sea Climate Change May Prolong Smog Season in Southeast U.S. By www.medicinenet.com Published On :: Mon, 29 Aug 2022 00:00:00 PDT Title: Climate Change May Prolong Smog Season in Southeast U.S.Category: Health NewsCreated: 8/23/2016 12:00:00 AMLast Editorial Review: 8/23/2016 12:00:00 AM Full Article
sea Season of Conception May Affect Fetal Brain Growth By www.medicinenet.com Published On :: Mon, 29 Aug 2022 00:00:00 PDT Title: Season of Conception May Affect Fetal Brain GrowthCategory: Health NewsCreated: 8/24/2016 12:00:00 AMLast Editorial Review: 8/25/2016 12:00:00 AM Full Article
sea Animal Research Yields Clues to Sexual Spread of Zika By www.medicinenet.com Published On :: Mon, 29 Aug 2022 00:00:00 PDT Title: Animal Research Yields Clues to Sexual Spread of ZikaCategory: Health NewsCreated: 8/25/2016 12:00:00 AMLast Editorial Review: 8/26/2016 12:00:00 AM Full Article
sea Drug May Fight Heart Disease in Whole New Way By www.medicinenet.com Published On :: Mon, 29 Aug 2022 00:00:00 PDT Title: Drug May Fight Heart Disease in Whole New WayCategory: Health NewsCreated: 8/28/2017 12:00:00 AMLast Editorial Review: 8/29/2017 12:00:00 AM Full Article
sea Pediatric Treatment Approved for 'Kissing Bug' Disease By www.medicinenet.com Published On :: Mon, 29 Aug 2022 00:00:00 PDT Title: Pediatric Treatment Approved for 'Kissing Bug' DiseaseCategory: Health NewsCreated: 8/30/2017 12:00:00 AMLast Editorial Review: 8/31/2017 12:00:00 AM Full Article
sea College Grades Low? Try a Different Seat in the Classroom By www.medicinenet.com Published On :: Mon, 29 Aug 2022 00:00:00 PDT Title: College Grades Low? Try a Different Seat in the ClassroomCategory: Health NewsCreated: 8/24/2018 12:00:00 AMLast Editorial Review: 8/27/2018 12:00:00 AM Full Article
sea Pediatricians Make Change to Child Car Seat Guidelines By www.medicinenet.com Published On :: Mon, 29 Aug 2022 00:00:00 PDT Title: Pediatricians Make Change to Child Car Seat GuidelinesCategory: Health NewsCreated: 8/30/2018 12:00:00 AMLast Editorial Review: 8/30/2018 12:00:00 AM Full Article
sea AHA News: Understanding Connection Between Poverty, Childhood Trauma and Heart Disease By www.medicinenet.com Published On :: Mon, 29 Aug 2022 00:00:00 PDT Title: AHA News: Understanding Connection Between Poverty, Childhood Trauma and Heart DiseaseCategory: Health NewsCreated: 8/27/2019 12:00:00 AMLast Editorial Review: 8/28/2019 12:00:00 AM Full Article
sea Rising Obesity Rates Undermining Strides Made Against Heart Disease By www.medicinenet.com Published On :: Mon, 29 Aug 2022 00:00:00 PDT Title: Rising Obesity Rates Undermining Strides Made Against Heart DiseaseCategory: Health NewsCreated: 8/27/2019 12:00:00 AMLast Editorial Review: 8/28/2019 12:00:00 AM Full Article
sea Nourianz Approved to Treat 'Off' Episodes in Parkinson Disease By www.medicinenet.com Published On :: Mon, 29 Aug 2022 00:00:00 PDT Title: Nourianz Approved to Treat 'Off' Episodes in Parkinson DiseaseCategory: Health NewsCreated: 8/28/2019 12:00:00 AMLast Editorial Review: 8/29/2019 12:00:00 AM Full Article
sea COVID Vaccine Protection Against Severe Disease By www.medicinenet.com Published On :: Mon, 29 Aug 2022 00:00:00 PDT Title: COVID Vaccine Protection Against Severe DiseaseCategory: Health NewsCreated: 8/25/2021 12:00:00 AMLast Editorial Review: 8/25/2021 12:00:00 AM Full Article
sea Search for Coronavirus Origins at Standstill: WHO Team By www.medicinenet.com Published On :: Mon, 29 Aug 2022 00:00:00 PDT Title: Search for Coronavirus Origins at Standstill: WHO TeamCategory: Health NewsCreated: 8/26/2021 12:00:00 AMLast Editorial Review: 8/26/2021 12:00:00 AM Full Article
sea More Evidence Ties Gum Disease With Heart Disease By www.medicinenet.com Published On :: Mon, 29 Aug 2022 00:00:00 PDT Title: More Evidence Ties Gum Disease With Heart DiseaseCategory: Health NewsCreated: 8/27/2021 12:00:00 AMLast Editorial Review: 8/27/2021 12:00:00 AM Full Article
sea 'Stepped' Approach to Treating Diabetic Eye Disease May Be Best By www.medicinenet.com Published On :: Fri, 15 Jul 2022 00:00:00 PDT Title: 'Stepped' Approach to Treating Diabetic Eye Disease May Be BestCategory: Health NewsCreated: 7/15/2022 12:00:00 AMLast Editorial Review: 7/15/2022 12:00:00 AM Full Article
sea Having Ideal Heart Health May Lessen the Risk for Brain Vessel Disease By www.medicinenet.com Published On :: Thu, 18 Aug 2022 00:00:00 PDT Title: Having Ideal Heart Health May Lessen the Risk for Brain Vessel DiseaseCategory: Health NewsCreated: 8/17/2022 12:00:00 AMLast Editorial Review: 8/18/2022 12:00:00 AM Full Article
sea AHA News: New Report Details What to Know About Cardiovascular Disease Symptoms By www.medicinenet.com Published On :: Fri, 19 Aug 2022 00:00:00 PDT Title: AHA News: New Report Details What to Know About Cardiovascular Disease SymptomsCategory: Health NewsCreated: 8/18/2022 12:00:00 AMLast Editorial Review: 8/19/2022 12:00:00 AM Full Article
sea How Can I Keep My Baby Cool in the Car Seat? By www.medicinenet.com Published On :: Wed, 24 Aug 2022 00:00:00 PDT Title: How Can I Keep My Baby Cool in the Car Seat?Category: Health and LivingCreated: 3/17/2022 12:00:00 AMLast Editorial Review: 8/24/2022 12:00:00 AM Full Article
sea There's More MS in Northern Countries. Now, Researchers Find New Reason Why By www.medicinenet.com Published On :: Thu, 25 Aug 2022 00:00:00 PDT Title: There's More MS in Northern Countries. Now, Researchers Find New Reason WhyCategory: Health NewsCreated: 8/25/2022 12:00:00 AMLast Editorial Review: 8/25/2022 12:00:00 AM Full Article
sea goldenseal By www.medicinenet.com Published On :: Thu, 18 Aug 2022 00:00:00 PDT Title: goldensealCategory: MedicationsCreated: 8/18/2022 12:00:00 AMLast Editorial Review: 8/18/2022 12:00:00 AM Full Article
sea Australia's Current Flu Season Is Tough: Will America's Be the Same? By www.medicinenet.com Published On :: Fri, 5 Aug 2022 00:00:00 PDT Title: Australia's Current Flu Season Is Tough: Will America's Be the Same?Category: Health NewsCreated: 8/4/2022 12:00:00 AMLast Editorial Review: 8/5/2022 12:00:00 AM Full Article
sea What Are 4 Symptoms of Seasonal Affective Disorder? By www.medicinenet.com Published On :: Wed, 6 Jul 2022 00:00:00 PDT Title: What Are 4 Symptoms of Seasonal Affective Disorder?Category: Diseases and ConditionsCreated: 12/10/2021 12:00:00 AMLast Editorial Review: 7/6/2022 12:00:00 AM Full Article
sea Noninvasive diagnostic modalities and prediction models for detecting pulmonary hypertension associated with interstitial lung disease: a narrative review By err.ersjournals.com Published On :: 2024-10-09T00:15:15-07:00 Pulmonary hypertension (PH) is highly prevalent in patients with interstitial lung disease (ILD) and is associated with increased morbidity and mortality. Widely available noninvasive screening tools are warranted to identify patients at risk for PH, especially severe PH, that could be managed at expert centres. This review summarises current evidence on noninvasive diagnostic modalities and prediction models for the timely detection of PH in patients with ILD. It critically evaluates these approaches and discusses future perspectives in the field. A comprehensive literature search was carried out in PubMed and Scopus, identifying 39 articles that fulfilled inclusion criteria. There is currently no single noninvasive test capable of accurately detecting and diagnosing PH in ILD patients. Estimated right ventricular pressure (RVSP) on Doppler echocardiography remains the single most predictive factor of PH, with other indirect echocardiographic markers increasing its diagnostic accuracy. However, RVSP can be difficult to estimate in patients due to suboptimal views from extensive lung disease. The majority of existing composite scores, including variables obtained from chest computed tomography, pulmonary function tests and cardiopulmonary exercise tests, were derived from retrospective studies, whilst lacking validation in external cohorts. Only two available scores, one based on a stepwise echocardiographic approach and the other on functional parameters, predicted the presence of PH with sufficient accuracy and used a validation cohort. Although several methodological limitations prohibit their generalisability, their use may help physicians to detect PH earlier. Further research on the potential of artificial intelligence may guide a more tailored approach, for timely PH diagnosis. Full Article
sea Dynamic dysregulation of retrotransposons in neurodegenerative diseases at the single-cell level [RESOURCES] By genome.cshlp.org Published On :: 2024-10-29T06:46:08-07:00 Retrotransposable elements (RTEs) are common mobile genetic elements comprising ~42% of the human genome. RTEs play critical roles in gene regulation and function, but how they are specifically involved in complex diseases is largely unknown. Here, we investigate the cellular heterogeneity of RTEs using 12 single-cell transcriptome profiles covering three neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease, and multiple sclerosis. We identify cell type marker RTEs in neurons, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells that are related to these diseases. The differential expression analysis reveals the landscape of dysregulated RTE expression, especially L1s, in excitatory neurons of multiple neurodegenerative diseases. Machine learning algorithms for predicting cell disease stage using a combination of RTE and gene expression features suggests dynamic regulation of RTEs in AD. Furthermore, we construct a single-cell atlas of retrotransposable elements in neurodegenerative disease (scARE) using these data sets and features. scARE has six feature analysis modules to explore RTE dynamics in a user-defined condition. To our knowledge, scARE represents the first systematic investigation of RTE dynamics at the single-cell level within the context of neurodegenerative diseases. Full Article
sea PWAS Hub for exploring gene-based associations of common complex diseases [RESOURCES] By genome.cshlp.org Published On :: 2024-10-29T06:46:08-07:00 PWAS (proteome-wide association study) is an innovative genetic association approach that complements widely used methods like GWAS (genome-wide association study). The PWAS approach involves consecutive phases. Initially, machine learning modeling and probabilistic considerations quantify the impact of genetic variants on protein-coding genes’ biochemical functions. Secondly, for each individual, aggregating the variants per gene determines a gene-damaging score. Finally, standard statistical tests are activated in the case-control setting to yield statistically significant genes per phenotype. The PWAS Hub offers a user-friendly interface for an in-depth exploration of gene–disease associations from the UK Biobank (UKB). Results from PWAS cover 99 common diseases and conditions, each with over 10,000 diagnosed individuals per phenotype. Users can explore genes associated with these diseases, with separate analyses conducted for males and females. For each phenotype, the analyses account for sex-based genetic effects, inheritance modes (dominant and recessive), and the pleiotropic nature of associated genes. The PWAS Hub showcases its usefulness for asthma by navigating through proteomic-genetic analyses. Inspecting PWAS asthma-listed genes (a total of 27) provide insights into the underlying cellular and molecular mechanisms. Comparison of PWAS-statistically significant genes for common diseases to the Open Targets benchmark shows partial but significant overlap in gene associations for most phenotypes. Graphical tools facilitate comparing genetic effects between PWAS and coding GWAS results, aiding in understanding the sex-specific genetic impact on common diseases. This adaptable platform is attractive to clinicians, researchers, and individuals interested in delving into gene–disease associations and sex-specific genetic effects. Full Article
sea Seamless, rapid, and accurate analyses of outbreak genomic data using split k-mer analysis [METHODS] By genome.cshlp.org Published On :: 2024-10-29T06:46:08-07:00 Sequence variation observed in populations of pathogens can be used for important public health and evolutionary genomic analyses, especially outbreak analysis and transmission reconstruction. Identifying this variation is typically achieved by aligning sequence reads to a reference genome, but this approach is susceptible to reference biases and requires careful filtering of called genotypes. There is a need for tools that can process this growing volume of bacterial genome data, providing rapid results, but that remain simple so they can be used without highly trained bioinformaticians, expensive data analysis, and long-term storage and processing of large files. Here we describe split k-mer analysis (SKA2), a method that supports both reference-free and reference-based mapping to quickly and accurately genotype populations of bacteria using sequencing reads or genome assemblies. SKA2 is highly accurate for closely related samples, and in outbreak simulations, we show superior variant recall compared with reference-based methods, with no false positives. SKA2 can also accurately map variants to a reference and be used with recombination detection methods to rapidly reconstruct vertical evolutionary history. SKA2 is many times faster than comparable methods and can be used to add new genomes to an existing call set, allowing sequential use without the need to reanalyze entire collections. With an inherent absence of reference bias, high accuracy, and a robust implementation, SKA2 has the potential to become the tool of choice for genotyping bacteria. SKA2 is implemented in Rust and is freely available as open-source software. Full Article
sea Complete genomes of Asgard archaea reveal diverse integrated and mobile genetic elements [RESEARCH] By genome.cshlp.org Published On :: 2024-10-29T06:46:08-07:00 Asgard archaea are of great interest as the progenitors of Eukaryotes, but little is known about the mobile genetic elements (MGEs) that may shape their ongoing evolution. Here, we describe MGEs that replicate in Atabeyarchaeia, a wetland Asgard archaea lineage represented by two complete genomes. We used soil depth–resolved population metagenomic data sets to track 18 MGEs for which genome structures were defined and precise chromosome integration sites could be identified for confident host linkage. Additionally, we identified a complete 20.67 kbp circular plasmid and two family-level groups of viruses linked to Atabeyarchaeia, via CRISPR spacer targeting. Closely related 40 kbp viruses possess a hypervariable genomic region encoding combinations of specific genes for small cysteine-rich proteins structurally similar to restriction-homing endonucleases. One 10.9 kbp integrative conjugative element (ICE) integrates genomically into the Atabeyarchaeum deiterrae-1 chromosome and has a 2.5 kbp circularizable element integrated within it. The 10.9 kbp ICE encodes an expressed Type IIG restriction-modification system with a sequence specificity matching an active methylation motif identified by Pacific Biosciences (PacBio) high-accuracy long-read (HiFi) metagenomic sequencing. Restriction-modification of Atabeyarchaeia differs from that of another coexisting Asgard archaea, Freyarchaeia, which has few identified MGEs but possesses diverse defense mechanisms, including DISARM and Hachiman, not found in Atabeyarchaeia. Overall, defense systems and methylation mechanisms of Asgard archaea likely modulate their interactions with MGEs, and integration/excision and copy number variation of MGEs in turn enable host genetic versatility. Full Article
sea Global characterization of somatic mutations and DNA methylation changes during vegetative propagation in strawberries [RESEARCH] By genome.cshlp.org Published On :: 2024-10-29T06:46:07-07:00 Somatic mutations arise and accumulate during tissue culture and vegetative propagation, potentially affecting various traits in horticultural crops, but their characteristics are still unclear. Here, somatic mutations in regenerated woodland strawberry derived from tissue culture of shoot tips under different conditions and 12 cultivated strawberry individuals are analyzed by whole genome sequencing. The mutation frequency of single nucleotide variants is significantly increased with increased hormone levels or prolonged culture time in the range of 3.3 x 10–8–3.0 x 10–6 mutations per site. CG methylation shows a stable reduction (0.71%–8.03%) in regenerated plants, and hypoCG-DMRs are more heritable after sexual reproduction. A high-quality haplotype-resolved genome is assembled for the strawberry cultivar "Beni hoppe." The 12 "Beni hoppe" individuals randomly selected from different locations show 4731–6005 mutations relative to the reference genome, and the mutation frequency varies among the subgenomes. Our study has systematically characterized the genetic and epigenetic variants in regenerated woodland strawberry plants and different individuals of the same strawberry cultivar, providing an accurate assessment of somatic mutations at the genomic scale and nucleotide resolution in plants. Full Article
sea Evolutionary dynamics of polyadenylation signals and their recognition strategies in protists [RESEARCH] By genome.cshlp.org Published On :: 2024-10-29T06:46:07-07:00 The poly(A) signal, together with auxiliary elements, directs cleavage of a pre-mRNA and thus determines the 3' end of the mature transcript. In many species, including humans, the poly(A) signal is an AAUAAA hexamer, but we recently found that the deeply branching eukaryote Giardia lamblia uses a distinct hexamer (AGURAA) and lacks any known auxiliary elements. Our discovery prompted us to explore the evolutionary dynamics of poly(A) signals and auxiliary elements in the eukaryotic kingdom. We use direct RNA sequencing to determine poly(A) signals for four protists within the Metamonada clade (which also contains G. lamblia) and two outgroup protists. These experiments reveal that the AAUAAA hexamer serves as the poly(A) signal in at least four different eukaryotic clades, indicating that it is likely the ancestral signal, whereas the unusual Giardia version is derived. We find that the use and relative strengths of auxiliary elements are also plastic; in fact, within Metamonada, species like G. lamblia make use of a previously unrecognized auxiliary element where nucleotides flanking the poly(A) signal itself specify genuine cleavage sites. Thus, despite the fundamental nature of pre-mRNA cleavage for the expression of all protein-coding genes, the motifs controlling this process are dynamic on evolutionary timescales, providing motivation for future biochemical and structural studies as well as new therapeutic angles to target eukaryotic pathogens. Full Article
sea De novo genome assemblies of two cryptodiran turtles with ZZ/ZW and XX/XY sex chromosomes provide insights into patterns of genome reshuffling and uncover novel 3D genome folding in amniotes [RESEARCH] By genome.cshlp.org Published On :: 2024-10-29T06:46:07-07:00 Understanding the evolution of chromatin conformation among species is fundamental to elucidate the architecture and plasticity of genomes. Nonrandom interactions of linearly distant loci regulate gene function in species-specific patterns, affecting genome function, evolution, and, ultimately, speciation. Yet, data from nonmodel organisms are scarce. To capture the macroevolutionary diversity of vertebrate chromatin conformation, here we generate de novo genome assemblies for two cryptodiran (hidden-neck) turtles via Illumina sequencing, chromosome conformation capture, and RNA-seq: Apalone spinifera (ZZ/ZW, 2n = 66) and Staurotypus triporcatus (XX/XY, 2n = 54). We detected differences in the three-dimensional (3D) chromatin structure in turtles compared to other amniotes beyond the fusion/fission events detected in the linear genomes. Namely, whole-genome comparisons revealed distinct trends of chromosome rearrangements in turtles: (1) a low rate of genome reshuffling in Apalone (Trionychidae) whose karyotype is highly conserved when compared to chicken (likely ancestral for turtles), and (2) a moderate rate of fusions/fissions in Staurotypus (Kinosternidae) and Trachemys scripta (Emydidae). Furthermore, we identified a chromosome folding pattern that enables "centromere–telomere interactions" previously undetected in turtles. The combined turtle pattern of "centromere–telomere interactions" (discovered here) plus "centromere clustering" (previously reported in sauropsids) is novel for amniotes and it counters previous hypotheses about amniote 3D chromatin structure. We hypothesize that the divergent pattern found in turtles originated from an amniote ancestral state defined by a nuclear configuration with extensive associations among microchromosomes that were preserved upon the reshuffling of the linear genome. Full Article
sea Mutational scanning of CRX classifies clinical variants and reveals biochemical properties of the transcriptional effector domain [RESEARCH] By genome.cshlp.org Published On :: 2024-10-29T06:46:07-07:00 The transcription factor (TF) cone-rod homeobox (CRX) is essential for the differentiation and maintenance of photoreceptor cell identity. Several human CRX variants cause degenerative retinopathies, but most are variants of uncertain significance. We performed a deep mutational scan (DMS) of nearly all possible single amino acid substitutions in CRX using a cell-based transcriptional reporter assay, curating a high-confidence list of nearly 2000 variants with altered transcriptional activity. In the structured homeodomain, activity scores closely aligned to a predicted structure and demonstrated position-specific constraints on amino acid substitution. In contrast, the intrinsically disordered transcriptional effector domain displayed a qualitatively different pattern of substitution effects, following compositional constraints without specific residue position requirements in the peptide chain. These compositional constraints were consistent with the acidic exposure model of transcriptional activation. We evaluated the performance of the DMS assay as a clinical variant classification tool using gold-standard classified human variants from ClinVar, identifying pathogenic variants with high specificity and moderate sensitivity. That this performance could be achieved using a synthetic reporter assay in a foreign cell type, even for a highly cell type-specific TF like CRX, suggests that this approach shows promise for DMS of other TFs that function in cell types that are not easily accessible. Together, the results of the CRX DMS identify molecular features of the CRX effector domain and demonstrate utility for integration into the clinical variant classification pipeline. Full Article
sea Evidence for compensatory evolution within pleiotropic regulatory elements [RESEARCH] By genome.cshlp.org Published On :: 2024-10-29T06:46:07-07:00 Pleiotropy, measured as expression breadth across tissues, is one of the best predictors for protein sequence and expression conservation. In this study, we investigated its effect on the evolution of cis-regulatory elements (CREs). To this end, we carefully reanalyzed the Epigenomics Roadmap data for nine fetal tissues, assigning a measure of pleiotropic degree to nearly half a million CREs. To assess the functional conservation of CREs, we generated ATAC-seq and RNA-seq data from humans and macaques. We found that more pleiotropic CREs exhibit greater conservation in accessibility, and the mRNA expression levels of the associated genes are more conserved. This trend of higher conservation for higher degrees of pleiotropy persists when analyzing the transcription factor binding repertoire. In contrast, simple DNA sequence conservation of orthologous sites between species tends to be even lower for pleiotropic CREs than for species-specific CREs. Combining various lines of evidence, we propose that the lack of sequence conservation in functionally conserved pleiotropic CREs is owing to within-element compensatory evolution. In summary, our findings suggest that pleiotropy is also a good predictor for the functional conservation of CREs, even though this is not reflected in the sequence conservation of pleiotropic CREs. Full Article
sea Chromatin interaction maps identify oncogenic targets of enhancer duplications in cancer [RESEARCH] By genome.cshlp.org Published On :: 2024-10-29T06:46:07-07:00 As a major type of structural variants, tandem duplication plays a critical role in tumorigenesis by increasing oncogene dosage. Recent work has revealed that noncoding enhancers are also affected by duplications leading to the activation of oncogenes that are inside or outside of the duplicated regions. However, the prevalence of enhancer duplication and the identity of their target genes remains largely unknown in the cancer genome. Here, by analyzing whole-genome sequencing data in a non-gene-centric manner, we identify 881 duplication hotspots in 13 major cancer types, most of which do not contain protein-coding genes. We show that the hotspots are enriched with distal enhancer elements and are highly lineage-specific. We develop a HiChIP-based methodology that navigates enhancer–promoter contact maps to prioritize the target genes for the duplication hotspots harboring enhancer elements. The methodology identifies many novel enhancer duplication events activating oncogenes such as ESR1, FOXA1, GATA3, GATA6, TP63, and VEGFA, as well as potentially novel oncogenes such as GRHL2, IRF2BP2, and CREB3L1. In particular, we identify a duplication hotspot on Chromosome 10p15 harboring a cluster of enhancers, which skips over two genes, through a long-range chromatin interaction, to activate an oncogenic isoform of the NET1 gene to promote migration of gastric cancer cells. Focusing on tandem duplications, our study substantially extends the catalog of noncoding driver alterations in multiple cancer types, revealing attractive targets for functional characterization and therapeutic intervention. Full Article
sea Targeted and complete genomic sequencing of the major histocompatibility complex in haplotypic form of individual heterozygous samples [RESEARCH] By genome.cshlp.org Published On :: 2024-10-29T06:46:07-07:00 The human major histocompatibility complex (MHC) is a ~4 Mb genomic segment on Chromosome 6 that plays a pivotal role in the immune response. Despite its importance in various traits and diseases, its complex nature makes it challenging to accurately characterize on a routine basis. We present a novel approach allowing targeted sequencing and de novo haplotypic assembly of the MHC region in heterozygous samples, using long-read sequencing technologies. Our approach is validated using two reference samples, two family trios, and an African-American sample. We achieved excellent coverage (96.6%–99.9% with at least 30x depth) and high accuracy (99.89%–99.99%) for the different haplotypes. This methodology offers a reliable and cost-effective method for sequencing and fully characterizing the MHC without the need for whole-genome sequencing, facilitating broader studies on this important genomic segment and having significant implications in immunology, genetics, and medicine. Full Article
sea AGAP duplicons associate with structural diversity at Chromosome 10q11.22 [RESEARCH] By genome.cshlp.org Published On :: 2024-10-29T06:46:07-07:00 The 10q11.22 chromosomal region is a duplication-rich interval of the human genome and one of the last to be fully assembled. It carries copy number–variable genes associated with intellectual disability, bipolar disorder, and obesity. In this study, we characterized the structural diversity at this locus by analyzing 64 haploid assemblies produced by the Human Pangenome Reference Consortium. We identified 11 alternative haplotypes that differ in the copy number and/or orientation of large genomic segments, ranging from hundreds of kilobase pairs (kbp) to over one megabase pair (Mbp). We uncovered a 2.4 Mbp size difference between the shortest and longest haplotypes. Breakpoint analysis revealed that genomic instability results from nonallelic homologous recombination between segmental duplication (SD) pairs with varying similarity (94.4%–99.6%). Nonetheless, these pairs generally recombine at positions where their identity is higher (>99.6%). Recurrent inversions occur with different breakpoints within the same inverted SD pair. Inversion polymorphisms shuffle the entire SD arrangement, creating new predispositions to copy-number variations. The SD architecture is associated with a catarrhine-specific subgroup of the AGAP gene family, which likely triggered the accumulation of SDs at this locus over the past 25 million years of human evolution. Our results reveal extensive structural diversity and genomic instability at the 10q11.22 locus, and expand the general understanding of the mutational mechanisms behind SD-mediated rearrangements. Full Article
sea The Priority Updates from the Research Literature (PURLs) Methodology By www.jabfm.org Published On :: 2024-10-25T09:26:14-07:00 Full Article
sea Potential Drawbacks of Noninvasive Diagnostic Methods for Nonalcoholic Fatty Liver Disease By www.jabfm.org Published On :: 2024-10-25T09:26:14-07:00 The rising obesity epidemic is a phenomenon that has gained increasing attention from health providers and health policy makers. This led to recognition of nonalcoholic fatty liver disease (MASLD). The standard for its assessment has been histologic, which is neither practical nor acceptable by patients. Subsequently, a number of noninvasive assessment methods have been developed. However, despite ease of implementation, their confounding variables do hinder their accuracy. Nonetheless, the development of the liver stiffness measurement (LSM) and incorporation of other biological parameters has minimized but not eliminated the need for liver biopsy. Imaging methods are useful in evaluation, estimation, and following the progression of steatosis and fibrosis with particular attention to controlled attenuation parameter (CAP) and MRI–Proton Density Fat Fraction (MRI-PDFF). The choices for the family physician are broad and rely on tests’ availability, cost, and patient acceptance. Great efforts have been undertaken to produce more robust and novel noninvasive markers that indicate fibrinogenesis directly in an implementable and cost-effective way. Full Article
sea Downstream Effects of Market Changes on Inhalers: Impacts on Individuals With Chronic Lung Disease By rc.rcjournal.com Published On :: 2024-10-25T05:44:13-07:00 COPD and asthma are two of the most common chronic lung diseases, affecting over 545 million people globally and 34 million in the United States. Annual health care costs related to chronic lung disease are estimated at €380 billion in the European Union, and $24–$50 billion in the United States averaging to $4,000 in out-of-pocket costs per person in the U.S. A full-text literature search was conducted for English publications between January 1, 2005–March 18, 2024. It returned over 5,000 publications that were further narrowed using key search words, resulting in 172 peer-reviewed articles. Using their experience and subject expertise, the authors further narrowed the peer-reviewed articles to 55 that were in their opinion relevant. Also, 38 recently published industry reports and news articles specific to downstream effects of inhaler market changes and the future impact were included. The literature suggests that individuals with chronic lung disease face increased challenges with access to inhaled medication due to rising medication costs, discontinuation of branded medications, introduction of generic medications not covered by insurance, exclusionary preferred drug list tactics that force health care providers into non-medical switching of medication or devices, and ongoing medication shortages. Providers experience ongoing hurdles in prescribing appropriate inhaled medications for individuals with chronic lung disease, including increased time and costs spent on administrative tasks due to inhaler denials, a loss of patient trust, and limits on their ability to prescribe appropriate inhaled medication for individuals with chronic lung disease. Full Article
sea An Introductory Guide to Survey Research By jdh.adha.org Published On :: 2024-10-15T09:18:41-07:00 In the dental hygiene discipline, evidence-based practice serves as a cornerstone for delivering high quality patient care and moving professional standards forward. As practitioners delve deeper into research to inform clinical decision making, the integration of robust survey methodologies becomes imperative. However, the complexities of survey design, implementation, and analysis pose notable challenges, particularly in ensuring the reliability and validity of research outcomes. This short report provides brief practical guidance about the basics of survey research methodologies for dental hygiene professionals. Full Article
sea NEAT1 promotes genome stability via m6A methylation-dependent regulation of CHD4 [Research Papers] By genesdev.cshlp.org Published On :: 2024-10-16T07:18:56-07:00 Long noncoding (lnc)RNAs emerge as regulators of genome stability. The nuclear-enriched abundant transcript 1 (NEAT1) is overexpressed in many tumors and is responsive to genotoxic stress. However, the mechanism that links NEAT1 to DNA damage response (DDR) is unclear. Here, we investigate the expression, modification, localization, and structure of NEAT1 in response to DNA double-strand breaks (DSBs). DNA damage increases the levels and N6-methyladenosine (m6A) marks on NEAT1, which promotes alterations in NEAT1 structure, accumulation of hypermethylated NEAT1 at promoter-associated DSBs, and DSB signaling. The depletion of NEAT1 impairs DSB focus formation and elevates DNA damage. The genome-protective role of NEAT1 is mediated by the RNA methyltransferase 3 (METTL3) and involves the release of the chromodomain helicase DNA binding protein 4 (CHD4) from NEAT1 to fine-tune histone acetylation at DSBs. Our data suggest a direct role for NEAT1 in DDR. Full Article
sea YY1 knockout in pro-B cells impairs lineage commitment, enabling unusual hematopoietic lineage plasticity [Research Papers] By genesdev.cshlp.org Published On :: 2024-10-16T07:18:56-07:00 During B-cell development, cells progress through multiple developmental stages, with the pro-B-cell stage defining commitment to the B-cell lineage. YY1 is a ubiquitous transcription factor that is capable of both activation and repression functions. We found here that knockout of YY1 at the pro-B-cell stage eliminates B lineage commitment. YY1 knockout pro-B cells can generate T lineage cells in vitro using the OP9-DL4 feeder system and in vivo after injection into sublethally irradiated Rag1–/– mice. These T lineage-like cells lose their B lineage transcript profile and gain a T-cell lineage profile. Single-cell RNA-seq experiments showed that as YY1 knockout pro-B cells transition into T lineage cells in vitro, various cell clusters adopt transcript profiles representing a multiplicity of hematopoietic lineages, indicating unusual lineage plasticity. In addition, YY1 KO pro-B cells in vivo can give rise to other hematopoietic lineages in vivo. Evaluation of RNA-seq, scRNA-seq, ChIP-seq, and scATAC-seq data indicates that YY1 controls numerous chromatin-modifying proteins leading to increased accessibility of alternative lineage genes in YY1 knockout pro-B cells. Given the ubiquitous nature of YY1 and its dual activation and repression functions, YY1 may regulate commitment in multiple cell lineages. Full Article
sea A germline PAF1 paralog complex ensures cell type-specific gene expression [Research Papers] By genesdev.cshlp.org Published On :: 2024-10-16T07:18:56-07:00 Animal germline development and fertility rely on paralogs of general transcription factors that recruit RNA polymerase II to ensure cell type-specific gene expression. It remains unclear whether gene expression processes downstream from such paralog-based transcription is distinct from that of canonical RNA polymerase II genes. In Drosophila, the testis-specific TBP-associated factors (tTAFs) activate over a thousand spermatocyte-specific gene promoters to enable meiosis and germ cell differentiation. Here, we show that efficient termination of tTAF-activated transcription relies on testis-specific paralogs of canonical polymerase-associated factor 1 complex (PAF1C) proteins, which form a testis-specific PAF1C (tPAF). Consequently, tPAF mutants show aberrant expression of hundreds of downstream genes due to read-in transcription. Furthermore, tPAF facilitates expression of Y-linked male fertility factor genes and thus serves to maintain spermatocyte-specific gene expression. Consistently, tPAF is required for the segregation of meiotic chromosomes and male fertility. Supported by comparative in vivo protein interaction assays, we provide a mechanistic model for the functional divergence of tPAF and the PAF1C and identify transcription termination as a developmentally regulated process required for germline-specific gene expression. Full Article
sea Dysregulating mTORC1-4E-BP2 signaling in GABAergic interneurons impairs hippocampus-dependent learning and memory [RESEARCH PAPERS] By learnmem.cshlp.org Published On :: 2024-10-28T08:52:55-07:00 Memory formation is contingent on molecular and structural changes in neurons in response to learning stimuli—a process known as neuronal plasticity. The initiation step of mRNA translation is a gatekeeper of long-term memory by controlling the production of plasticity-related proteins in the brain. The mechanistic target of rapamycin complex 1 (mTORC1) controls mRNA translation, mainly through phosphorylation of the eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs) and ribosomal protein S6 kinases (S6Ks). mTORC1 signaling decreases throughout brain development, starting from the early postnatal period. Here, we discovered that in mice, the age-dependent decrease in mTORC1 signaling occurs selectively in excitatory but not inhibitory neurons. Using a gene conditional knockout (cKO) strategy, we demonstrate that either up- or downregulating the mTORC1-4E-BP2 axis in GAD65 inhibitory interneurons, but not excitatory neurons, results in long-term object recognition and object location memory deficits. Our data indicate that the mTORC1 pathway in inhibitory but not excitatory neurons plays a key role in memory formation. Full Article
sea The influence of categorical stimuli on relational memory binding [RESEARCH PAPERS] By learnmem.cshlp.org Published On :: 2024-10-31T09:40:31-07:00 Binding of arbitrary information into distinct memory representations that can be used to guide behavior is a hallmark of relational memory. What is and is not bound into a memory representation and how those things influence the organization of that representation remain topics of interest. While some information is intentionally and effortfully bound—often the information that is consistent with task goals or expectations about what information may be required later—other information appears to be bound automatically. The present set of experiments sought to investigate whether spatial memory would be systematically influenced by the presence and absence of distinct categories of stimuli on a spatial reconstruction task. In this task, participants must learn multiple item-location bindings and place each item back in its studied location after a short delay. Across three experiments, participants made significantly more within-category errors (i.e., misassigning one item to the location of a different item from the same category) than between-category errors (i.e., misassigning one item to the location of an item from a different category) when categories were perceptually or semantically distinct. These data reveal that category information contributed to the organization of the memory representation and influenced spatial reconstruction performance. Together, these results suggest that categorical information can influence memory organization, and not always to the benefit of overall task performance. Full Article
sea Characteristics of exacerbators in the US Bronchiectasis and NTM Research Registry: a cross-sectional study By beta.openres.ersjournals.com Published On :: 2024-11-11T01:50:25-08:00 Background Exacerbations of noncystic fibrosis bronchiectasis (bronchiectasis) are associated with reduced health-related quality of life and increased mortality, likelihood of hospitalisation and lung function decline. This study investigated patient clinical characteristics associated with exacerbation frequency. Methods A cross-sectional cohort study of patients ≥18 years with bronchiectasis enrolled in the US Bronchiectasis and Nontuberculous Mycobacteria (NTM) Research Registry (BRR) September 2008–March 2020. Patients were stratified by exacerbation frequency in their 2 years before enrolment. Patient demographics, respiratory symptoms, healthcare resource utilisation, microbiology, modified bronchiectasis severity index (mBSI) and select comorbidities were collected at enrolment. Patient characteristics associated with exacerbation frequency were assessed using a negative binomial model. Results The study included 2950 patients (mean age 65.6 years; 79.1% female). Frequency of moderate to severe airway obstruction (forced expiratory volume in 1 s (FEV1) % predicted <50%; most recent measure) was 15.9%, 17.8%, and 24.6% in patients with 1, 2, and ≥3 exacerbations versus 8.9% in patients with 0 exacerbations; severe disease (mBSI) was 27.8%, 24.2% and 51.1% versus 13.2%; respiratory hospitalisation was 24.5%, 33.0% and 36.5% versus 4.1%; and Pseudomonas aeruginosa infection was 18.8%, 23.4% and 35.2% versus 11.9%. In multivariable model analysis, respiratory hospitalisation, cough, haemoptysis, P. aeruginosa, younger age, lower FEV1% predicted, asthma, and gastro-oesophageal reflux disease were associated with more exacerbations. Conclusions These findings demonstrate a high disease burden, including increased respiratory symptoms, healthcare resource utilisation, and P. aeruginosa infection in patients with bronchiectasis and multiple exacerbations. Full Article
sea Correlations of Long Noncoding RNA HNF4A-AS1 Alternative Transcripts with Liver Diseases and Drug Metabolism [Articles] By dmd.aspetjournals.org Published On :: 2024-10-16T09:02:03-07:00 Hepatocyte nuclear factor 4 alpha antisense 1 (HNF4A-AS1) is a long noncoding RNA (lncRNA) gene physically located next to the transcription factor HNF4A gene in the human genome. Its transcription products have been reported to inhibit the progression of hepatocellular carcinoma (HCC) and negatively regulate the expression of cytochrome P450s (CYPs), including CYP1A2, 2B6, 2C9, 2C19, 2E1, and 3A4. By altering CYP expression, lncRNA HNF4A-AS1 also contributes to the susceptibility of drug-induced liver injury. Thus, HNF4A-AS1 lncRNA is a promising target for controlling HCC and modulating drug metabolism. However, HNF4A-AS1 has four annotated alternative transcripts in the human genome browsers, and it is unclear which transcripts the small interfering RNAs or small hairpin RNAs used in the previous studies are silenced and which transcripts should be used as the target. In this study, four annotated and two newly identified transcripts were confirmed. These six transcripts showed different expression levels in different liver disease conditions, including metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and obesity. The expression patterns of all HNF4A-AS1 transcripts were further investigated in liver cell growth from human embryonic stem cells to matured hepatocyte-like cells, HepaRG differentiation, and exposure to rifampicin treatment. Several HNF4A-AS1 transcripts highly displayed correlations with these situations. In addition, some of the HNF4A-AS1 transcripts also showed a strong correlation with CYP3A4 during HepaRG maturation and rifampicin exposure. Our findings provide valuable insights into the specific roles of HNF4A-AS1 transcripts, paving the way for more targeted therapeutic strategies for liver diseases and drug metabolism. SIGNIFICANCE STATEMENT This study explores the alternative transcripts of HNF4A-AS1, showing how their expression changes in different biological conditions, from various liver diseases to the growth and differentiation of hepatocytes and drug metabolism. The generated knowledge is essential for understanding the independent roles of different transcripts from the same lncRNA in different liver diseases and drug metabolism situations. Full Article
sea Documenting the Provision of Emergency Contraceptive Pills Through Youth-Serving Delivery Channels: Exploratory Mixed Methods Research on Malawi’s Emergency Contraception Strategy By ghspjournal.org Published On :: 2024-10-29T12:28:39-07:00 ABSTRACTIntroduction:Emergency contraceptive pills (ECPs) are effective and can be used safely at any age repeatedly within the same cycle. They are often favored by youth yet are underutilized. Private facilities can increase ECP access but present barriers including cost. Identifying effective public-sector ECP distribution models can help ensure equitable access. The Malawi Ministry of Health developed a strategy to improve ECP access in 2020. We documented ECP provision through select public, youth-serving channels recommended by the strategy: general and youth-specific outreach, paid and unpaid community health workers (CHWs), and youth clubs.Methods:We conducted this mixed methods study from November 2022–March 2023 in 2 rural districts (Mchinji and Phalombe) implementing the strategy. We conducted qualitative interviews with 10 national stakeholders, 46 providers, and 24 clients aged 15–24 years about ECP service delivery. Additionally, 25 providers collected quantitative tally data about clients seeking ECPs. We analyzed qualitative data using grounded theory and quantitative data descriptively.Results:Stakeholders and providers reported ECP uptake increased in geographies where the strategy was implemented, especially among youth. Providers documented 3,988 client visits for ECPs over 3 months. Of these visits, 26% were from male clients, 36% were from clients aged younger than 20 years, and 64% received ECPs for the first time. Across channels, youth club leaders and unpaid CHWs reported the most client visits per provider and served the youngest clients. However, no ECPs were dispensed during 29% of visits due to stock-outs. While many providers were supportive of youth accessing ECPs, most held unfavorable attitudes toward repeat use.Conclusion:ECP access should be expanded through provision in the studied channels, especially youth clubs and CHWs. However, to meet demand, the supply chain must be strengthened. We recommend addressing providers’ attitudes about repeat use to ensure informed method choice. Full Article
sea Proteomic Analysis of Signaling Pathways Modulated by Fatty Acid Binding Protein 5 (FABP5) in Macrophages [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Although acute inflammation serves essential functions in maintaining tissue homeostasis, chronic inflammation is causally linked to many diseases. Macrophages are a major cell type that orchestrates inflammatory processes. During inflammation, macrophages undergo polarization and activation, thereby mobilizing pro-inflammatory and anti-inflammatory transcriptional programs that regulate ensuing macrophage functions. Fatty acid binding protein 5 (FABP5) is a lipid chaperone highly expressed in macrophages. FABP5 deletion is implicated in driving macrophages toward an anti-inflammatory phenotype, yet signaling pathways regulated by macrophage-FABP5 have not been systematically profiled. We leveraged proteomic and phosphoproteomic approaches to characterize pathways modulated by FABP5 in M1 and M2 polarized bone marrow-derived macrophages (BMDMs). Stable isotope labeling by amino acids-based analysis of M1 and M2 polarized wild-type and FABP5 knockout BMDMs revealed numerous differentially regulated proteins and phosphoproteins. FABP5 deletion impacted downstream pathways associated with inflammation, cytokine production, oxidative stress, and kinase activity. Toll-like receptor 2 (TLR2) emerged as a novel target of FABP5 and pharmacological FABP5 inhibition blunted TLR2-mediated activation of downstream pathways, ascribing a novel role for FABP5 in TLR2 signaling. This study represents a comprehensive characterization of the impact of FABP5 deletion on the proteomic and phosphoproteomic landscape of M1 and M2 polarized BMDMs. Loss of FABP5 altered pathways implicated in inflammatory responses, macrophage function, and TLR2 signaling. This work provides a foundation for future studies seeking to investigate the therapeutic potential of FABP5 inhibition in pathophysiological states resulting from dysregulated inflammatory signaling. SIGNIFICANCE STATEMENT This research offers a comprehensive analysis of fatty acid binding protein 5 (FABP5) in macrophages during inflammatory response. The authors employed quantitative proteomic and phosphoproteomic approaches to investigate this utilizing bone marrow-derived macrophages that were M1 and M2 polarized using lipopolysaccharide with interferon and interleukin-4, respectively. This revealed multiple pathways related to inflammation that were differentially regulated due to the absence of FABP5. These findings underscore the potential therapeutic significance of macrophage-FABP5 as a candidate for addressing inflammatory-related diseases. Full Article
sea Regulation of Cannabinoid and Opioid Receptor Levels by Endogenous and Pharmacological Chaperones [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Cannabinoid and opioid receptor activities can be modulated by a variety of post-translational mechanisms including the formation of interacting complexes. This study examines the involvement of endogenous and exogenous chaperones in modulating the abundance and activity of cannabinoid CB1 receptor (CB1R), opioid receptor (DOR), and CB1R-DOR interacting complexes. Focusing on endogenous protein chaperones, namely receptor transporter proteins (RTPs), we examined relative mRNA expression in the mouse spinal cord and found RTP4 to be expressed at higher levels compared with other RTPs. Next, we assessed the effect of RTP4 on receptor abundance by manipulating RTP4 expression in cell lines. Overexpression of RTP4 causes an increase and knock-down causes a decrease in the levels of CB1R, DOR, and CB1R-DOR interacting complexes; this is accompanied by parallel changes in signaling. The ability of small molecule lipophilic ligands to function as exogenous chaperones was examined using receptor-selective antagonists. Long-term treatment leads to increases in receptor abundance and activity with no changes in mRNA supporting a role as pharmacological chaperones. Finally, the effect of cannabidiol (CBD), a small molecule ligand and a major active component of cannabis, on receptor abundance and activity in mice was examined. We find that CBD administration leads to increases in receptor abundance and activity in mouse spinal cord. Together, these results highlight a role for chaperones (proteins and small molecules) in modulating levels and activity of CB1R, DOR, and their interacting complexes potentially through mechanisms including receptor maturation and trafficking. SIGNIFICANCE STATEMENT This study highlights a role for chaperones (endogenous and small membrane-permeable molecules) in modulating levels of cannabinoid CB1 receptor, delta opioid receptor, and their interacting complexes. These chaperones could be developed as therapeutics for pathologies involving these receptors. Full Article
sea Evaluating the Abuse Potential of Lenabasum, a Selective Cannabinoid Receptor 2 Agonist [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Endocannabinoids, which are present throughout the central nervous system (CNS), can activate cannabinoid receptors 1 and 2 (CB1 and CB2). CB1 and CB2 agonists exhibit broad anti-inflammatory properties, suggesting their potential to treat inflammatory diseases. However, careful evaluation of abuse potential is necessary. This study evaluated the abuse potential of lenabasum, a selective CB2 receptor agonist in participants (n = 56) endorsing recreational cannabis use. Three doses of lenabasum (20, 60, and 120 mg) were compared with placebo and nabilone (3 and 6 mg). The primary endpoint was the peak effect (Emax) on a bipolar Drug Liking visual analog scale (VAS). Secondary VAS and pharmacokinetic (PK) endpoints and adverse events were assessed. Lenabasum was safe and well tolerated. Compared with placebo, a 20-mg dose of lenabasum did not increase ratings of Drug Liking and had no distinguishable effect on other VAS endpoints. Dose-dependent increases in ratings of Drug Liking were observed with 60 and 120 mg lenabasum. Drug Liking and all other VAS outcomes were greatest for nabilone 3 mg and 6 mg, a medication currently approved by the US Food and Drug Administration (FDA). At a target therapeutic dose (20 mg), lenabasum did not elicit subjective ratings of Drug Liking. However, supratherapeutic doses of lenabasum (60 and 120 mg) did elicit subjective ratings of Drug Liking compared with placebo. Although both doses of lenabasum were associated with lower ratings of Drug Liking compared with 3 mg and 6 mg nabilone, lenabasum does have abuse potential and should be used cautiously in clinical settings. SIGNIFICANCE STATEMENT This work provides evidence that in people with a history of recreational cannabis use, lenabasum was safe and well tolerated, although it did demonstrate abuse potential. This work supports further development of lenabasum for potential therapeutic indications. Full Article
sea Cannabinoid 2 Receptor Activation Protects against Diabetic Cardiomyopathy through Inhibition of AGE/RAGE-Induced Oxidative Stress, Fibrosis, and Inflammasome Activation [Special Section: Cannabinoid Signaling in Human Health and Disease] By jpet.aspetjournals.org Published On :: 2024-10-18T07:04:15-07:00 Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)–receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β-caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2–related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms. SIGNIFICANCE STATEMENT BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2β and TGF-β/Smad and (NLRP3) inflammasome in diabetic cardiomyopathy. Full Article