tim

The Queen's bed : an intimate history of Elizabeth's court / Anna Whitelock.

Elizabeth I, Queen of England, 1533-1603 -- Sexual behavior.




tim

Clearing the air : the beginning and the end of air pollution / Tim Smedley.

Air -- Pollution.




tim

Motel : images of Australia on holidays / [Tim Ross].

Motels -- Australia -- Pictorial works.




tim

A lot with a little / Tim Costello.

Costello, Tim, 1955-




tim

The enchantment of the long-haired rat : a rodent history of Australia / Tim Bonyhady.

Rats -- Australia.




tim

Dark times : psychoanalytic perspectives on politics, history, and mourning / Jonathan Sklar.

Psychoanalysis.




tim

Little bit long time / Ali Cobby Eckermann.

Australian poetry -- 21st century.




tim

Die acute Entzundung des hautigen Labyrinthes des Ohres (Otitis labyrinthica s. intima) irrthumlich fur Meningitis cerebro-spinalis epidemica gehalten : fur praktische Aerzte dargestellt / von R. Voltolini.

Breslau : E. Morgenstern, 1882.




tim

Die Bestattung der Toden in Bezug auf Hygieine, geschichtliche Entwicklung und Gesetzliche Bestimmungen betrachtet / betrachtet von A. Wernher.

Giessen : J. Ricker, 1880.




tim

Die Bestimmung der Frau : ihre Stellung zu Familie und Beruf / von H. Fehling.

Stuttgart : F. Enke, 1892.




tim

Die fur das Deutsche Reich geltenden Bestimmungen uber die Prusungen der Aerzte und Bahnarzte.

Leipzig : Roszberg, 1884.




tim

Die Krankheiten der Nase und des Halses, ihre Beziehungen zum Gesammtorganismus und ihre Bedeutung für die Singstimme. Zehn allgemein verständliche Vorträge / von Dr Friedrich Ernst.

Berlin : Köllner, 1899.




tim

Die Prüfung des Farbensinnes beim Eisenbahn- und Marinepersonal. Neue Folge. 1. Lieferung. Tafeln zur Bestimmung der Roth-Grünblindheit / von Dr. J. Stilling.

Cassel : T. Fischer, 1878.




tim

Die Ton- und Stimmapparate der Insecten : in anatomisch-physiologischer und akustischer Beziehung / von H. Landois.

Leipzig : W. Engelmann, 1867.




tim

Dietetical and medical hydrology : a treatise on baths; including cold, sea, warm, hot, vapour, gas, and mud baths, also on the watery regimen, hydropathy, and pulmonary inhalation; with a description of bathing in ancient and modern times / by John Bell.

Philadelphia : Barrington and Haswell, 1850.




tim

A dissertation on the best mode of treating spasmodic cholera ; with a view of its history and progress, from its origin in India, in 1817 down to the present time ; together with an appendix, containing a review of Dr McCormac's pamphlet, &c / by

London : Longman, Rees, Orme, Brown, and Green, 1834.




tim

Dr J. Matthews Duncan's testimonials etc : first series.

[Edinburgh] : [publisher not identified], 1870.




tim

Edinburgh merchants and merchandise in old times.

London : W. and R. Chambers, 1859.




tim

Eine neue Methode zur Bestimmung der Schädelform von Menschen und Säugethieren / von Ch. Aeby.

Braunschweig : G. Westermann, 1862.




tim

An epitome of the reports of the medical officers to the Chinese imperial maritime customs service, from 1871 to 1882 : with chapters on the history of medicine in China; materia medica; epidemics; famine; ethnology; and chronology in relation to medicine

London : Bailliere, Tindall and Cox, 1884.




tim

Death, wearing a crown and accompanied by monsters, rides a white horse that tramples on men, women and children. Etching by J. Haynes, 1784, after J.H. Mortimer.

London (Norfolk Street, Strand) : J. Mortimer, Jany. 1st 1784.




tim

Michigan Teachers Can Leave the Union at Any Time, Not Just in August, Court Rules

The Michigan ruling could be a signal of what's to come after the case on union fees that's currently being decided by the U.S. Supreme Court.




tim

Longtime Bruins goalie Gerry Cheevers fires jabs at Canadiens' Carey Price

Old habits die hard, and for Hall of Fame goalie Gerry Cheevers, the Bruins-Canadiens rivalry manifested when Cheesy took a shot a Montreal's Carey Price during a Zoom town hall with B's season-ticket holders on Thursday.




tim

Column: More normality from NFL. Will it happen on time?

Spanking new stadiums in Los Angeles and Las Vegas unveiled in prime time. Business as usual, and you really can't blame the NFL for that. “The release of the NFL schedule is something our fans eagerly anticipate every year, as they look forward with hope and optimism to the season ahead,” Commissioner Roger Goodell said.




tim

Roundtable: What is your favorite hockey photo of all-time?

There have been so many great hockey images taken by photographers. We choose our top three shots ranging from Stanley Cup celebations to iconic moments.




tim

No guilt in pleasure: a zine about resisting capitalism by having a nice time




tim

Screaming awareness week: it's way past time to talk. it's time to scream.




tim

Relapse and recovery in drug abuse / editors, Frank M. Tims, Carl G. Leukefeld.

Rockville, Maryland : National Institute on Drug Abuse, 1986.




tim

Compulsory treatment of drug abuse : research and clinical practice / editors, Carl G. Leukefeld, Frank M. Tims.

Rockville, Maryland : National Institute on Drug Abuse, 1988.




tim

Drug abuse treatment evaluation : strategies, progress, and prospects / editors Frank M. Tims, Jacqueline P. Ludford.

Springfield, Virginia. : National Technical Information Service, 1984.




tim

[Our times : contagious cities]

[Hong Kong] : [Art In Hospitals], [2019]




tim

Signs of the times

Since we began digitising the Holtermann negatives to our new standard we have been able to view previously unclear deta




tim

The limiting behavior of isotonic and convex regression estimators when the model is misspecified

Eunji Lim.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 2053--2097.

Abstract:
We study the asymptotic behavior of the least squares estimators when the model is possibly misspecified. We consider the setting where we wish to estimate an unknown function $f_{*}:(0,1)^{d} ightarrow mathbb{R}$ from observations $(X,Y),(X_{1},Y_{1}),cdots ,(X_{n},Y_{n})$; our estimator $hat{g}_{n}$ is the minimizer of $sum _{i=1}^{n}(Y_{i}-g(X_{i}))^{2}/n$ over $gin mathcal{G}$ for some set of functions $mathcal{G}$. We provide sufficient conditions on the metric entropy of $mathcal{G}$, under which $hat{g}_{n}$ converges to $g_{*}$ as $n ightarrow infty $, where $g_{*}$ is the minimizer of $|g-f_{*}| riangleq mathbb{E}(g(X)-f_{*}(X))^{2}$ over $gin mathcal{G}$. As corollaries of our theorem, we establish $|hat{g}_{n}-g_{*}| ightarrow 0$ as $n ightarrow infty $ when $mathcal{G}$ is the set of monotone functions or the set of convex functions. We also make a connection between the convergence rate of $|hat{g}_{n}-g_{*}|$ and the metric entropy of $mathcal{G}$. As special cases of our finding, we compute the convergence rate of $|hat{g}_{n}-g_{*}|^{2}$ when $mathcal{G}$ is the set of bounded monotone functions or the set of bounded convex functions.




tim

Generalised cepstral models for the spectrum of vector time series

Maddalena Cavicchioli.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 605--631.

Abstract:
The paper treats the modeling of stationary multivariate stochastic processes via a frequency domain model expressed in terms of cepstrum theory. The proposed model nests the vector exponential model of [20] as a special case, and extends the generalised cepstral model of [36] to the multivariate setting, answering a question raised by the last authors in their paper. Contemporarily, we extend the notion of generalised autocovariance function of [35] to vector time series. Then we derive explicit matrix formulas connecting generalised cepstral and autocovariance matrices of the process, and prove the consistency and asymptotic properties of the Whittle likelihood estimators of model parameters. Asymptotic theory for the special case of the vector exponential model is a significant addition to the paper of [20]. We also provide a mathematical machinery, based on matrix differentiation, and computational methods to derive our results, which differ significantly from those employed in the univariate case. The utility of the proposed model is illustrated through Monte Carlo simulation from a bivariate process characterized by a high dynamic range, and an empirical application on time varying minimum variance hedge ratios through the second moments of future and spot prices in the corn commodity market.




tim

On the Letac-Massam conjecture and existence of high dimensional Bayes estimators for graphical models

Emanuel Ben-David, Bala Rajaratnam.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 580--604.

Abstract:
The Wishart distribution defined on the open cone of positive-definite matrices plays a central role in multivariate analysis and multivariate distribution theory. Its domain of parameters is often referred to as the Gindikin set. In recent years, varieties of useful extensions of the Wishart distribution have been proposed in the literature for the purposes of studying Markov random fields and graphical models. In particular, generalizations of the Wishart distribution, referred to as Type I and Type II (graphical) Wishart distributions introduced by Letac and Massam in Annals of Statistics (2007) play important roles in both frequentist and Bayesian inference for Gaussian graphical models. These distributions have been especially useful in high-dimensional settings due to the flexibility offered by their multiple-shape parameters. Concerning Type I and Type II Wishart distributions, a conjecture of Letac and Massam concerns the domain of multiple-shape parameters of these distributions. The conjecture also has implications for the existence of Bayes estimators corresponding to these high dimensional priors. The conjecture, which was first posed in the Annals of Statistics, has now been an open problem for about 10 years. In this paper, we give a necessary condition for the Letac and Massam conjecture to hold. More precisely, we prove that if the Letac and Massam conjecture holds on a decomposable graph, then no two separators of the graph can be nested within each other. For this, we analyze Type I and Type II Wishart distributions on appropriate Markov equivalent perfect DAG models and succeed in deriving the aforementioned necessary condition. This condition in particular identifies a class of counterexamples to the conjecture.




tim

Drift estimation for stochastic reaction-diffusion systems

Gregor Pasemann, Wilhelm Stannat.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 547--579.

Abstract:
A parameter estimation problem for a class of semilinear stochastic evolution equations is considered. Conditions for consistency and asymptotic normality are given in terms of growth and continuity properties of the nonlinear part. Emphasis is put on the case of stochastic reaction-diffusion systems. Robustness results for statistical inference under model uncertainty are provided.




tim

On polyhedral estimation of signals via indirect observations

Anatoli Juditsky, Arkadi Nemirovski.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 458--502.

Abstract:
We consider the problem of recovering linear image of unknown signal belonging to a given convex compact signal set from noisy observation of another linear image of the signal. We develop a simple generic efficiently computable non linear in observations “polyhedral” estimate along with computation-friendly techniques for its design and risk analysis. We demonstrate that under favorable circumstances the resulting estimate is provably near-optimal in the minimax sense, the “favorable circumstances” being less restrictive than the weakest known so far assumptions ensuring near-optimality of estimates which are linear in observations.




tim

Consistent model selection criteria and goodness-of-fit test for common time series models

Jean-Marc Bardet, Kare Kamila, William Kengne.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 2009--2052.

Abstract:
This paper studies the model selection problem in a large class of causal time series models, which includes both the ARMA or AR($infty $) processes, as well as the GARCH or ARCH($infty $), APARCH, ARMA-GARCH and many others processes. To tackle this issue, we consider a penalized contrast based on the quasi-likelihood of the model. We provide sufficient conditions for the penalty term to ensure the consistency of the proposed procedure as well as the consistency and the asymptotic normality of the quasi-maximum likelihood estimator of the chosen model. We also propose a tool for diagnosing the goodness-of-fit of the chosen model based on a Portmanteau test. Monte-Carlo experiments and numerical applications on illustrative examples are performed to highlight the obtained asymptotic results. Moreover, using a data-driven choice of the penalty, they show the practical efficiency of this new model selection procedure and Portemanteau test.




tim

Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes

François Bachoc, José Betancourt, Reinhard Furrer, Thierry Klein.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1962--2008.

Abstract:
The asymptotic analysis of covariance parameter estimation of Gaussian processes has been subject to intensive investigation. However, this asymptotic analysis is very scarce for non-Gaussian processes. In this paper, we study a class of non-Gaussian processes obtained by regular non-linear transformations of Gaussian processes. We provide the increasing-domain asymptotic properties of the (Gaussian) maximum likelihood and cross validation estimators of the covariance parameters of a non-Gaussian process of this class. We show that these estimators are consistent and asymptotically normal, although they are defined as if the process was Gaussian. They do not need to model or estimate the non-linear transformation. Our results can thus be interpreted as a robustness of (Gaussian) maximum likelihood and cross validation towards non-Gaussianity. Our proofs rely on two technical results that are of independent interest for the increasing-domain asymptotic literature of spatial processes. First, we show that, under mild assumptions, coefficients of inverses of large covariance matrices decay at an inverse polynomial rate as a function of the corresponding observation location distances. Second, we provide a general central limit theorem for quadratic forms obtained from transformed Gaussian processes. Finally, our asymptotic results are illustrated by numerical simulations.




tim

Univariate mean change point detection: Penalization, CUSUM and optimality

Daren Wang, Yi Yu, Alessandro Rinaldo.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1917--1961.

Abstract:
The problem of univariate mean change point detection and localization based on a sequence of $n$ independent observations with piecewise constant means has been intensively studied for more than half century, and serves as a blueprint for change point problems in more complex settings. We provide a complete characterization of this classical problem in a general framework in which the upper bound $sigma ^{2}$ on the noise variance, the minimal spacing $Delta $ between two consecutive change points and the minimal magnitude $kappa $ of the changes, are allowed to vary with $n$. We first show that consistent localization of the change points is impossible in the low signal-to-noise ratio regime $frac{kappa sqrt{Delta }}{sigma }preceq sqrt{log (n)}$. In contrast, when $frac{kappa sqrt{Delta }}{sigma }$ diverges with $n$ at the rate of at least $sqrt{log (n)}$, we demonstrate that two computationally-efficient change point estimators, one based on the solution to an $ell _{0}$-penalized least squares problem and the other on the popular wild binary segmentation algorithm, are both consistent and achieve a localization rate of the order $frac{sigma ^{2}}{kappa ^{2}}log (n)$. We further show that such rate is minimax optimal, up to a $log (n)$ term.




tim

Asymptotics and optimal bandwidth for nonparametric estimation of density level sets

Wanli Qiao.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 302--344.

Abstract:
Bandwidth selection is crucial in the kernel estimation of density level sets. A risk based on the symmetric difference between the estimated and true level sets is usually used to measure their proximity. In this paper we provide an asymptotic $L^{p}$ approximation to this risk, where $p$ is characterized by the weight function in the risk. In particular the excess risk corresponds to an $L^{2}$ type of risk, and is adopted to derive an optimal bandwidth for nonparametric level set estimation of $d$-dimensional density functions ($dgeq 1$). A direct plug-in bandwidth selector is developed for kernel density level set estimation and its efficacy is verified in numerical studies.




tim

Bayesian variance estimation in the Gaussian sequence model with partial information on the means

Gianluca Finocchio, Johannes Schmidt-Hieber.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 239--271.

Abstract:
Consider the Gaussian sequence model under the additional assumption that a fixed fraction of the means is known. We study the problem of variance estimation from a frequentist Bayesian perspective. The maximum likelihood estimator (MLE) for $sigma^{2}$ is biased and inconsistent. This raises the question whether the posterior is able to correct the MLE in this case. By developing a new proving strategy that uses refined properties of the posterior distribution, we find that the marginal posterior is inconsistent for any i.i.d. prior on the mean parameters. In particular, no assumption on the decay of the prior needs to be imposed. Surprisingly, we also find that consistency can be retained for a hierarchical prior based on Gaussian mixtures. In this case we also establish a limiting shape result and determine the limit distribution. In contrast to the classical Bernstein-von Mises theorem, the limit is non-Gaussian. We show that the Bayesian analysis leads to new statistical estimators outperforming the correctly calibrated MLE in a numerical simulation study.




tim

Perspective maximum likelihood-type estimation via proximal decomposition

Patrick L. Combettes, Christian L. Müller.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 207--238.

Abstract:
We introduce a flexible optimization model for maximum likelihood-type estimation (M-estimation) that encompasses and generalizes a large class of existing statistical models, including Huber’s concomitant M-estimator, Owen’s Huber/Berhu concomitant estimator, the scaled lasso, support vector machine regression, and penalized estimation with structured sparsity. The model, termed perspective M-estimation, leverages the observation that convex M-estimators with concomitant scale as well as various regularizers are instances of perspective functions, a construction that extends a convex function to a jointly convex one in terms of an additional scale variable. These nonsmooth functions are shown to be amenable to proximal analysis, which leads to principled and provably convergent optimization algorithms via proximal splitting. We derive novel proximity operators for several perspective functions of interest via a geometrical approach based on duality. We then devise a new proximal splitting algorithm to solve the proposed M-estimation problem and establish the convergence of both the scale and regression iterates it produces to a solution. Numerical experiments on synthetic and real-world data illustrate the broad applicability of the proposed framework.




tim

Estimation of linear projections of non-sparse coefficients in high-dimensional regression

David Azriel, Armin Schwartzman.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 174--206.

Abstract:
In this work we study estimation of signals when the number of parameters is much larger than the number of observations. A large body of literature assumes for these kind of problems a sparse structure where most of the parameters are zero or close to zero. When this assumption does not hold, one can focus on low-dimensional functions of the parameter vector. In this work we study one-dimensional linear projections. Specifically, in the context of high-dimensional linear regression, the parameter of interest is ${oldsymbol{eta}}$ and we study estimation of $mathbf{a}^{T}{oldsymbol{eta}}$. We show that $mathbf{a}^{T}hat{oldsymbol{eta}}$, where $hat{oldsymbol{eta}}$ is the least squares estimator, using pseudo-inverse when $p>n$, is minimax and admissible. Thus, for linear projections no regularization or shrinkage is needed. This estimator is easy to analyze and confidence intervals can be constructed. We study a high-dimensional dataset from brain imaging where it is shown that the signal is weak, non-sparse and significantly different from zero.




tim

Adaptive estimation in the supremum norm for semiparametric mixtures of regressions

Heiko Werner, Hajo Holzmann, Pierre Vandekerkhove.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1816--1871.

Abstract:
We investigate a flexible two-component semiparametric mixture of regressions model, in which one of the conditional component distributions of the response given the covariate is unknown but assumed symmetric about a location parameter, while the other is specified up to a scale parameter. The location and scale parameters together with the proportion are allowed to depend nonparametrically on covariates. After settling identifiability, we provide local M-estimators for these parameters which converge in the sup-norm at the optimal rates over Hölder-smoothness classes. We also introduce an adaptive version of the estimators based on the Lepski-method. Sup-norm bounds show that the local M-estimator properly estimates the functions globally, and are the first step in the construction of useful inferential tools such as confidence bands. In our analysis we develop general results about rates of convergence in the sup-norm as well as adaptive estimation of local M-estimators which might be of some independent interest, and which can also be applied in various other settings. We investigate the finite-sample behaviour of our method in a simulation study, and give an illustration to a real data set from bioinformatics.




tim

Efficient estimation in expectile regression using envelope models

Tuo Chen, Zhihua Su, Yi Yang, Shanshan Ding.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 143--173.

Abstract:
As a generalization of the classical linear regression, expectile regression (ER) explores the relationship between the conditional expectile of a response variable and a set of predictor variables. ER with respect to different expectile levels can provide a comprehensive picture of the conditional distribution of the response variable given the predictors. We adopt an efficient estimation method called the envelope model ([8]) in ER, and construct a novel envelope expectile regression (EER) model. Estimation of the EER parameters can be performed using the generalized method of moments (GMM). We establish the consistency and derive the asymptotic distribution of the EER estimators. In addition, we show that the EER estimators are asymptotically more efficient than the ER estimators. Numerical experiments and real data examples are provided to demonstrate the efficiency gains attained by EER compared to ER, and the efficiency gains can further lead to improvements in prediction.




tim

Non-parametric adaptive estimation of order 1 Sobol indices in stochastic models, with an application to Epidemiology

Gwenaëlle Castellan, Anthony Cousien, Viet Chi Tran.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 50--81.

Abstract:
Global sensitivity analysis is a set of methods aiming at quantifying the contribution of an uncertain input parameter of the model (or combination of parameters) on the variability of the response. We consider here the estimation of the Sobol indices of order 1 which are commonly-used indicators based on a decomposition of the output’s variance. In a deterministic framework, when the same inputs always give the same outputs, these indices are usually estimated by replicated simulations of the model. In a stochastic framework, when the response given a set of input parameters is not unique due to randomness in the model, metamodels are often used to approximate the mean and dispersion of the response by deterministic functions. We propose a new non-parametric estimator without the need of defining a metamodel to estimate the Sobol indices of order 1. The estimator is based on warped wavelets and is adaptive in the regularity of the model. The convergence of the mean square error to zero, when the number of simulations of the model tend to infinity, is computed and an elbow effect is shown, depending on the regularity of the model. Applications in Epidemiology are carried to illustrate the use of non-parametric estimators.




tim

On change-point estimation under Sobolev sparsity

Aurélie Fischer, Dominique Picard.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1648--1689.

Abstract:
In this paper, we consider the estimation of a change-point for possibly high-dimensional data in a Gaussian model, using a maximum likelihood method. We are interested in how dimension reduction can affect the performance of the method. We provide an estimator of the change-point that has a minimax rate of convergence, up to a logarithmic factor. The minimax rate is in fact composed of a fast rate —dimension-invariant— and a slow rate —increasing with the dimension. Moreover, it is proved that considering the case of sparse data, with a Sobolev regularity, there is a bound on the separation of the regimes above which there exists an optimal choice of dimension reduction, leading to the fast rate of estimation. We propose an adaptive dimension reduction procedure based on Lepski’s method and show that the resulting estimator attains the fast rate of convergence. Our results are then illustrated by a simulation study. In particular, practical strategies are suggested to perform dimension reduction.




tim

Estimating piecewise monotone signals

Kentaro Minami.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1508--1576.

Abstract:
We study the problem of estimating piecewise monotone vectors. This problem can be seen as a generalization of the isotonic regression that allows a small number of order-violating changepoints. We focus mainly on the performance of the nearly-isotonic regression proposed by Tibshirani et al. (2011). We derive risk bounds for the nearly-isotonic regression estimators that are adaptive to piecewise monotone signals. The estimator achieves a near minimax convergence rate over certain classes of piecewise monotone signals under a weak assumption. Furthermore, we present an algorithm that can be applied to the nearly-isotonic type estimators on general weighted graphs. The simulation results suggest that the nearly-isotonic regression performs as well as the ideal estimator that knows the true positions of changepoints.




tim

Nonconcave penalized estimation in sparse vector autoregression model

Xuening Zhu.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1413--1448.

Abstract:
High dimensional time series receive considerable attention recently, whose temporal and cross-sectional dependency could be captured by the vector autoregression (VAR) model. To tackle with the high dimensionality, penalization methods are widely employed. However, theoretically, the existing studies of the penalization methods mainly focus on $i.i.d$ data, therefore cannot quantify the effect of the dependence level on the convergence rate. In this work, we use the spectral properties of the time series to quantify the dependence and derive a nonasymptotic upper bound for the estimation errors. By focusing on the nonconcave penalization methods, we manage to establish the oracle properties of the penalized VAR model estimation by considering the effects of temporal and cross-sectional dependence. Extensive numerical studies are conducted to compare the finite sample performance using different penalization functions. Lastly, an air pollution data of mainland China is analyzed for illustration purpose.