tim Modeling High-Dimensional Unit-Root Time Series. (arXiv:2005.03496v1 [stat.ME]) By arxiv.org Published On :: In this paper, we propose a new procedure to build a structural-factor model for a vector unit-root time series. For a $p$-dimensional unit-root process, we assume that each component consists of a set of common factors, which may be unit-root non-stationary, and a set of stationary components, which contain the cointegrations among the unit-root processes. To further reduce the dimensionality, we also postulate that the stationary part of the series is a nonsingular linear transformation of certain common factors and idiosyncratic white noise components as in Gao and Tsay (2019a, b). The estimation of linear loading spaces of the unit-root factors and the stationary components is achieved by an eigenanalysis of some nonnegative definite matrix, and the separation between the stationary factors and the white noises is based on an eigenanalysis and a projected principal component analysis. Asymptotic properties of the proposed method are established for both fixed $p$ and diverging $p$ as the sample size $n$ tends to infinity. Both simulated and real examples are used to demonstrate the performance of the proposed method in finite samples. Full Article
tim Distributional Robustness of K-class Estimators and the PULSE. (arXiv:2005.03353v1 [econ.EM]) By arxiv.org Published On :: In causal settings, such as instrumental variable settings, it is well known that estimators based on ordinary least squares (OLS) can yield biased and non-consistent estimates of the causal parameters. This is partially overcome by two-stage least squares (TSLS) estimators. These are, under weak assumptions, consistent but do not have desirable finite sample properties: in many models, for example, they do not have finite moments. The set of K-class estimators can be seen as a non-linear interpolation between OLS and TSLS and are known to have improved finite sample properties. Recently, in causal discovery, invariance properties such as the moment criterion which TSLS estimators leverage have been exploited for causal structure learning: e.g., in cases, where the causal parameter is not identifiable, some structure of the non-zero components may be identified, and coverage guarantees are available. Subsequently, anchor regression has been proposed to trade-off invariance and predictability. The resulting estimator is shown to have optimal predictive performance under bounded shift interventions. In this paper, we show that the concepts of anchor regression and K-class estimators are closely related. Establishing this connection comes with two benefits: (1) It enables us to prove robustness properties for existing K-class estimators when considering distributional shifts. And, (2), we propose a novel estimator in instrumental variable settings by minimizing the mean squared prediction error subject to the constraint that the estimator lies in an asymptotically valid confidence region of the causal parameter. We call this estimator PULSE (p-uncorrelated least squares estimator) and show that it can be computed efficiently, even though the underlying optimization problem is non-convex. We further prove that it is consistent. Full Article
tim Fast multivariate empirical cumulative distribution function with connection to kernel density estimation. (arXiv:2005.03246v1 [cs.DS]) By arxiv.org Published On :: This paper revisits the problem of computing empirical cumulative distribution functions (ECDF) efficiently on large, multivariate datasets. Computing an ECDF at one evaluation point requires $mathcal{O}(N)$ operations on a dataset composed of $N$ data points. Therefore, a direct evaluation of ECDFs at $N$ evaluation points requires a quadratic $mathcal{O}(N^2)$ operations, which is prohibitive for large-scale problems. Two fast and exact methods are proposed and compared. The first one is based on fast summation in lexicographical order, with a $mathcal{O}(N{log}N)$ complexity and requires the evaluation points to lie on a regular grid. The second one is based on the divide-and-conquer principle, with a $mathcal{O}(Nlog(N)^{(d-1){vee}1})$ complexity and requires the evaluation points to coincide with the input points. The two fast algorithms are described and detailed in the general $d$-dimensional case, and numerical experiments validate their speed and accuracy. Secondly, the paper establishes a direct connection between cumulative distribution functions and kernel density estimation (KDE) for a large class of kernels. This connection paves the way for fast exact algorithms for multivariate kernel density estimation and kernel regression. Numerical tests with the Laplacian kernel validate the speed and accuracy of the proposed algorithms. A broad range of large-scale multivariate density estimation, cumulative distribution estimation, survival function estimation and regression problems can benefit from the proposed numerical methods. Full Article
tim MAZE: Data-Free Model Stealing Attack Using Zeroth-Order Gradient Estimation. (arXiv:2005.03161v1 [stat.ML]) By arxiv.org Published On :: Model Stealing (MS) attacks allow an adversary with black-box access to a Machine Learning model to replicate its functionality, compromising the confidentiality of the model. Such attacks train a clone model by using the predictions of the target model for different inputs. The effectiveness of such attacks relies heavily on the availability of data necessary to query the target model. Existing attacks either assume partial access to the dataset of the target model or availability of an alternate dataset with semantic similarities. This paper proposes MAZE -- a data-free model stealing attack using zeroth-order gradient estimation. In contrast to prior works, MAZE does not require any data and instead creates synthetic data using a generative model. Inspired by recent works in data-free Knowledge Distillation (KD), we train the generative model using a disagreement objective to produce inputs that maximize disagreement between the clone and the target model. However, unlike the white-box setting of KD, where the gradient information is available, training a generator for model stealing requires performing black-box optimization, as it involves accessing the target model under attack. MAZE relies on zeroth-order gradient estimation to perform this optimization and enables a highly accurate MS attack. Our evaluation with four datasets shows that MAZE provides a normalized clone accuracy in the range of 0.91x to 0.99x, and outperforms even the recent attacks that rely on partial data (JBDA, clone accuracy 0.13x to 0.69x) and surrogate data (KnockoffNets, clone accuracy 0.52x to 0.97x). We also study an extension of MAZE in the partial-data setting and develop MAZE-PD, which generates synthetic data closer to the target distribution. MAZE-PD further improves the clone accuracy (0.97x to 1.0x) and reduces the query required for the attack by 2x-24x. Full Article
tim On the Optimality of Randomization in Experimental Design: How to Randomize for Minimax Variance and Design-Based Inference. (arXiv:2005.03151v1 [stat.ME]) By arxiv.org Published On :: I study the minimax-optimal design for a two-arm controlled experiment where conditional mean outcomes may vary in a given set. When this set is permutation symmetric, the optimal design is complete randomization, and using a single partition (i.e., the design that only randomizes the treatment labels for each side of the partition) has minimax risk larger by a factor of $n-1$. More generally, the optimal design is shown to be the mixed-strategy optimal design (MSOD) of Kallus (2018). Notably, even when the set of conditional mean outcomes has structure (i.e., is not permutation symmetric), being minimax-optimal for variance still requires randomization beyond a single partition. Nonetheless, since this targets precision, it may still not ensure sufficient uniformity in randomization to enable randomization (i.e., design-based) inference by Fisher's exact test to appropriately detect violations of null. I therefore propose the inference-constrained MSOD, which is minimax-optimal among all designs subject to such uniformity constraints. On the way, I discuss Johansson et al. (2020) who recently compared rerandomization of Morgan and Rubin (2012) and the pure-strategy optimal design (PSOD) of Kallus (2018). I point out some errors therein and set straight that randomization is minimax-optimal and that the "no free lunch" theorem and example in Kallus (2018) are correct. Full Article
tim Joint Multi-Dimensional Model for Global and Time-Series Annotations. (arXiv:2005.03117v1 [cs.LG]) By arxiv.org Published On :: Crowdsourcing is a popular approach to collect annotations for unlabeled data instances. It involves collecting a large number of annotations from several, often naive untrained annotators for each data instance which are then combined to estimate the ground truth. Further, annotations for constructs such as affect are often multi-dimensional with annotators rating multiple dimensions, such as valence and arousal, for each instance. Most annotation fusion schemes however ignore this aspect and model each dimension separately. In this work we address this by proposing a generative model for multi-dimensional annotation fusion, which models the dimensions jointly leading to more accurate ground truth estimates. The model we propose is applicable to both global and time series annotation fusion problems and treats the ground truth as a latent variable distorted by the annotators. The model parameters are estimated using the Expectation-Maximization algorithm and we evaluate its performance using synthetic data and real emotion corpora as well as on an artificial task with human annotations Full Article
tim mgm: Estimating Time-Varying Mixed Graphical Models in High-Dimensional Data By www.jstatsoft.org Published On :: Mon, 27 Apr 2020 00:00:00 +0000 We present the R package mgm for the estimation of k-order mixed graphical models (MGMs) and mixed vector autoregressive (mVAR) models in high-dimensional data. These are a useful extensions of graphical models for only one variable type, since data sets consisting of mixed types of variables (continuous, count, categorical) are ubiquitous. In addition, we allow to relax the stationarity assumption of both models by introducing time-varying versions of MGMs and mVAR models based on a kernel weighting approach. Time-varying models offer a rich description of temporally evolving systems and allow to identify external influences on the model structure such as the impact of interventions. We provide the background of all implemented methods and provide fully reproducible examples that illustrate how to use the package. Full Article
tim ManifoldOptim: An R Interface to the ROPTLIB Library for Riemannian Manifold Optimization By www.jstatsoft.org Published On :: Sat, 18 Apr 2020 03:35:08 +0000 Manifold optimization appears in a wide variety of computational problems in the applied sciences. In recent statistical methodologies such as sufficient dimension reduction and regression envelopes, estimation relies on the optimization of likelihood functions over spaces of matrices such as the Stiefel or Grassmann manifolds. Recently, Huang, Absil, Gallivan, and Hand (2016) have introduced the library ROPTLIB, which provides a framework and state of the art algorithms to optimize real-valued objective functions over commonly used matrix-valued Riemannian manifolds. This article presents ManifoldOptim, an R package that wraps the C++ library ROPTLIB. ManifoldOptim enables users to access functionality in ROPTLIB through R so that optimization problems can easily be constructed, solved, and integrated into larger R codes. Computationally intensive problems can be programmed with Rcpp and RcppArmadillo, and otherwise accessed through R. We illustrate the practical use of ManifoldOptim through several motivating examples involving dimension reduction and envelope methods in regression. Full Article
tim Racing for the surface : pathogenesis of implant infection and advanced antimicrobial strategies By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030344757 (electronic bk.) Full Article
tim Intelligent wavelet based techniques for advanced multimedia applications By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Singh, Rajiv, authorCallnumber: OnlineISBN: 9783030318734 (electronic bk.) Full Article
tim Handbook of optimization in electric power distribution systems By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030361150 Full Article
tim Penalized generalized empirical likelihood with a diverging number of general estimating equations for censored data By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Niansheng Tang, Xiaodong Yan, Xingqiu Zhao. Source: The Annals of Statistics, Volume 48, Number 1, 607--627.Abstract: This article considers simultaneous variable selection and parameter estimation as well as hypothesis testing in censored survival models where a parametric likelihood is not available. For the problem, we utilize certain growing dimensional general estimating equations and propose a penalized generalized empirical likelihood, where the general estimating equations are constructed based on the semiparametric efficiency bound of estimation with given moment conditions. The proposed penalized generalized empirical likelihood estimators enjoy the oracle properties, and the estimator of any fixed dimensional vector of nonzero parameters achieves the semiparametric efficiency bound asymptotically. Furthermore, we show that the penalized generalized empirical likelihood ratio test statistic has an asymptotic central chi-square distribution. The conditions of local and restricted global optimality of weighted penalized generalized empirical likelihood estimators are also discussed. We present a two-layer iterative algorithm for efficient implementation, and investigate its convergence property. The performance of the proposed methods is demonstrated by extensive simulation studies, and a real data example is provided for illustration. Full Article
tim Optimal prediction in the linearly transformed spiked model By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Edgar Dobriban, William Leeb, Amit Singer. Source: The Annals of Statistics, Volume 48, Number 1, 491--513.Abstract: We consider the linearly transformed spiked model , where the observations $Y_{i}$ are noisy linear transforms of unobserved signals of interest $X_{i}$: egin{equation*}Y_{i}=A_{i}X_{i}+varepsilon_{i},end{equation*} for $i=1,ldots ,n$. The transform matrices $A_{i}$ are also observed. We model the unobserved signals (or regression coefficients) $X_{i}$ as vectors lying on an unknown low-dimensional space. Given only $Y_{i}$ and $A_{i}$ how should we predict or recover their values? The naive approach of performing regression for each observation separately is inaccurate due to the large noise level. Instead, we develop optimal methods for predicting $X_{i}$ by “borrowing strength” across the different samples. Our linear empirical Bayes methods scale to large datasets and rely on weak moment assumptions. We show that this model has wide-ranging applications in signal processing, deconvolution, cryo-electron microscopy, and missing data with noise. For missing data, we show in simulations that our methods are more robust to noise and to unequal sampling than well-known matrix completion methods. Full Article
tim Efficient estimation of linear functionals of principal components By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Vladimir Koltchinskii, Matthias Löffler, Richard Nickl. Source: The Annals of Statistics, Volume 48, Number 1, 464--490.Abstract: We study principal component analysis (PCA) for mean zero i.i.d. Gaussian observations $X_{1},dots,X_{n}$ in a separable Hilbert space $mathbb{H}$ with unknown covariance operator $Sigma $. The complexity of the problem is characterized by its effective rank $mathbf{r}(Sigma):=frac{operatorname{tr}(Sigma)}{|Sigma |}$, where $mathrm{tr}(Sigma)$ denotes the trace of $Sigma $ and $|Sigma|$ denotes its operator norm. We develop a method of bias reduction in the problem of estimation of linear functionals of eigenvectors of $Sigma $. Under the assumption that $mathbf{r}(Sigma)=o(n)$, we establish the asymptotic normality and asymptotic properties of the risk of the resulting estimators and prove matching minimax lower bounds, showing their semiparametric optimality. Full Article
tim Bootstrap confidence regions based on M-estimators under nonstandard conditions By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Stephen M. S. Lee, Puyudi Yang. Source: The Annals of Statistics, Volume 48, Number 1, 274--299.Abstract: Suppose that a confidence region is desired for a subvector $ heta $ of a multidimensional parameter $xi =( heta ,psi )$, based on an M-estimator $hat{xi }_{n}=(hat{ heta }_{n},hat{psi }_{n})$ calculated from a random sample of size $n$. Under nonstandard conditions $hat{xi }_{n}$ often converges at a nonregular rate $r_{n}$, in which case consistent estimation of the distribution of $r_{n}(hat{ heta }_{n}- heta )$, a pivot commonly chosen for confidence region construction, is most conveniently effected by the $m$ out of $n$ bootstrap. The above choice of pivot has three drawbacks: (i) the shape of the region is either subjectively prescribed or controlled by a computationally intensive depth function; (ii) the region is not transformation equivariant; (iii) $hat{xi }_{n}$ may not be uniquely defined. To resolve the above difficulties, we propose a one-dimensional pivot derived from the criterion function, and prove that its distribution can be consistently estimated by the $m$ out of $n$ bootstrap, or by a modified version of the perturbation bootstrap. This leads to a new method for constructing confidence regions which are transformation equivariant and have shapes driven solely by the criterion function. A subsampling procedure is proposed for selecting $m$ in practice. Empirical performance of the new method is illustrated with examples drawn from different nonstandard M-estimation settings. Extension of our theory to row-wise independent triangular arrays is also explored. Full Article
tim Optimal rates for community estimation in the weighted stochastic block model By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Min Xu, Varun Jog, Po-Ling Loh. Source: The Annals of Statistics, Volume 48, Number 1, 183--204.Abstract: Community identification in a network is an important problem in fields such as social science, neuroscience and genetics. Over the past decade, stochastic block models (SBMs) have emerged as a popular statistical framework for this problem. However, SBMs have an important limitation in that they are suited only for networks with unweighted edges; in various scientific applications, disregarding the edge weights may result in a loss of valuable information. We study a weighted generalization of the SBM, in which observations are collected in the form of a weighted adjacency matrix and the weight of each edge is generated independently from an unknown probability density determined by the community membership of its endpoints. We characterize the optimal rate of misclustering error of the weighted SBM in terms of the Renyi divergence of order 1/2 between the weight distributions of within-community and between-community edges, substantially generalizing existing results for unweighted SBMs. Furthermore, we present a computationally tractable algorithm based on discretization that achieves the optimal error rate. Our method is adaptive in the sense that the algorithm, without assuming knowledge of the weight densities, performs as well as the best algorithm that knows the weight densities. Full Article
tim Model assisted variable clustering: Minimax-optimal recovery and algorithms By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Florentina Bunea, Christophe Giraud, Xi Luo, Martin Royer, Nicolas Verzelen. Source: The Annals of Statistics, Volume 48, Number 1, 111--137.Abstract: The problem of variable clustering is that of estimating groups of similar components of a $p$-dimensional vector $X=(X_{1},ldots ,X_{p})$ from $n$ independent copies of $X$. There exists a large number of algorithms that return data-dependent groups of variables, but their interpretation is limited to the algorithm that produced them. An alternative is model-based clustering, in which one begins by defining population level clusters relative to a model that embeds notions of similarity. Algorithms tailored to such models yield estimated clusters with a clear statistical interpretation. We take this view here and introduce the class of $G$-block covariance models as a background model for variable clustering. In such models, two variables in a cluster are deemed similar if they have similar associations will all other variables. This can arise, for instance, when groups of variables are noise corrupted versions of the same latent factor. We quantify the difficulty of clustering data generated from a $G$-block covariance model in terms of cluster proximity, measured with respect to two related, but different, cluster separation metrics. We derive minimax cluster separation thresholds, which are the metric values below which no algorithm can recover the model-defined clusters exactly, and show that they are different for the two metrics. We therefore develop two algorithms, COD and PECOK, tailored to $G$-block covariance models, and study their minimax-optimality with respect to each metric. Of independent interest is the fact that the analysis of the PECOK algorithm, which is based on a corrected convex relaxation of the popular $K$-means algorithm, provides the first statistical analysis of such algorithms for variable clustering. Additionally, we compare our methods with another popular clustering method, spectral clustering. Extensive simulation studies, as well as our data analyses, confirm the applicability of our approach. Full Article
tim Robust sparse covariance estimation by thresholding Tyler’s M-estimator By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST John Goes, Gilad Lerman, Boaz Nadler. Source: The Annals of Statistics, Volume 48, Number 1, 86--110.Abstract: Estimating a high-dimensional sparse covariance matrix from a limited number of samples is a fundamental task in contemporary data analysis. Most proposals to date, however, are not robust to outliers or heavy tails. Toward bridging this gap, in this work we consider estimating a sparse shape matrix from $n$ samples following a possibly heavy-tailed elliptical distribution. We propose estimators based on thresholding either Tyler’s M-estimator or its regularized variant. We prove that in the joint limit as the dimension $p$ and the sample size $n$ tend to infinity with $p/n ogamma>0$, our estimators are minimax rate optimal. Results on simulated data support our theoretical analysis. Full Article
tim Sparse SIR: Optimal rates and adaptive estimation By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Kai Tan, Lei Shi, Zhou Yu. Source: The Annals of Statistics, Volume 48, Number 1, 64--85.Abstract: Sliced inverse regression (SIR) is an innovative and effective method for sufficient dimension reduction and data visualization. Recently, an impressive range of penalized SIR methods has been proposed to estimate the central subspace in a sparse fashion. Nonetheless, few of them considered the sparse sufficient dimension reduction from a decision-theoretic point of view. To address this issue, we in this paper establish the minimax rates of convergence for estimating the sparse SIR directions under various commonly used loss functions in the literature of sufficient dimension reduction. We also discover the possible trade-off between statistical guarantee and computational performance for sparse SIR. We finally propose an adaptive estimation scheme for sparse SIR which is computationally tractable and rate optimal. Numerical studies are carried out to confirm the theoretical properties of our proposed methods. Full Article
tim The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Emmanuel J. Candès, Pragya Sur. Source: The Annals of Statistics, Volume 48, Number 1, 27--42.Abstract: This paper rigorously establishes that the existence of the maximum likelihood estimate (MLE) in high-dimensional logistic regression models with Gaussian covariates undergoes a sharp “phase transition.” We introduce an explicit boundary curve $h_{mathrm{MLE}}$, parameterized by two scalars measuring the overall magnitude of the unknown sequence of regression coefficients, with the following property: in the limit of large sample sizes $n$ and number of features $p$ proportioned in such a way that $p/n ightarrow kappa $, we show that if the problem is sufficiently high dimensional in the sense that $kappa >h_{mathrm{MLE}}$, then the MLE does not exist with probability one. Conversely, if $kappa <h_{mathrm{MLE}}$, the MLE asymptotically exists with probability one. Full Article
tim On optimal designs for nonregular models By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Yi Lin, Ryan Martin, Min Yang. Source: The Annals of Statistics, Volume 47, Number 6, 3335--3359.Abstract: Classically, Fisher information is the relevant object in defining optimal experimental designs. However, for models that lack certain regularity, the Fisher information does not exist, and hence, there is no notion of design optimality available in the literature. This article seeks to fill the gap by proposing a so-called Hellinger information , which generalizes Fisher information in the sense that the two measures agree in regular problems, but the former also exists for certain types of nonregular problems. We derive a Hellinger information inequality, showing that Hellinger information defines a lower bound on the local minimax risk of estimators. This provides a connection between features of the underlying model—in particular, the design—and the performance of estimators, motivating the use of this new Hellinger information for nonregular optimal design problems. Hellinger optimal designs are derived for several nonregular regression problems, with numerical results empirically demonstrating the efficiency of these designs compared to alternatives. Full Article
tim Sampling and estimation for (sparse) exchangeable graphs By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Victor Veitch, Daniel M. Roy. Source: The Annals of Statistics, Volume 47, Number 6, 3274--3299.Abstract: Sparse exchangeable graphs on $mathbb{R}_{+}$, and the associated graphex framework for sparse graphs, generalize exchangeable graphs on $mathbb{N}$, and the associated graphon framework for dense graphs. We develop the graphex framework as a tool for statistical network analysis by identifying the sampling scheme that is naturally associated with the models of the framework, formalizing two natural notions of consistent estimation of the parameter (the graphex) underlying these models, and identifying general consistent estimators in each case. The sampling scheme is a modification of independent vertex sampling that throws away vertices that are isolated in the sampled subgraph. The estimators are variants of the empirical graphon estimator, which is known to be a consistent estimator for the distribution of dense exchangeable graphs; both can be understood as graph analogues to the empirical distribution in the i.i.d. sequence setting. Our results may be viewed as a generalization of consistent estimation via the empirical graphon from the dense graph regime to also include sparse graphs. Full Article
tim Adaptive estimation of the rank of the coefficient matrix in high-dimensional multivariate response regression models By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Xin Bing, Marten H. Wegkamp. Source: The Annals of Statistics, Volume 47, Number 6, 3157--3184.Abstract: We consider the multivariate response regression problem with a regression coefficient matrix of low, unknown rank. In this setting, we analyze a new criterion for selecting the optimal reduced rank. This criterion differs notably from the one proposed in Bunea, She and Wegkamp ( Ann. Statist. 39 (2011) 1282–1309) in that it does not require estimation of the unknown variance of the noise, nor does it depend on a delicate choice of a tuning parameter. We develop an iterative, fully data-driven procedure, that adapts to the optimal signal-to-noise ratio. This procedure finds the true rank in a few steps with overwhelming probability. At each step, our estimate increases, while at the same time it does not exceed the true rank. Our finite sample results hold for any sample size and any dimension, even when the number of responses and of covariates grow much faster than the number of observations. We perform an extensive simulation study that confirms our theoretical findings. The new method performs better and is more stable than the procedure of Bunea, She and Wegkamp ( Ann. Statist. 39 (2011) 1282–1309) in both low- and high-dimensional settings. Full Article
tim Distributed estimation of principal eigenspaces By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Jianqing Fan, Dong Wang, Kaizheng Wang, Ziwei Zhu. Source: The Annals of Statistics, Volume 47, Number 6, 3009--3031.Abstract: Principal component analysis (PCA) is fundamental to statistical machine learning. It extracts latent principal factors that contribute to the most variation of the data. When data are stored across multiple machines, however, communication cost can prohibit the computation of PCA in a central location and distributed algorithms for PCA are thus needed. This paper proposes and studies a distributed PCA algorithm: each node machine computes the top $K$ eigenvectors and transmits them to the central server; the central server then aggregates the information from all the node machines and conducts a PCA based on the aggregated information. We investigate the bias and variance for the resulting distributed estimator of the top $K$ eigenvectors. In particular, we show that for distributions with symmetric innovation, the empirical top eigenspaces are unbiased, and hence the distributed PCA is “unbiased.” We derive the rate of convergence for distributed PCA estimators, which depends explicitly on the effective rank of covariance, eigengap, and the number of machines. We show that when the number of machines is not unreasonably large, the distributed PCA performs as well as the whole sample PCA, even without full access of whole data. The theoretical results are verified by an extensive simulation study. We also extend our analysis to the heterogeneous case where the population covariance matrices are different across local machines but share similar top eigenstructures. Full Article
tim Projected spline estimation of the nonparametric function in high-dimensional partially linear models for massive data By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Heng Lian, Kaifeng Zhao, Shaogao Lv. Source: The Annals of Statistics, Volume 47, Number 5, 2922--2949.Abstract: In this paper, we consider the local asymptotics of the nonparametric function in a partially linear model, within the framework of the divide-and-conquer estimation. Unlike the fixed-dimensional setting in which the parametric part does not affect the nonparametric part, the high-dimensional setting makes the issue more complicated. In particular, when a sparsity-inducing penalty such as lasso is used to make the estimation of the linear part feasible, the bias introduced will propagate to the nonparametric part. We propose a novel approach for estimation of the nonparametric function and establish the local asymptotics of the estimator. The result is useful for massive data with possibly different linear coefficients in each subpopulation but common nonparametric function. Some numerical illustrations are also presented. Full Article
tim Eigenvalue distributions of variance components estimators in high-dimensional random effects models By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Zhou Fan, Iain M. Johnstone. Source: The Annals of Statistics, Volume 47, Number 5, 2855--2886.Abstract: We study the spectra of MANOVA estimators for variance component covariance matrices in multivariate random effects models. When the dimensionality of the observations is large and comparable to the number of realizations of each random effect, we show that the empirical spectra of such estimators are well approximated by deterministic laws. The Stieltjes transforms of these laws are characterized by systems of fixed-point equations, which are numerically solvable by a simple iterative procedure. Our proof uses operator-valued free probability theory, and we establish a general asymptotic freeness result for families of rectangular orthogonally invariant random matrices, which is of independent interest. Our work is motivated in part by the estimation of components of covariance between multiple phenotypic traits in quantitative genetics, and we specialize our results to common experimental designs that arise in this application. Full Article
tim Semiparametrically point-optimal hybrid rank tests for unit roots By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Bo Zhou, Ramon van den Akker, Bas J. M. Werker. Source: The Annals of Statistics, Volume 47, Number 5, 2601--2638.Abstract: We propose a new class of unit root tests that exploits invariance properties in the Locally Asymptotically Brownian Functional limit experiment associated to the unit root model. The invariance structures naturally suggest tests that are based on the ranks of the increments of the observations, their average and an assumed reference density for the innovations. The tests are semiparametric in the sense that they are valid, that is, have the correct (asymptotic) size, irrespective of the true innovation density. For a correctly specified reference density, our test is point-optimal and nearly efficient. For arbitrary reference densities, we establish a Chernoff–Savage-type result, that is, our test performs as well as commonly used tests under Gaussian innovations but has improved power under other, for example, fat-tailed or skewed, innovation distributions. To avoid nonparametric estimation, we propose a simplified version of our test that exhibits the same asymptotic properties, except for the Chernoff–Savage result that we are only able to demonstrate by means of simulations. Full Article
tim Doubly penalized estimation in additive regression with high-dimensional data By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Zhiqiang Tan, Cun-Hui Zhang. Source: The Annals of Statistics, Volume 47, Number 5, 2567--2600.Abstract: Additive regression provides an extension of linear regression by modeling the signal of a response as a sum of functions of covariates of relatively low complexity. We study penalized estimation in high-dimensional nonparametric additive regression where functional semi-norms are used to induce smoothness of component functions and the empirical $L_{2}$ norm is used to induce sparsity. The functional semi-norms can be of Sobolev or bounded variation types and are allowed to be different amongst individual component functions. We establish oracle inequalities for the predictive performance of such methods under three simple technical conditions: a sub-Gaussian condition on the noise, a compatibility condition on the design and the functional classes under consideration and an entropy condition on the functional classes. For random designs, the sample compatibility condition can be replaced by its population version under an additional condition to ensure suitable convergence of empirical norms. In homogeneous settings where the complexities of the component functions are of the same order, our results provide a spectrum of minimax convergence rates, from the so-called slow rate without requiring the compatibility condition to the fast rate under the hard sparsity or certain $L_{q}$ sparsity to allow many small components in the true regression function. These results significantly broaden and sharpen existing ones in the literature. Full Article
tim Semi-supervised inference: General theory and estimation of means By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Anru Zhang, Lawrence D. Brown, T. Tony Cai. Source: The Annals of Statistics, Volume 47, Number 5, 2538--2566.Abstract: We propose a general semi-supervised inference framework focused on the estimation of the population mean. As usual in semi-supervised settings, there exists an unlabeled sample of covariate vectors and a labeled sample consisting of covariate vectors along with real-valued responses (“labels”). Otherwise, the formulation is “assumption-lean” in that no major conditions are imposed on the statistical or functional form of the data. We consider both the ideal semi-supervised setting where infinitely many unlabeled samples are available, as well as the ordinary semi-supervised setting in which only a finite number of unlabeled samples is available. Estimators are proposed along with corresponding confidence intervals for the population mean. Theoretical analysis on both the asymptotic distribution and $ell_{2}$-risk for the proposed procedures are given. Surprisingly, the proposed estimators, based on a simple form of the least squares method, outperform the ordinary sample mean. The simple, transparent form of the estimator lends confidence to the perception that its asymptotic improvement over the ordinary sample mean also nearly holds even for moderate size samples. The method is further extended to a nonparametric setting, in which the oracle rate can be achieved asymptotically. The proposed estimators are further illustrated by simulation studies and a real data example involving estimation of the homeless population. Full Article
tim Dynamic network models and graphon estimation By projecteuclid.org Published On :: Tue, 21 May 2019 04:00 EDT Marianna Pensky. Source: The Annals of Statistics, Volume 47, Number 4, 2378--2403.Abstract: In the present paper, we consider a dynamic stochastic network model. The objective is estimation of the tensor of connection probabilities $mathbf{{Lambda}}$ when it is generated by a Dynamic Stochastic Block Model (DSBM) or a dynamic graphon. In particular, in the context of the DSBM, we derive a penalized least squares estimator $widehat{oldsymbol{Lambda}}$ of $mathbf{{Lambda}}$ and show that $widehat{oldsymbol{Lambda}}$ satisfies an oracle inequality and also attains minimax lower bounds for the risk. We extend those results to estimation of $mathbf{{Lambda}}$ when it is generated by a dynamic graphon function. The estimators constructed in the paper are adaptive to the unknown number of blocks in the context of the DSBM or to the smoothness of the graphon function. The technique relies on the vectorization of the model and leads to much simpler mathematical arguments than the ones used previously in the stationary set up. In addition, all results in the paper are nonasymptotic and allow a variety of extensions. Full Article
tim Convergence rates of least squares regression estimators with heavy-tailed errors By projecteuclid.org Published On :: Tue, 21 May 2019 04:00 EDT Qiyang Han, Jon A. Wellner. Source: The Annals of Statistics, Volume 47, Number 4, 2286--2319.Abstract: We study the performance of the least squares estimator (LSE) in a general nonparametric regression model, when the errors are independent of the covariates but may only have a $p$th moment ($pgeq1$). In such a heavy-tailed regression setting, we show that if the model satisfies a standard “entropy condition” with exponent $alphain(0,2)$, then the $L_{2}$ loss of the LSE converges at a rate [mathcal{O}_{mathbf{P}}igl(n^{-frac{1}{2+alpha}}vee n^{-frac{1}{2}+frac{1}{2p}}igr).] Such a rate cannot be improved under the entropy condition alone. This rate quantifies both some positive and negative aspects of the LSE in a heavy-tailed regression setting. On the positive side, as long as the errors have $pgeq1+2/alpha$ moments, the $L_{2}$ loss of the LSE converges at the same rate as if the errors are Gaussian. On the negative side, if $p<1+2/alpha$, there are (many) hard models at any entropy level $alpha$ for which the $L_{2}$ loss of the LSE converges at a strictly slower rate than other robust estimators. The validity of the above rate relies crucially on the independence of the covariates and the errors. In fact, the $L_{2}$ loss of the LSE can converge arbitrarily slowly when the independence fails. The key technical ingredient is a new multiplier inequality that gives sharp bounds for the “multiplier empirical process” associated with the LSE. We further give an application to the sparse linear regression model with heavy-tailed covariates and errors to demonstrate the scope of this new inequality. Full Article
tim Spectral method and regularized MLE are both optimal for top-$K$ ranking By projecteuclid.org Published On :: Tue, 21 May 2019 04:00 EDT Yuxin Chen, Jianqing Fan, Cong Ma, Kaizheng Wang. Source: The Annals of Statistics, Volume 47, Number 4, 2204--2235.Abstract: This paper is concerned with the problem of top-$K$ ranking from pairwise comparisons. Given a collection of $n$ items and a few pairwise comparisons across them, one wishes to identify the set of $K$ items that receive the highest ranks. To tackle this problem, we adopt the logistic parametric model—the Bradley–Terry–Luce model, where each item is assigned a latent preference score, and where the outcome of each pairwise comparison depends solely on the relative scores of the two items involved. Recent works have made significant progress toward characterizing the performance (e.g., the mean square error for estimating the scores) of several classical methods, including the spectral method and the maximum likelihood estimator (MLE). However, where they stand regarding top-$K$ ranking remains unsettled. We demonstrate that under a natural random sampling model, the spectral method alone, or the regularized MLE alone, is minimax optimal in terms of the sample complexity—the number of paired comparisons needed to ensure exact top-$K$ identification, for the fixed dynamic range regime. This is accomplished via optimal control of the entrywise error of the score estimates. We complement our theoretical studies by numerical experiments, confirming that both methods yield low entrywise errors for estimating the underlying scores. Our theory is established via a novel leave-one-out trick, which proves effective for analyzing both iterative and noniterative procedures. Along the way, we derive an elementary eigenvector perturbation bound for probability transition matrices, which parallels the Davis–Kahan $mathop{mathrm{sin}} olimits Theta $ theorem for symmetric matrices. This also allows us to close the gap between the $ell_{2}$ error upper bound for the spectral method and the minimax lower limit. Full Article
tim Estimating causal effects in studies of human brain function: New models, methods and estimands By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Michael E. Sobel, Martin A. Lindquist. Source: The Annals of Applied Statistics, Volume 14, Number 1, 452--472.Abstract: Neuroscientists often use functional magnetic resonance imaging (fMRI) to infer effects of treatments on neural activity in brain regions. In a typical fMRI experiment, each subject is observed at several hundred time points. At each point, the blood oxygenation level dependent (BOLD) response is measured at 100,000 or more locations (voxels). Typically, these responses are modeled treating each voxel separately, and no rationale for interpreting associations as effects is given. Building on Sobel and Lindquist ( J. Amer. Statist. Assoc. 109 (2014) 967–976), who used potential outcomes to define unit and average effects at each voxel and time point, we define and estimate both “point” and “cumulated” effects for brain regions. Second, we construct a multisubject, multivoxel, multirun whole brain causal model with explicit parameters for regions. We justify estimation using BOLD responses averaged over voxels within regions, making feasible estimation for all regions simultaneously, thereby also facilitating inferences about association between effects in different regions. We apply the model to a study of pain, finding effects in standard pain regions. We also observe more cerebellar activity than observed in previous studies using prevailing methods. Full Article
tim Estimating and forecasting the smoking-attributable mortality fraction for both genders jointly in over 60 countries By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Yicheng Li, Adrian E. Raftery. Source: The Annals of Applied Statistics, Volume 14, Number 1, 381--408.Abstract: Smoking is one of the leading preventable threats to human health and a major risk factor for lung cancer, upper aerodigestive cancer and chronic obstructive pulmonary disease. Estimating and forecasting the smoking attributable fraction (SAF) of mortality can yield insights into smoking epidemics and also provide a basis for more accurate mortality and life expectancy projection. Peto et al. ( Lancet 339 (1992) 1268–1278) proposed a method to estimate the SAF using the lung cancer mortality rate as an indicator of exposure to smoking in the population of interest. Here, we use the same method to estimate the all-age SAF (ASAF) for both genders for over 60 countries. We document a strong and cross-nationally consistent pattern of the evolution of the SAF over time. We use this as the basis for a new Bayesian hierarchical model to project future male and female ASAF from over 60 countries simultaneously. This gives forecasts as well as predictive distributions that can be used to find uncertainty intervals for any quantity of interest. We assess the model using out-of-sample predictive validation and find that it provides good forecasts and well-calibrated forecast intervals, comparing favorably with other methods. Full Article
tim Optimal asset allocation with multivariate Bayesian dynamic linear models By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Jared D. Fisher, Davide Pettenuzzo, Carlos M. Carvalho. Source: The Annals of Applied Statistics, Volume 14, Number 1, 299--338.Abstract: We introduce a fast, closed-form, simulation-free method to model and forecast multiple asset returns and employ it to investigate the optimal ensemble of features to include when jointly predicting monthly stock and bond excess returns. Our approach builds on the Bayesian dynamic linear models of West and Harrison ( Bayesian Forecasting and Dynamic Models (1997) Springer), and it can objectively determine, through a fully automated procedure, both the optimal set of regressors to include in the predictive system and the degree to which the model coefficients, volatilities and covariances should vary over time. When applied to a portfolio of five stock and bond returns, we find that our method leads to large forecast gains, both in statistical and economic terms. In particular, we find that relative to a standard no-predictability benchmark, the optimal combination of predictors, stochastic volatility and time-varying covariances increases the annualized certainty equivalent returns of a leverage-constrained power utility investor by more than 500 basis points. Full Article
tim Estimating the health effects of environmental mixtures using Bayesian semiparametric regression and sparsity inducing priors By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Joseph Antonelli, Maitreyi Mazumdar, David Bellinger, David Christiani, Robert Wright, Brent Coull. Source: The Annals of Applied Statistics, Volume 14, Number 1, 257--275.Abstract: Humans are routinely exposed to mixtures of chemical and other environmental factors, making the quantification of health effects associated with environmental mixtures a critical goal for establishing environmental policy sufficiently protective of human health. The quantification of the effects of exposure to an environmental mixture poses several statistical challenges. It is often the case that exposure to multiple pollutants interact with each other to affect an outcome. Further, the exposure-response relationship between an outcome and some exposures, such as some metals, can exhibit complex, nonlinear forms, since some exposures can be beneficial and detrimental at different ranges of exposure. To estimate the health effects of complex mixtures, we propose a flexible Bayesian approach that allows exposures to interact with each other and have nonlinear relationships with the outcome. We induce sparsity using multivariate spike and slab priors to determine which exposures are associated with the outcome and which exposures interact with each other. The proposed approach is interpretable, as we can use the posterior probabilities of inclusion into the model to identify pollutants that interact with each other. We utilize our approach to study the impact of exposure to metals on child neurodevelopment in Bangladesh and find a nonlinear, interactive relationship between arsenic and manganese. Full Article
tim Efficient real-time monitoring of an emerging influenza pandemic: How feasible? By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Paul J. Birrell, Lorenz Wernisch, Brian D. M. Tom, Leonhard Held, Gareth O. Roberts, Richard G. Pebody, Daniela De Angelis. Source: The Annals of Applied Statistics, Volume 14, Number 1, 74--93.Abstract: A prompt public health response to a new epidemic relies on the ability to monitor and predict its evolution in real time as data accumulate. The 2009 A/H1N1 outbreak in the UK revealed pandemic data as noisy, contaminated, potentially biased and originating from multiple sources. This seriously challenges the capacity for real-time monitoring. Here, we assess the feasibility of real-time inference based on such data by constructing an analytic tool combining an age-stratified SEIR transmission model with various observation models describing the data generation mechanisms. As batches of data become available, a sequential Monte Carlo (SMC) algorithm is developed to synthesise multiple imperfect data streams, iterate epidemic inferences and assess model adequacy amidst a rapidly evolving epidemic environment, substantially reducing computation time in comparison to standard MCMC, to ensure timely delivery of real-time epidemic assessments. In application to simulated data designed to mimic the 2009 A/H1N1 epidemic, SMC is shown to have additional benefits in terms of assessing predictive performance and coping with parameter nonidentifiability. Full Article
tim Integrative survival analysis with uncertain event times in application to a suicide risk study By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Wenjie Wang, Robert Aseltine, Kun Chen, Jun Yan. Source: The Annals of Applied Statistics, Volume 14, Number 1, 51--73.Abstract: The concept of integrating data from disparate sources to accelerate scientific discovery has generated tremendous excitement in many fields. The potential benefits from data integration, however, may be compromised by the uncertainty due to incomplete/imperfect record linkage. Motivated by a suicide risk study, we propose an approach for analyzing survival data with uncertain event times arising from data integration. Specifically, in our problem deaths identified from the hospital discharge records together with reported suicidal deaths determined by the Office of Medical Examiner may still not include all the death events of patients, and the missing deaths can be recovered from a complete database of death records. Since the hospital discharge data can only be linked to the death record data by matching basic patient characteristics, a patient with a censored death time from the first dataset could be linked to multiple potential event records in the second dataset. We develop an integrative Cox proportional hazards regression in which the uncertainty in the matched event times is modeled probabilistically. The estimation procedure combines the ideas of profile likelihood and the expectation conditional maximization algorithm (ECM). Simulation studies demonstrate that under realistic settings of imperfect data linkage the proposed method outperforms several competing approaches including multiple imputation. A marginal screening analysis using the proposed integrative Cox model is performed to identify risk factors associated with death following suicide-related hospitalization in Connecticut. The identified diagnostics codes are consistent with existing literature and provide several new insights on suicide risk, prediction and prevention. Full Article
tim Scalable high-resolution forecasting of sparse spatiotemporal events with kernel methods: A winning solution to the NIJ “Real-Time Crime Forecasting Challenge” By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Seth Flaxman, Michael Chirico, Pau Pereira, Charles Loeffler. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2564--2585.Abstract: We propose a generic spatiotemporal event forecasting method which we developed for the National Institute of Justice’s (NIJ) Real-Time Crime Forecasting Challenge (National Institute of Justice (2017)). Our method is a spatiotemporal forecasting model combining scalable randomized Reproducing Kernel Hilbert Space (RKHS) methods for approximating Gaussian processes with autoregressive smoothing kernels in a regularized supervised learning framework. While the smoothing kernels capture the two main approaches in current use in the field of crime forecasting, kernel density estimation (KDE) and self-exciting point process (SEPP) models, the RKHS component of the model can be understood as an approximation to the popular log-Gaussian Cox Process model. For inference, we discretize the spatiotemporal point pattern and learn a log-intensity function using the Poisson likelihood and highly efficient gradient-based optimization methods. Model hyperparameters including quality of RKHS approximation, spatial and temporal kernel lengthscales, number of autoregressive lags and bandwidths for smoothing kernels as well as cell shape, size and rotation, were learned using cross validation. Resulting predictions significantly exceeded baseline KDE estimates and SEPP models for sparse events. Full Article
tim A simple, consistent estimator of SNP heritability from genome-wide association studies By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Armin Schwartzman, Andrew J. Schork, Rong Zablocki, Wesley K. Thompson. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2509--2538.Abstract: Analysis of genome-wide association studies (GWAS) is characterized by a large number of univariate regressions where a quantitative trait is regressed on hundreds of thousands to millions of single-nucleotide polymorphism (SNP) allele counts, one at a time. This article proposes an estimator of the SNP heritability of the trait, defined here as the fraction of the variance of the trait explained by the SNPs in the study. The proposed GWAS heritability (GWASH) estimator is easy to compute, highly interpretable and is consistent as the number of SNPs and the sample size increase. More importantly, it can be computed from summary statistics typically reported in GWAS, not requiring access to the original data. The estimator takes full account of the linkage disequilibrium (LD) or correlation between the SNPs in the study through moments of the LD matrix, estimable from auxiliary datasets. Unlike other proposed estimators in the literature, we establish the theoretical properties of the GWASH estimator and obtain analytical estimates of the precision, allowing for power and sample size calculations for SNP heritability estimates and forming a firm foundation for future methodological development. Full Article
tim Fitting a deeply nested hierarchical model to a large book review dataset using a moment-based estimator By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Ningshan Zhang, Kyle Schmaus, Patrick O. Perry. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2260--2288.Abstract: We consider a particular instance of a common problem in recommender systems, using a database of book reviews to inform user-targeted recommendations. In our dataset, books are categorized into genres and subgenres. To exploit this nested taxonomy, we use a hierarchical model that enables information pooling across across similar items at many levels within the genre hierarchy. The main challenge in deploying this model is computational. The data sizes are large and fitting the model at scale using off-the-shelf maximum likelihood procedures is prohibitive. To get around this computational bottleneck, we extend a moment-based fitting procedure proposed for fitting single-level hierarchical models to the general case of arbitrarily deep hierarchies. This extension is an order of magnitude faster than standard maximum likelihood procedures. The fitting method can be deployed beyond recommender systems to general contexts with deeply nested hierarchical generalized linear mixed models. Full Article
tim Spatial modeling of trends in crime over time in Philadelphia By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Cecilia Balocchi, Shane T. Jensen. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2235--2259.Abstract: Understanding the relationship between change in crime over time and the geography of urban areas is an important problem for urban planning. Accurate estimation of changing crime rates throughout a city would aid law enforcement as well as enable studies of the association between crime and the built environment. Bayesian modeling is a promising direction since areal data require principled sharing of information to address spatial autocorrelation between proximal neighborhoods. We develop several Bayesian approaches to spatial sharing of information between neighborhoods while modeling trends in crime counts over time. We apply our methodology to estimate changes in crime throughout Philadelphia over the 2006-15 period while also incorporating spatially-varying economic and demographic predictors. We find that the local shrinkage imposed by a conditional autoregressive model has substantial benefits in terms of out-of-sample predictive accuracy of crime. We also explore the possibility of spatial discontinuities between neighborhoods that could represent natural barriers or aspects of the built environment. Full Article
tim Joint model of accelerated failure time and mechanistic nonlinear model for censored covariates, with application in HIV/AIDS By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Hongbin Zhang, Lang Wu. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2140--2157.Abstract: For a time-to-event outcome with censored time-varying covariates, a joint Cox model with a linear mixed effects model is the standard modeling approach. In some applications such as AIDS studies, mechanistic nonlinear models are available for some covariate process such as viral load during anti-HIV treatments, derived from the underlying data-generation mechanisms and disease progression. Such a mechanistic nonlinear covariate model may provide better-predicted values when the covariates are left censored or mismeasured. When the focus is on the impact of the time-varying covariate process on the survival outcome, an accelerated failure time (AFT) model provides an excellent alternative to the Cox proportional hazard model since an AFT model is formulated to allow the influence of the outcome by the entire covariate process. In this article, we consider a nonlinear mixed effects model for the censored covariates in an AFT model, implemented using a Monte Carlo EM algorithm, under the framework of a joint model for simultaneous inference. We apply the joint model to an HIV/AIDS data to gain insights for assessing the association between viral load and immunological restoration during antiretroviral therapy. Simulation is conducted to compare model performance when the covariate model and the survival model are misspecified. Full Article
tim Fire seasonality identification with multimodality tests By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Jose Ameijeiras-Alonso, Akli Benali, Rosa M. Crujeiras, Alberto Rodríguez-Casal, José M. C. Pereira. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2120--2139.Abstract: Understanding the role of vegetation fires in the Earth system is an important environmental problem. Although fire occurrence is influenced by natural factors, human activity related to land use and management has altered the temporal patterns of fire in several regions of the world. Hence, for a better insight into fires regimes it is of special interest to analyze where human activity has altered fire seasonality. For doing so, multimodality tests are a useful tool for determining the number of annual fire peaks. The periodicity of fires and their complex distributional features motivate the use of nonparametric circular statistics. The unsatisfactory performance of previous circular nonparametric proposals for testing multimodality justifies the introduction of a new approach, considering an adapted version of the excess mass statistic, jointly with a bootstrap calibration algorithm. A systematic application of the test on the Russia–Kazakhstan area is presented in order to determine how many fire peaks can be identified in this region. A False Discovery Rate correction, accounting for the spatial dependence of the data, is also required. Full Article
tim Robust elastic net estimators for variable selection and identification of proteomic biomarkers By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Gabriela V. Cohen Freue, David Kepplinger, Matías Salibián-Barrera, Ezequiel Smucler. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2065--2090.Abstract: In large-scale quantitative proteomic studies, scientists measure the abundance of thousands of proteins from the human proteome in search of novel biomarkers for a given disease. Penalized regression estimators can be used to identify potential biomarkers among a large set of molecular features measured. Yet, the performance and statistical properties of these estimators depend on the loss and penalty functions used to define them. Motivated by a real plasma proteomic biomarkers study, we propose a new class of penalized robust estimators based on the elastic net penalty, which can be tuned to keep groups of correlated variables together in the selected model and maintain robustness against possible outliers. We also propose an efficient algorithm to compute our robust penalized estimators and derive a data-driven method to select the penalty term. Our robust penalized estimators have very good robustness properties and are also consistent under certain regularity conditions. Numerical results show that our robust estimators compare favorably to other robust penalized estimators. Using our proposed methodology for the analysis of the proteomics data, we identify new potentially relevant biomarkers of cardiac allograft vasculopathy that are not found with nonrobust alternatives. The selected model is validated in a new set of 52 test samples and achieves an area under the receiver operating characteristic (AUC) of 0.85. Full Article
tim Estimating abundance from multiple sampling capture-recapture data via a multi-state multi-period stopover model By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Hannah Worthington, Rachel McCrea, Ruth King, Richard Griffiths. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2043--2064.Abstract: Capture-recapture studies often involve collecting data on numerous capture occasions over a relatively short period of time. For many study species this process is repeated, for example, annually, resulting in capture information spanning multiple sampling periods. To account for the different temporal scales, the robust design class of models have traditionally been applied providing a framework in which to analyse all of the available capture data in a single likelihood expression. However, these models typically require strong constraints, either the assumption of closure within a sampling period (the closed robust design) or conditioning on the number of individuals captured within a sampling period (the open robust design). For real datasets these assumptions may not be appropriate. We develop a general modelling structure that requires neither assumption by explicitly modelling the movement of individuals into the population both within and between the sampling periods, which in turn permits the estimation of abundance within a single consistent framework. The flexibility of the novel model structure is further demonstrated by including the computationally challenging case of multi-state data where there is individual time-varying discrete covariate information. We derive an efficient likelihood expression for the new multi-state multi-period stopover model using the hidden Markov model framework. We demonstrate the significant improvement in parameter estimation using our new modelling approach in terms of both the multi-period and multi-state components through both a simulation study and a real dataset relating to the protected species of great crested newts, Triturus cristatus . Full Article
tim Estimating the rate constant from biosensor data via an adaptive variational Bayesian approach By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Ye Zhang, Zhigang Yao, Patrik Forssén, Torgny Fornstedt. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2011--2042.Abstract: The means to obtain the rate constants of a chemical reaction is a fundamental open problem in both science and the industry. Traditional techniques for finding rate constants require either chemical modifications of the reactants or indirect measurements. The rate constant map method is a modern technique to study binding equilibrium and kinetics in chemical reactions. Finding a rate constant map from biosensor data is an ill-posed inverse problem that is usually solved by regularization. In this work, rather than finding a deterministic regularized rate constant map that does not provide uncertainty quantification of the solution, we develop an adaptive variational Bayesian approach to estimate the distribution of the rate constant map, from which some intrinsic properties of a chemical reaction can be explored, including information about rate constants. Our new approach is more realistic than the existing approaches used for biosensors and allows us to estimate the dynamics of the interactions, which are usually hidden in a deterministic approximate solution. We verify the performance of the new proposed method by numerical simulations, and compare it with the Markov chain Monte Carlo algorithm. The results illustrate that the variational method can reliably capture the posterior distribution in a computationally efficient way. Finally, the developed method is also tested on the real biosensor data (parathyroid hormone), where we provide two novel analysis tools—the thresholding contour map and the high order moment map—to estimate the number of interactions as well as their rate constants. Full Article
tim Frequency domain theory for functional time series: Variance decomposition and an invariance principle By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Piotr Kokoszka, Neda Mohammadi Jouzdani. Source: Bernoulli, Volume 26, Number 3, 2383--2399.Abstract: This paper is concerned with frequency domain theory for functional time series, which are temporally dependent sequences of functions in a Hilbert space. We consider a variance decomposition, which is more suitable for such a data structure than the variance decomposition based on the Karhunen–Loéve expansion. The decomposition we study uses eigenvalues of spectral density operators, which are functional analogs of the spectral density of a stationary scalar time series. We propose estimators of the variance components and derive convergence rates for their mean square error as well as their asymptotic normality. The latter is derived from a frequency domain invariance principle for the estimators of the spectral density operators. This principle is established for a broad class of linear time series models. It is a main contribution of the paper. Full Article
tim Exponential integrability and exit times of diffusions on sub-Riemannian and metric measure spaces By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Anton Thalmaier, James Thompson. Source: Bernoulli, Volume 26, Number 3, 2202--2225.Abstract: In this article, we derive moment estimates, exponential integrability, concentration inequalities and exit times estimates for canonical diffusions firstly on sub-Riemannian limits of Riemannian foliations and secondly in the nonsmooth setting of $operatorname{RCD}^{*}(K,N)$ spaces. In each case, the necessary ingredients are Itô’s formula and a comparison theorem for the Laplacian, for which we refer to the recent literature. As an application, we derive pointwise Carmona-type estimates on eigenfunctions of Schrödinger operators. Full Article
tim On estimation of nonsmooth functionals of sparse normal means By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT O. Collier, L. Comminges, A.B. Tsybakov. Source: Bernoulli, Volume 26, Number 3, 1989--2020.Abstract: We study the problem of estimation of $N_{gamma }( heta )=sum_{i=1}^{d}| heta _{i}|^{gamma }$ for $gamma >0$ and of the $ell _{gamma }$-norm of $ heta $ for $gamma ge 1$ based on the observations $y_{i}= heta _{i}+varepsilon xi _{i}$, $i=1,ldots,d$, where $ heta =( heta _{1},dots , heta _{d})$ are unknown parameters, $varepsilon >0$ is known, and $xi _{i}$ are i.i.d. standard normal random variables. We find the non-asymptotic minimax rate for estimation of these functionals on the class of $s$-sparse vectors $ heta $ and we propose estimators achieving this rate. Full Article