressed in chaetoblasts during regeneration of Eisenia fetida [RESEARCH ARTICLE]

    Surendra Singh Patel, Sanyami Zunjarrao, and Beena Pillai

    Eisenia fetida, the common vermicomposting earthworm, shows robust regeneration of posterior segments removed by amputation. During the period of regeneration, the newly formed tissue initially contains only undifferentiated cells but subsequently differentiates into a variety of cell types including muscle, nerve and vasculature. Transcriptomics analysis, reported previously, provided a number of candidate non-coding RNAs that were induced during regeneration. We found that one such long non-coding RNA (lncRNA) is expressed in the skin, only at the base of newly formed chaetae. The spatial organization and precise arrangement of the regenerating chaetae and the cells expressing the lncRNA on the ventral side clearly support a model wherein the regenerating tissue contains a zone of growth and cell division at the tip and a zone of differentiation at the site of amputation. The temporal expression pattern of the lncRNA, named Neev, closely resembled the pattern of chitin synthase genes, implicated in chaetae formation. We found that the lncRNA has 49 sites for binding a set of four microRNAs (miRNAs) while the chitin synthase 8 mRNA has 478 sites. The over-representation of shared miRNA sites suggests that lncRNA Neev may act as a miRNA sponge to transiently de-repress chitin synthase 8 during formation of new chaetae in the regenerating segments of Eisenia fetida.




    sea

    Octopamine mobilizes lipids from honey bee (Apis mellifera) hypopharyngeal glands [RESEARCH ARTICLE]

    Vanessa Corby-Harris, Megan E. Deeter, Lucy Snyder, Charlotte Meador, Ashley C. Welchert, Amelia Hoffman, and Bethany T. Obernesser

    Recent widespread honey bee (Apis mellifera) colony loss is attributed to a variety of stressors, including parasites, pathogens, pesticides and poor nutrition. In principle, we can reduce stress-induced declines in colony health by either removing the stressor or increasing the bees' tolerance to the stressor. This latter option requires a better understanding than we currently have of how honey bees respond to stress. Here, we investigated how octopamine, a stress-induced hormone that mediates invertebrate physiology and behavior, influences the health of young nurse-aged bees. Specifically, we asked whether octopamine induces abdominal lipid and hypopharyngeal gland (HG) degradation, two physiological traits of stressed nurse bees. Nurse-aged workers were treated topically with octopamine and their abdominal lipid content, HG size and HG autophagic gene expression were measured. Hemolymph lipid titer was measured to determine whether tissue degradation was associated with the release of nutrients from these tissues into the hemolymph. The HGs of octopamine-treated bees were smaller than control bees and had higher levels of HG autophagy gene expression. Octopamine-treated bees also had higher levels of hemolymph lipid compared with control bees. Abdominal lipids did not change in response to octopamine. Our findings support the hypothesis that the HGs are a rich source of stored energy that can be mobilized during periods of stress.




    sea

    Food restriction delays seasonal sexual maturation but does not increase torpor use in male bats [RESEARCH ARTICLE]

    Ewa Komar, Dina K. N. Dechmann, Nicolas J. Fasel, Marcin Zegarek, and Ireneusz Ruczynski

    Balancing energy budgets can be challenging, especially in periods of food shortage, adverse weather conditions and increased energy demand due to reproduction. Bats have particularly high energy demands compared to other mammals and regularly use torpor to save energy. However, while torpor limits energy expenditure, it can also downregulate important processes, such as sperm production. This constraint could result in a trade-off between energy saving and future reproductive capacity. We mimicked harsh conditions by restricting food and tested the effect on changes in body mass, torpor use and seasonal sexual maturation in male parti-coloured bats (Vespertilio murinus). Food-restricted individuals managed to maintain their initial body mass, while in well-fed males, mass increased. Interestingly, despite large differences in food availability, there were only small differences in torpor patterns. However, well-fed males reached sexual maturity up to half a month earlier. Our results thus reveal a complex trade-off in resource allocation; independent of resource availability, males maintain a similar thermoregulation strategy and favour fast sexual maturation, but limited resources and low body mass moderate this latter process.




    sea

    Variation in outer blubber lipid concentration does not reflect morphological body condition in humpback whales [RESEARCH ARTICLE]

    Fredrik Christiansen, Kate R. Sprogis, Jasmin Gross, Juliana Castrillon, Hunter A. Warick, Eva Leunissen, and Susan Bengtson Nash

    An animal's body condition provides valuable information for ecophysiological studies, and is an important measure of fitness in population monitoring and conservation. While both the external body shape of an animal and its internal tissues (i.e. fat content) can be used as a measure of body condition, the relationship between the two is not always linear. We compared the morphological body condition (external metric obtained through aerial photogrammetry) of migrating humpback whales (Megaptera novaeangliae) with their outer blubber lipid concentration (internal metric obtained through blubber biopsy sampling) off the coast of south-west Australia early and late in the breeding season (spanning ~4.5 months). The external body condition index of juvenile and adult humpback whales decreased by 26.9 (from 18.8% to –8.1%) and 12.0 percentage points (from 8.6% to –3.4%), respectively, between the early and late phase. In contrast, we found no intra-seasonal change in blubber lipid concentration, and no difference between reproductive classes (juveniles, adults and lactating females); however, the small sample size prevented us from effectively testing these effects. Importantly, however, in the 33 animals for which paired metrics were obtained, we found no correlation between the morphometric body condition index and the blubber lipid concentration of individual whales. The lack of a linear relationship suggests that changes in outer blubber lipid concentration do not reflect external changes in body shape, thus limiting the utility of outer blubber lipid reserves for individual body condition evaluation. The wider spectrum of change in body morphometry captured with aerial photogrammetry supports the use of body morphometry as a reliable and well-tested method.