testing

A descriptive list of anthropometric apparatus : consisting of instruments for measuring and testing the chief physical characteristics of the human body.

Cambridge : printed by C.J. Clay at the University Press, 1887.




testing

Could Testing Wreck Civics Education?

As civic education undergoes a renaissance in schools, educators are looking beyond standardized tests to determine whether the lessons empower students to embrace civic behaviors, like voting or volunteering.




testing

Urine testing for drugs of abuse / Richard L. Hawks, C. Nora Chiang.

Rockville, Maryland : National Institute on Drug Abuse, 1986.




testing

Testing goodness of fit for point processes via topological data analysis

Christophe A. N. Biscio, Nicolas Chenavier, Christian Hirsch, Anne Marie Svane.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1024--1074.

Abstract:
We introduce tests for the goodness of fit of point patterns via methods from topological data analysis. More precisely, the persistent Betti numbers give rise to a bivariate functional summary statistic for observed point patterns that is asymptotically Gaussian in large observation windows. We analyze the power of tests derived from this statistic on simulated point patterns and compare its performance with global envelope tests. Finally, we apply the tests to a point pattern from an application context in neuroscience. As the main methodological contribution, we derive sufficient conditions for a functional central limit theorem on bounded persistent Betti numbers of point processes with exponential decay of correlations.




testing

Lower Bounds for Testing Graphical Models: Colorings and Antiferromagnetic Ising Models

We study the identity testing problem in the context of spin systems or undirected graphical models, where it takes the following form: given the parameter specification of the model $M$ and a sampling oracle for the distribution $mu_{M^*}$ of an unknown model $M^*$, can we efficiently determine if the two models $M$ and $M^*$ are the same? We consider identity testing for both soft-constraint and hard-constraint systems. In particular, we prove hardness results in two prototypical cases, the Ising model and proper colorings, and explore whether identity testing is any easier than structure learning. For the ferromagnetic (attractive) Ising model, Daskalakis et al. (2018) presented a polynomial-time algorithm for identity testing. We prove hardness results in the antiferromagnetic (repulsive) setting in the same regime of parameters where structure learning is known to require a super-polynomial number of samples. Specifically, for $n$-vertex graphs of maximum degree $d$, we prove that if $|eta| d = omega(log{n})$ (where $eta$ is the inverse temperature parameter), then there is no polynomial running time identity testing algorithm unless $RP=NP$. In the hard-constraint setting, we present hardness results for identity testing for proper colorings. Our results are based on the presumed hardness of #BIS, the problem of (approximately) counting independent sets in bipartite graphs.




testing

Bootstrap-based testing inference in beta regressions

Fábio P. Lima, Francisco Cribari-Neto.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 18--34.

Abstract:
We address the issue of performing testing inference in small samples in the class of beta regression models. We consider the likelihood ratio test and its standard bootstrap version. We also consider two alternative resampling-based tests. One of them uses the bootstrap test statistic replicates to numerically estimate a Bartlett correction factor that can be applied to the likelihood ratio test statistic. By doing so, we avoid estimation of quantities located in the tail of the likelihood ratio test statistic null distribution. The second alternative resampling-based test uses a fast double bootstrap scheme in which a single second level bootstrapping resample is performed for each first level bootstrap replication. It delivers accurate testing inferences at a computational cost that is considerably smaller than that of a standard double bootstrapping scheme. The Monte Carlo results we provide show that the standard likelihood ratio test tends to be quite liberal in small samples. They also show that the bootstrap tests deliver accurate testing inferences even when the sample size is quite small. An empirical application is also presented and discussed.




testing

Subjective Bayesian testing using calibrated prior probabilities

Dan J. Spitzner.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 861--893.

Abstract:
This article proposes a calibration scheme for Bayesian testing that coordinates analytically-derived statistical performance considerations with expert opinion. In other words, the scheme is effective and meaningful for incorporating objective elements into subjective Bayesian inference. It explores a novel role for default priors as anchors for calibration rather than substitutes for prior knowledge. Ideas are developed for use with multiplicity adjustments in multiple-model contexts, and to address the issue of prior sensitivity of Bayes factors. Along the way, the performance properties of an existing multiplicity adjustment related to the Poisson distribution are clarified theoretically. Connections of the overall calibration scheme to the Schwarz criterion are also explored. The proposed framework is examined and illustrated on a number of existing data sets related to problems in clinical trials, forensic pattern matching, and log-linear models methodology.




testing

Bayesian hypothesis testing: Redux

Hedibert F. Lopes, Nicholas G. Polson.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 745--755.

Abstract:
Bayesian hypothesis testing is re-examined from the perspective of an a priori assessment of the test statistic distribution under the alternative. By assessing the distribution of an observable test statistic, rather than prior parameter values, we revisit the seminal paper of Edwards, Lindman and Savage ( Psychol. Rev. 70 (1963) 193–242). There are a number of important take-aways from comparing the Bayesian paradigm via Bayes factors to frequentist ones. We provide examples where evidence for a Bayesian strikingly supports the null, but leads to rejection under a classical test. Finally, we conclude with directions for future research.




testing

Modified information criterion for testing changes in skew normal model

Khamis K. Said, Wei Ning, Yubin Tian.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 280--300.

Abstract:
In this paper, we study the change point problem for the skew normal distribution model from the view of model selection problem. The detection procedure based on the modified information criterion (MIC) for change problem is proposed. Such a procedure has advantage in detecting the changes in early and late stage of a data comparing to the one based on the traditional Schwarz information criterion which is well known as Bayesian information criterion (BIC) by considering the complexity of the models. Due to the difficulty in deriving the analytic asymptotic distribution of the test statistic based on the MIC procedure, the bootstrap simulation is provided to obtain the critical values at the different significance levels. Simulations are conducted to illustrate the comparisons of performance between MIC, BIC and likelihood ratio test (LRT). Such an approach is applied on two stock market data sets to indicate the detection procedure.




testing

Pitfalls of significance testing and $p$-value variability: An econometrics perspective

Norbert Hirschauer, Sven Grüner, Oliver Mußhoff, Claudia Becker.

Source: Statistics Surveys, Volume 12, 136--172.

Abstract:
Data on how many scientific findings are reproducible are generally bleak and a wealth of papers have warned against misuses of the $p$-value and resulting false findings in recent years. This paper discusses the question of what we can(not) learn from the $p$-value, which is still widely considered as the gold standard of statistical validity. We aim to provide a non-technical and easily accessible resource for statistical practitioners who wish to spot and avoid misinterpretations and misuses of statistical significance tests. For this purpose, we first classify and describe the most widely discussed (“classical”) pitfalls of significance testing, and review published work on these misuses with a focus on regression-based “confirmatory” study. This includes a description of the single-study bias and a simulation-based illustration of how proper meta-analysis compares to misleading significance counts (“vote counting”). Going beyond the classical pitfalls, we also use simulation to provide intuition that relying on the statistical estimate “$p$-value” as a measure of evidence without considering its sample-to-sample variability falls short of the mark even within an otherwise appropriate interpretation. We conclude with a discussion of the exigencies of informed approaches to statistical inference and corresponding institutional reforms.




testing

Strong Converse for Testing Against Independence over a Noisy channel. (arXiv:2004.00775v2 [cs.IT] UPDATED)

A distributed binary hypothesis testing (HT) problem over a noisy (discrete and memoryless) channel studied previously by the authors is investigated from the perspective of the strong converse property. It was shown by Ahlswede and Csisz'{a}r that a strong converse holds in the above setting when the channel is rate-limited and noiseless. Motivated by this observation, we show that the strong converse continues to hold in the noisy channel setting for a special case of HT known as testing against independence (TAI), under the assumption that the channel transition matrix has non-zero elements. The proof utilizes the blowing up lemma and the recent change of measure technique of Tyagi and Watanabe as the key tools.




testing

An n-dimensional Rosenbrock Distribution for MCMC Testing. (arXiv:1903.09556v4 [stat.CO] UPDATED)

The Rosenbrock function is an ubiquitous benchmark problem for numerical optimisation, and variants have been proposed to test the performance of Markov Chain Monte Carlo algorithms. In this work we discuss the two-dimensional Rosenbrock density, its current $n$-dimensional extensions, and their advantages and limitations. We then propose a new extension to arbitrary dimensions called the Hybrid Rosenbrock distribution, which is composed of conditional normal kernels arranged in such a way that preserves the key features of the original kernel. Moreover, due to its structure, the Hybrid Rosenbrock distribution is analytically tractable and possesses several desirable properties, which make it an excellent test model for computational algorithms.




testing

A comparison of group testing architectures for COVID-19 testing. (arXiv:2005.03051v1 [stat.ME])

An important component of every country's COVID-19 response is fast and efficient testing -- to identify and isolate cases, as well as for early detection of local hotspots. For many countries, producing a sufficient number of tests has been a serious limiting factor in their efforts to control COVID-19 infections. Group testing is a well-established mathematical tool, which can provide a serious and rapid improvement to this situation. In this note, we compare several well-established group testing schemes in the context of qPCR testing for COVID-19. We include example calculations, where we indicate which testing architectures yield the greatest efficiency gains in various settings. We find that for identification of individuals with COVID-19, array testing is usually the best choice, while for estimation of COVID-19 prevalence rates in the total population, Gibbs-Gower testing usually provides the most accurate estimates given a fixed and relatively small number of tests. This note is intended as a helpful handbook for labs implementing group testing methods.




testing

Handbook of geotechnical testing : basic theory, procedures and comparison of standards

Li, Yanrong (Writer on geology), author.
0429323743 electronic book




testing

Testing for principal component directions under weak identifiability

Davy Paindaveine, Julien Remy, Thomas Verdebout.

Source: The Annals of Statistics, Volume 48, Number 1, 324--345.

Abstract:
We consider the problem of testing, on the basis of a $p$-variate Gaussian random sample, the null hypothesis $mathcal{H}_{0}:oldsymbol{ heta}_{1}=oldsymbol{ heta}_{1}^{0}$ against the alternative $mathcal{H}_{1}:oldsymbol{ heta}_{1} eq oldsymbol{ heta}_{1}^{0}$, where $oldsymbol{ heta}_{1}$ is the “first” eigenvector of the underlying covariance matrix and $oldsymbol{ heta}_{1}^{0}$ is a fixed unit $p$-vector. In the classical setup where eigenvalues $lambda_{1}>lambda_{2}geq cdots geq lambda_{p}$ are fixed, the Anderson ( Ann. Math. Stat. 34 (1963) 122–148) likelihood ratio test (LRT) and the Hallin, Paindaveine and Verdebout ( Ann. Statist. 38 (2010) 3245–3299) Le Cam optimal test for this problem are asymptotically equivalent under the null hypothesis, hence also under sequences of contiguous alternatives. We show that this equivalence does not survive asymptotic scenarios where $lambda_{n1}/lambda_{n2}=1+O(r_{n})$ with $r_{n}=O(1/sqrt{n})$. For such scenarios, the Le Cam optimal test still asymptotically meets the nominal level constraint, whereas the LRT severely overrejects the null hypothesis. Consequently, the former test should be favored over the latter one whenever the two largest sample eigenvalues are close to each other. By relying on the Le Cam’s asymptotic theory of statistical experiments, we study the non-null and optimality properties of the Le Cam optimal test in the aforementioned asymptotic scenarios and show that the null robustness of this test is not obtained at the expense of power. Our asymptotic investigation is extensive in the sense that it allows $r_{n}$ to converge to zero at an arbitrary rate. While we restrict to single-spiked spectra of the form $lambda_{n1}>lambda_{n2}=cdots =lambda_{np}$ to make our results as striking as possible, we extend our results to the more general elliptical case. Finally, we present an illustrative real data example.




testing

On testing for high-dimensional white noise

Zeng Li, Clifford Lam, Jianfeng Yao, Qiwei Yao.

Source: The Annals of Statistics, Volume 47, Number 6, 3382--3412.

Abstract:
Testing for white noise is a classical yet important problem in statistics, especially for diagnostic checks in time series modeling and linear regression. For high-dimensional time series in the sense that the dimension $p$ is large in relation to the sample size $T$, the popular omnibus tests including the multivariate Hosking and Li–McLeod tests are extremely conservative, leading to substantial power loss. To develop more relevant tests for high-dimensional cases, we propose a portmanteau-type test statistic which is the sum of squared singular values of the first $q$ lagged sample autocovariance matrices. It, therefore, encapsulates all the serial correlations (up to the time lag $q$) within and across all component series. Using the tools from random matrix theory and assuming both $p$ and $T$ diverge to infinity, we derive the asymptotic normality of the test statistic under both the null and a specific VMA(1) alternative hypothesis. As the actual implementation of the test requires the knowledge of three characteristic constants of the population cross-sectional covariance matrix and the value of the fourth moment of the standardized innovations, nontrivial estimations are proposed for these parameters and their integration leads to a practically usable test. Extensive simulation confirms the excellent finite-sample performance of the new test with accurate size and satisfactory power for a large range of finite $(p,T)$ combinations, therefore, ensuring wide applicability in practice. In particular, the new tests are consistently superior to the traditional Hosking and Li–McLeod tests.




testing

Hypothesis testing on linear structures of high-dimensional covariance matrix

Shurong Zheng, Zhao Chen, Hengjian Cui, Runze Li.

Source: The Annals of Statistics, Volume 47, Number 6, 3300--3334.

Abstract:
This paper is concerned with test of significance on high-dimensional covariance structures, and aims to develop a unified framework for testing commonly used linear covariance structures. We first construct a consistent estimator for parameters involved in the linear covariance structure, and then develop two tests for the linear covariance structures based on entropy loss and quadratic loss used for covariance matrix estimation. To study the asymptotic properties of the proposed tests, we study related high-dimensional random matrix theory, and establish several highly useful asymptotic results. With the aid of these asymptotic results, we derive the limiting distributions of these two tests under the null and alternative hypotheses. We further show that the quadratic loss based test is asymptotically unbiased. We conduct Monte Carlo simulation study to examine the finite sample performance of the two tests. Our simulation results show that the limiting null distributions approximate their null distributions quite well, and the corresponding asymptotic critical values keep Type I error rate very well. Our numerical comparison implies that the proposed tests outperform existing ones in terms of controlling Type I error rate and power. Our simulation indicates that the test based on quadratic loss seems to have better power than the test based on entropy loss.




testing

Testing for independence of large dimensional vectors

Taras Bodnar, Holger Dette, Nestor Parolya.

Source: The Annals of Statistics, Volume 47, Number 5, 2977--3008.

Abstract:
In this paper, new tests for the independence of two high-dimensional vectors are investigated. We consider the case where the dimension of the vectors increases with the sample size and propose multivariate analysis of variance-type statistics for the hypothesis of a block diagonal covariance matrix. The asymptotic properties of the new test statistics are investigated under the null hypothesis and the alternative hypothesis using random matrix theory. For this purpose, we study the weak convergence of linear spectral statistics of central and (conditionally) noncentral Fisher matrices. In particular, a central limit theorem for linear spectral statistics of large dimensional (conditionally) noncentral Fisher matrices is derived which is then used to analyse the power of the tests under the alternative. The theoretical results are illustrated by means of a simulation study where we also compare the new tests with several alternative, in particular with the commonly used corrected likelihood ratio test. It is demonstrated that the latter test does not keep its nominal level, if the dimension of one sub-vector is relatively small compared to the dimension of the other sub-vector. On the other hand, the tests proposed in this paper provide a reasonable approximation of the nominal level in such situations. Moreover, we observe that one of the proposed tests is most powerful under a variety of correlation scenarios.




testing

A unified treatment of multiple testing with prior knowledge using the p-filter

Aaditya K. Ramdas, Rina F. Barber, Martin J. Wainwright, Michael I. Jordan.

Source: The Annals of Statistics, Volume 47, Number 5, 2790--2821.

Abstract:
There is a significant literature on methods for incorporating knowledge into multiple testing procedures so as to improve their power and precision. Some common forms of prior knowledge include (a) beliefs about which hypotheses are null, modeled by nonuniform prior weights; (b) differing importances of hypotheses, modeled by differing penalties for false discoveries; (c) multiple arbitrary partitions of the hypotheses into (possibly overlapping) groups and (d) knowledge of independence, positive or arbitrary dependence between hypotheses or groups, suggesting the use of more aggressive or conservative procedures. We present a unified algorithmic framework called p-filter for global null testing and false discovery rate (FDR) control that allows the scientist to incorporate all four types of prior knowledge (a)–(d) simultaneously, recovering a variety of known algorithms as special cases.




testing

Linear hypothesis testing for high dimensional generalized linear models

Chengchun Shi, Rui Song, Zhao Chen, Runze Li.

Source: The Annals of Statistics, Volume 47, Number 5, 2671--2703.

Abstract:
This paper is concerned with testing linear hypotheses in high dimensional generalized linear models. To deal with linear hypotheses, we first propose the constrained partial regularization method and study its statistical properties. We further introduce an algorithm for solving regularization problems with folded-concave penalty functions and linear constraints. To test linear hypotheses, we propose a partial penalized likelihood ratio test, a partial penalized score test and a partial penalized Wald test. We show that the limiting null distributions of these three test statistics are $chi^{2}$ distribution with the same degrees of freedom, and under local alternatives, they asymptotically follow noncentral $chi^{2}$ distributions with the same degrees of freedom and noncentral parameter, provided the number of parameters involved in the test hypothesis grows to $infty$ at a certain rate. Simulation studies are conducted to examine the finite sample performance of the proposed tests. Empirical analysis of a real data example is used to illustrate the proposed testing procedures.




testing

Property testing in high-dimensional Ising models

Matey Neykov, Han Liu.

Source: The Annals of Statistics, Volume 47, Number 5, 2472--2503.

Abstract:
This paper explores the information-theoretic limitations of graph property testing in zero-field Ising models. Instead of learning the entire graph structure, sometimes testing a basic graph property such as connectivity, cycle presence or maximum clique size is a more relevant and attainable objective. Since property testing is more fundamental than graph recovery, any necessary conditions for property testing imply corresponding conditions for graph recovery, while custom property tests can be statistically and/or computationally more efficient than graph recovery based algorithms. Understanding the statistical complexity of property testing requires the distinction of ferromagnetic (i.e., positive interactions only) and general Ising models. Using combinatorial constructs such as graph packing and strong monotonicity, we characterize how target properties affect the corresponding minimax upper and lower bounds within the realm of ferromagnets. On the other hand, by studying the detection of an antiferromagnetic (i.e., negative interactions only) Curie–Weiss model buried in Rademacher noise, we show that property testing is strictly more challenging over general Ising models. In terms of methodological development, we propose two types of correlation based tests: computationally efficient screening for ferromagnets, and score type tests for general models, including a fast cycle presence test. Our correlation screening tests match the information-theoretic bounds for property testing in ferromagnets in certain regimes.




testing

On testing conditional qualitative treatment effects

Chengchun Shi, Rui Song, Wenbin Lu.

Source: The Annals of Statistics, Volume 47, Number 4, 2348--2377.

Abstract:
Precision medicine is an emerging medical paradigm that focuses on finding the most effective treatment strategy tailored for individual patients. In the literature, most of the existing works focused on estimating the optimal treatment regime. However, there has been less attention devoted to hypothesis testing regarding the optimal treatment regime. In this paper, we first introduce the notion of conditional qualitative treatment effects (CQTE) of a set of variables given another set of variables and provide a class of equivalent representations for the null hypothesis of no CQTE. The proposed definition of CQTE does not assume any parametric form for the optimal treatment rule and plays an important role for assessing the incremental value of a set of new variables in optimal treatment decision making conditional on an existing set of prescriptive variables. We then propose novel testing procedures for no CQTE based on kernel estimation of the conditional contrast functions. We show that our test statistics have asymptotically correct size and nonnegligible power against some nonstandard local alternatives. The empirical performance of the proposed tests are evaluated by simulations and an application to an AIDS data set.




testing

Wavelet spectral testing: Application to nonstationary circadian rhythms

Jessica K. Hargreaves, Marina I. Knight, Jon W. Pitchford, Rachael J. Oakenfull, Sangeeta Chawla, Jack Munns, Seth J. Davis.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1817--1846.

Abstract:
Rhythmic data are ubiquitous in the life sciences. Biologists need reliable statistical tests to identify whether a particular experimental treatment has caused a significant change in a rhythmic signal. When these signals display nonstationary behaviour, as is common in many biological systems, the established methodologies may be misleading. Therefore, there is a real need for new methodology that enables the formal comparison of nonstationary processes. As circadian behaviour is best understood in the spectral domain, here we develop novel hypothesis testing procedures in the (wavelet) spectral domain, embedding replicate information when available. The data are modelled as realisations of locally stationary wavelet processes, allowing us to define and rigorously estimate their evolutionary wavelet spectra. Motivated by three complementary applications in circadian biology, our new methodology allows the identification of three specific types of spectral difference. We demonstrate the advantages of our methodology over alternative approaches, by means of a comprehensive simulation study and real data applications, using both published and newly generated circadian datasets. In contrast to the current standard methodologies, our method successfully identifies differences within the motivating circadian datasets, and facilitates wider ranging analyses of rhythmic biological data in general.




testing

The classification permutation test: A flexible approach to testing for covariate imbalance in observational studies

Johann Gagnon-Bartsch, Yotam Shem-Tov.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1464--1483.

Abstract:
The gold standard for identifying causal relationships is a randomized controlled experiment. In many applications in the social sciences and medicine, the researcher does not control the assignment mechanism and instead may rely upon natural experiments or matching methods as a substitute to experimental randomization. The standard testable implication of random assignment is covariate balance between the treated and control units. Covariate balance is commonly used to validate the claim of as good as random assignment. We propose a new nonparametric test of covariate balance. Our Classification Permutation Test (CPT) is based on a combination of classification methods (e.g., random forests) with Fisherian permutation inference. We revisit four real data examples and present Monte Carlo power simulations to demonstrate the applicability of the CPT relative to other nonparametric tests of equality of multivariate distributions.




testing

How States, Assessment Companies Can Work Together Amid Coronavirus Testing Cancellations

Scott Marion, who consults states on testing, talks about why it's important for vendors and public officials to work cooperatively in renegotiating contracts amid assessment cancellations caused by COVID-19.

The post How States, Assessment Companies Can Work Together Amid Coronavirus Testing Cancellations appeared first on Market Brief.




testing

A Bayesian Nonparametric Multiple Testing Procedure for Comparing Several Treatments Against a Control

Luis Gutiérrez, Andrés F. Barrientos, Jorge González, Daniel Taylor-Rodríguez.

Source: Bayesian Analysis, Volume 14, Number 2, 649--675.

Abstract:
We propose a Bayesian nonparametric strategy to test for differences between a control group and several treatment regimes. Most of the existing tests for this type of comparison are based on the differences between location parameters. In contrast, our approach identifies differences across the entire distribution, avoids strong modeling assumptions over the distributions for each treatment, and accounts for multiple testing through the prior distribution on the space of hypotheses. The proposal is compared to other commonly used hypothesis testing procedures under simulated scenarios. Two real applications are also analyzed with the proposed methodology.




testing

Bayes Factor Testing of Multiple Intraclass Correlations

Joris Mulder, Jean-Paul Fox.

Source: Bayesian Analysis, Volume 14, Number 2, 521--552.

Abstract:
The intraclass correlation plays a central role in modeling hierarchically structured data, such as educational data, panel data, or group-randomized trial data. It represents relevant information concerning the between-group and within-group variation. Methods for Bayesian hypothesis tests concerning the intraclass correlation are proposed to improve decision making in hierarchical data analysis and to assess the grouping effect across different group categories. Estimation and testing methods for the intraclass correlation coefficient are proposed under a marginal modeling framework where the random effects are integrated out. A class of stretched beta priors is proposed on the intraclass correlations, which is equivalent to shifted $F$ priors for the between groups variances. Through a parameter expansion it is shown that this prior is conditionally conjugate under the marginal model yielding efficient posterior computation. A special improper case results in accurate coverage rates of the credible intervals even for minimal sample size and when the true intraclass correlation equals zero. Bayes factor tests are proposed for testing multiple precise and order hypotheses on intraclass correlations. These tests can be used when prior information about the intraclass correlations is available or absent. For the noninformative case, a generalized fractional Bayes approach is developed. The method enables testing the presence and strength of grouped data structures without introducing random effects. The methodology is applied to a large-scale survey study on international mathematics achievement at fourth grade to test the heterogeneity in the clustering of students in schools across countries and assessment cycles.




testing

Higher rate of testing accomplished than provincial average, says Northwestern Health Unit

It's been more than a week since there were any new or active cases of COVID-19 in the catchment area for the Northwestern Health Unit (NWHU), and staff can not focus increasing testing.



  • News/Canada/Thunder Bay

testing

COVID-19 testing results in Timmins leave long-term care staff 'perplexed'

The City of Timmins says a COVID-19 outbreak remains in place at a long-term care home in the city, even after the one affected resident has now tested negative — twice.



  • News/Canada/Sudbury

testing

Falling Ill, Testing Negative

I had the symptoms. But did I have the coronavirus?




testing

Winnipeg to start testing technology to improve cellular reception, support 5G service

Winnipeg will soon test "small cell" technology to improve cellular reception in parts of Winnipeg, ahead of a possible future transition to 5G service. 



  • News/Canada/Manitoba

testing

College Board Cancels June SAT and Amps Up Fall Testing Schedule

To make up for lost opportunities for college admissions testing during the coronavirus crisis, the board plans to offer the test more often in the fall, including some test administrations during the school day.




testing

Iain Macwhirter: Failures over testing means no end to coronavirus lockdown in Scotland

Next week, Nicola Sturgeon is promising to outline her proposals for lifting the lockdown. Good luck with that. She is unlikely to open the schools because she can't rely on parents to send their children.




testing

UK Government misses coronavirus testing target for sixth day in a row

The Government has defended missing its key 100,000 target for coronavirus tests for the sixth day in a row, highlighting “daily fluctuations” in availability.




testing

Coronavirus in Scotland: Testing strategy to be reviewed amid care worker reports

THE SCOTTISH Government is reviewing its Covid-19 testing strategy after the Deputy First Minster has been left “frustrated” by reports home care workers have been told to travel to the other side of Scotland for tests.




testing

Coronavirus: Testing times for us all

THE fact that Scotland’s testing figures have fallen well behind the strategy outlined by the First Minister on April 3 of “proportionately” matching those of the UK government is a cause for concern, and the reasons for it certainly merit examination, but it would be hasty to regard it as an indictment of overall policy.




testing

Testing Opt-Outs Threaten School Equity, Measurement Group Says

A group of testing experts says that opt-out could jeopardize the ability to target educational resources appropriately.




testing

Chlamydia Screening Among Young Women: Individual- and Provider-Level Differences in Testing

Chlamydia testing among adolescents and young women without symptoms is recommended by the US Preventive Services Task Force, but only approximately one-half of eligible young women presenting for health care are screened appropriately.

Our work indicates that providers screen young women for chlamydia differentially according to patient age, race/ethnicity, insurance status, and sexual health history. Biases in chlamydia screening may contribute to higher reported rates of chlamydia among minority and poor young women. (Read the full article)




testing

Computerized Neurocognitive Testing for the Management of Sport-Related Concussions

Neurocognitive testing is recommended for the assessment of sport-related concussions. Computerized neurocognitive tests are more sensitive and more efficient than traditional neuropsychological testing in assessing sport-related concussions.

We describe the current prevalence of computerized neurocognitive testing, the relative use of the various computerized programs, the types of clinicians interpreting test scores, and associations of computerized tests with timing of return-to-play and medical provider type managing the athlete. (Read the full article)




testing

Congruence of Reproductive Concerns Among Adolescents With Cancer and Parents: Pilot Testing an Adapted Instrument

Survival takes precedence for adolescent patients with cancer and their families. Patients may not discuss their treatments’ potential to damage their reproductive capacity, which has significant psychological late effects in survivorship.

Strong reproductive concerns of adolescents with cancer may not be captured on current health-related quality of life instruments and may be neglected by parents’ unawareness. Parent-proxy reports of adolescent reproductive concerns are not suitable for capturing specific emotions and feelings. (Read the full article)




testing

Impact of Language Proficiency Testing on Provider Use of Spanish for Clinical Care

Providers who speak Spanish, regardless of their proficiency level, may use Spanish for clinical care without seeking professional interpretation. Failure to use professional interpretation increases the risk for miscommunication and can lead to patient harm.

Providing residents with objective feedback on Spanish language proficiency decreased willingness to use Spanish in straightforward clinical scenarios. Language proficiency testing, coupled with institutional policies requiring professional interpretation, may improve care for patients with limited English proficiency. (Read the full article)




testing

Variation in Emergency Department Diagnostic Testing and Disposition Outcomes in Pneumonia

There is wide variation in testing and treatment of children hospitalized with pneumonia. Limited data are available on diagnostic testing patterns and the association of test utilization with disposition outcomes for children with pneumonia evaluated in the emergency department (ED).

Significant variation exists in testing for pediatric pneumonia. EDs that use more testing have higher hospitalization rates. However, ED revisit rates were not significantly different between high- and low-utilizing EDs, suggesting an opportunity to reduce testing without negatively affecting outcomes. (Read the full article)




testing

Use of Urine Testing in Outpatients Treated for Urinary Tract Infection

The diagnosis of urinary tract infection (UTI) is confirmed by urine testing with urinalysis and culture. No study has characterized the use of urine testing in the setting of empirical antibiotic prescription for outpatient UTI in children.

Urine tests are not performed in a substantial percentage of antibiotic-treated pediatric UTIs. Additional research is necessary to determine whether empirical antibiotic prescription for UTI in children without urine testing is safe and effective. (Read the full article)




testing

Herpes PCR Testing and Empiric Acyclovir Use Beyond the Neonatal Period

Herpes encephalitis outside the neonatal period is typically severe and recognizable to clinicians. Excessive testing for herpes encephalitis is associated with increased medical costs and hospital length of stay, and risks patient harm.

Herpes testing and empirical acyclovir treatment in older and less unwell patients has been increasing in US pediatric hospitals over the past decade, which may reflect a more fundamental problem in current approaches to clinical decision-making. (Read the full article)




testing

Testing for Abuse in Children With Sentinel Injuries

Several injuries have been suggested to be disproportionately associated with abuse in young children, but rates of abuse among children with these injuries are not currently known.

Abuse is diagnosed commonly in children with sentinel injuries, including the majority of children <24 months with rib fractures. (Read the full article)




testing

Testing and Treatment After Adolescent Sexual Assault in Pediatric Emergency Departments

National guidelines recommend testing and prophylaxis for chlamydia, gonorrhea, and pregnancy for adolescent sexual assault victims. Little is known about rates of testing and prophylaxis in adolescent victims of sexual assault evaluated in pediatric emergency departments.

There is significant variation in testing and prophylaxis practices in the pediatric emergency department evaluation of adolescent victims of sexual assault. Adolescents cared for in emergency departments with clinical pathways are more likely to receive recommended prophylaxis. (Read the full article)




testing

What about errors in antibody testing? | Ask CIDD




testing

Testing and Accountability in the NCLB Era

David Figlio and Eduwonkette discuss if today's testing and accountability policies accurately depict student performance and the size of the achievement




testing

Panel Finds Few Learning Gains From Testing Movement

A 10-year study by a blue-ribbon panel of scientists concludes that high-stakes testing and other accountability measures have largely failed to translate to real improvements in student achievement.




testing

The Added Value of Longitudinal Imaging for Preclinical In vivo Efficacy Testing of Therapeutic Compounds against Cerebral Cryptococcosis [Experimental Therapeutics]

Brain infections with Cryptococcus neoformans are associated with significant morbidity and mortality. Cryptococcosis typically presents as meningoencephalitis or fungal mass lesions called cryptococcomas. Despite frequent in vitro discoveries of promising novel antifungals, the clinical need for drugs that can more efficiently treat these brain infections remains. A crucial step in drug development is the evaluation of in vivo drug efficacy in animal models. This mainly relies on survival studies or post-mortem analyses in large groups of animals, but these techniques only provide information on specific organs of interest at predefined time points. In this proof-of-concept study, we validated the use of non-invasive preclinical imaging to obtain longitudinal information on the therapeutic efficacy of amphotericin B or fluconazole monotherapy in meningoencephalitis and cryptococcoma mouse models. Bioluminescence imaging (BLI) enabled the rapid in vitro and in vivo evaluation of drug efficacy while complementary high-resolution anatomical information obtained by magnetic resonance imaging (MRI) of the brain allowed a precise assessment of the extent of infection and lesion growth rates. We demonstrated a good correlation between both imaging readouts and the fungal burden in various organs. Moreover, we identified potential pitfalls associated with the interpretation of therapeutic efficacy based solely on post-mortem studies, demonstrating the added value of this non-invasive dual imaging approach compared to standard mortality curves or fungal load endpoints. This novel preclinical imaging platform provides insights in the dynamic aspects of the therapeutic response and facilitates a more efficient and accurate translation of promising antifungal compounds from bench to bedside.