mitt

LUMINANCE CONTROLLER AND ORGANIC LIGHT EMITTING DISPLAY DEVICE HAVING THE SAME

A luminance controller according to example embodiments includes a gamma set selector to select a reference gamma set from among first through N-th gamma sets respectively corresponding to first through N-th reference luminances, based on a target luminance of a display panel; an initialization voltage selector to select an initialization voltage corresponding to the reference gamma set, from among first through N-th initialization voltage offsets respectively corresponding to the first through N-th gamma sets; a common voltage selector to select a common voltage corresponding to the reference gamma set from among first through N-th common voltage offsets respectively corresponding to the first through N-th gamma sets; and a determiner to determine a target initialization voltage based on the target luminance and the initialization voltage, and to determine a target common voltage based on the target luminance and the common voltage.




mitt

ORGANIC LIGHT-EMITTING DIODE DISPLAY DEVICE AND DRIVING METHOD THEREOF

The present invention discloses an organic light-emitting diode display device and a driving method thereof. The device includes: a plurality of pixels, including a plurality of organic light-emitting diodes and a plurality of drive transistors for supplying drive currents to the organic light-emitting diodes; a data driver, configured to transmit corresponding data signals to the plurality of pixels via a plurality of data lines; and a pre-charge circuit, configured to pre-charge voltage signals reserved in a previous time sequence to an initial voltage, the initial voltage being less than or equal to a minimum voltage of the data signals, wherein before the data driver transmits the corresponding data signals to the plurality of pixels, the pre-charge circuit acts to pre-charge the voltage signals reserved in the previous time sequence by the plurality of pixels to be less than or equal to the minimum voltage of the data signals.




mitt

ORGANIC LIGHT-EMITTING DIODES TOUCH DISPLAY PANEL AND ELECTRONIC DEVICE USING SAME

An OLED touch display panel capable of detecting and reacting to touches on the display includes a signal sending element emitting ultrasonic signals, a driving layer configured to provide display driving signals, a light-emitting element configured to receive the display driving signals and emit light, and a signal receiving element configured for receiving reflected ultrasonic signals. The light-emitting element includes a plurality of light-emitting units and a plurality of black matrixes. Every two adjacent light-emitting units are separated from each other by one of the black matrixes. The signal receiving element includes a plurality of thin film transistor units arranged in a matrix. Each thin film transistor unit is formed on one of the black matrixes.




mitt

COMMUNICATION DEVICE AND A METHOD THEREIN FOR TRANSMITTING DATA INFORMATION AT FIXED TIME INSTANTS IN A RADIO COMMUNICATIONS NETWORK

A first communication device and method therein for transmitting data information at fixed time instants on a radio channel to a second communication device in a radio communications network. First, the first communication device determines that the radio channel is available for transmitting data information to the second communication device during a time period determined by the first communication device. Then, the first communication device transmits a preamble on the available radio channel after the time period. The first communication device thereafter transmits the data information on the available radio channel to the second communication device at a next fixed time instant following the transmission of the preamble.




mitt

APPARATUS AND METHOD FOR TRANSMITTING/RECEIVING DATA IN COMMUNICATION SYSTEM

A data transmission apparatus in a communication system includes a reception unit configured to receive terminal information from a plurality of terminals through a new frequency band for transmission and reception of data between the plurality of terminals and an AP (access point); a determination unit configured to determine access timing of the terminals to the AP by using the terminal information, and generate terminal access information including information on the access timing; and a transmission unit configured to transmit the terminal access information and beacon frames to the terminals, wherein the terminals access the AP and transmit data frames to the AP, at the access timing based on the beacon frames.




mitt

METHOD FOR TRANSMITTING AND RECEIVING FRAME IN WIRELESS LOCAL AREA NETWORK SYSTEM AND APPARATUS FOR THE SAME

Disclosed are a method for transmitting and receiving a frame in a wireless local area network (WLAN) system and an apparatus for the same. A method for generating interference/non-interference station lists includes receiving a first frame from a second station, acquiring a receiver address of the first frame from the first frame, and setting, based on whether to receive a second frame that is a response to the first frame from a third station indicated by the receiver address within a preset time from a time when the first frame has been received, the third station as an interference station or a non-interference station. Therefore, the performance of a communication system may be improved.




mitt

Power Transmitting Apparatus

A power transmitting apparatus has a clutch member and a pressure member. The cam surfaces of the pressure-contact assist cam face each other. The cam surfaces of the back torque limiter cam face each other. A receiving portion for a clutch spring (10) on the pressure member (5) side has a receiving member (11) separate from the pressure member (5). A first cam surface (C1) and a second cam surface (C2), constituting the back torque limiter cam, are, respectively, formed on the receiving member (11) and the clutch member (4). A third cam surface (C3) and a fourth cam surface (C4), constituting the pressure-contact assist cam, are, respectively, formed on the pressure member (5) and the clutch member (4).




mitt

SYSTEM AND METHOD FOR A REDUCED HARMONIC CONTENT TRANSMITTER FOR WIRELESS COMMUNICATION

A system includes a voltage-controlled oscillator (VCO) to generate an output signal based on an input voltage and a multi-stage delay network to receive the output signal from the VCO. Each stage of the delay network produces a phase-shifted output signal. The system includes a multi-stage digital-to-analog converter (DAC) network, where each stage of the DAC network is associated with a corresponding stage of the delay network. Each stage of the DAC network receives the phase-shifted output signal from its corresponding stage of the delay network and generates a weighted output signal based on the received phase-shifted output signal. The DAC network combines the weighted output signal of each stage. A weighting factor for each stage of the DAC network is selected to reduce harmonic content of the combination of weighted output signals.




mitt

TRANSMITTER

A transmitter includes: a main pull-up driver suitable for pull-up driving an output node; and an auxiliary pull-up driver suitable for pull-up driving the output node based on a voltage of the output node, wherein the auxiliary pull-up driver compensates for non-linear driving current characteristics of the main pull-up driver.




mitt

GAS FIRED RADIANT EMITTER

Gas fired radiant emitter having a premixing chamber for preparing a premix of gas and air; a perforated ceramic plate acting as burner deck; and a pilot burner having a premix gas supply flow tube and two electrodes. The premix gas supply flow tube of the pilot burner extends from the side of the perforated ceramic plate where the premixing chamber is located, into a through hole in the perforated ceramic plate. The premix gas supply flow tube has a gas exit in the through hole in the perforated ceramic plate or at the combustion side of the perforated ceramic plate. The gas fired radiant emitter has features so that in an area of the perforated ceramic plate around where the premix gas supply flow tube extends into a through hole in the perforated ceramic plate, no premix gas flows through the perforated ceramic plate.




mitt

METHOD AND SYSTEM FOR STARTING AN INTERMITTENT FLAME-POWERED PILOT COMBUSTION SYSTEM

A flame powered intermittent pilot combustion controller may include a first power source and a second power source separate from the first power source, a thermal electric and/or photoelectric device, an igniter and a controller. The thermal electric and/or photoelectric device may charge the first power source when exposed to a flame. The controller and the igniter may receive power from the first power source when the first power source has sufficient available power, and may receive power from the second power source when the first power source does not have sufficient available power.




mitt

LIGHT EMITTING DIODE (LED) MODULE FOR LED LUMINAIRE

A light emitting diode (LED) module for a light fixture includes a substrate with an upper surface and a lower surface. Various pressure multiplying pads are integrally connected to the lower surface, and each pressure multiplying pad extends away from the lower surface. LEDs are attached to the upper surface, along with a set of conductive lines so that each conductive line electrically connects a corresponding LED to a power inputs. Each of the pressure multiplying pads may be positioned opposite a corresponding LED. A flexible lens cover may cover the upper surface and the LEDs, while leaving the lower surface and pressure multiplying pads exposed so that the pads can contact a heat sink of the light fixture.




mitt

LENS AND LIGHT EMITTING MODULE FOR SURFACE ILLUMINATION

A light emitting module includes a circuit board, a light emitting device mounted on the circuit board, and a lens dispersing light emitted from the light emitting device. The lens includes a lower surface formed with a concave section defining a light incident surface through which light enters the lens, an upper surface through which light exits the lens, and legs coupled to the circuit board and disposed farther outside the lens than an area of the upper surface. The light emitting device is disposed within the concave section of the lens.




mitt

LIGHT EMITTING DEVICE

light emitting device includes: a light emitting element including a first electrode and a second electrode; a base equipped with a first conductive member and a second conductive member; a first bonding member electrically connecting the first electrode and the first conductive member, and a second bonding member electrically connecting the second electrode and the second conductive member; and one or more light reflecting members covering at least a part of the first conductive member and the second conductive member. The one or more light reflecting members are disposed in contact with the first bonding member and the second bonding member while being away from the light emitting element.




mitt

OPTICAL LENS STRUCTURES FOR LIGHT EMITTING DIODE (LED) ARRAY

A light fixture includes one or more of light emitting diode (LED) modules. Each of the LED modules may include a substrate holding a plurality of LEDs, and a printed circuit board connected to the plurality of LEDs. Each of the LED modules may also include a flexible lens cover including a plurality of lenses, each positioned to be located over one of the LEDs. The flexible lens cover may include a side sealing structure configured to interface with the substrate and seal the lens cover to the substrate.




mitt

ORGANIC LAYER DEPOSITION ASSEMBLY, ORGANIC LAYER DEPOSITION DEVICE INCLUDING THE SAME, AND METHOD OF MANUFACTURING ORGANIC LIGHT-EMITTING DISPLAY DEVICE USING THE ORGANIC LAYER DEPOSITION ASSEMBLY

An organic layer deposition assembly for depositing a deposition material on a substrate includes a deposition source configured to spray the deposition material, a deposition source nozzle arranged in one side of the deposition source and including deposition source nozzles arranged in a first direction, a patterning slit sheet arranged to face the deposition source nozzle and having patterning slits in a second direction that crosses the first direction, and a correction sheet arranged between the deposition source nozzle and the patterning slit sheet and configured to block at least a part of the deposition material sprayed from the deposition source.




mitt

ARRAY SUBSTRATE OF ORGANIC LIGHT-EMITTING DIODES AND METHOD FOR PACKAGING THE SAME

An array substrate of organic light-emitting diodes and a method for fabricating the same are provided to narrow an edge frame of product device of organic light-emitting diodes, to shorten the package process time, and to improve the substrate utilization and the production efficiency. The array substrate of organic light-emitting diodes includes a plurality of display panels disposed in an array of rows and columns, wherein at least two adjacent display panels are connected through a frame adhesive, and there is no cutting headroom between at least one side of the at least two adjacent display panels.




mitt

APPARATUS AND METHODS FOR TRANSMITTING WIRELESS SIGNALS

Aspects of the subject disclosure may include, for example, an antenna structure having a feed point for coupling to a dielectric core of a cable that propagates electromagnetic waves without an electrical return path, and a dielectric antenna, substantially or entirely devoid of conductive external surfaces, coupled to the feed point, the dielectric antenna facilitating receipt, at the feed point, the electromagnetic waves for propagating the electromagnetic waves to an aperture of the dielectric antenna for radiating a wireless signal. Other embodiments are disclosed.




mitt

PLASMA EMITTING METHOD AND PLASMA EMITTING DEVICE

Water is flowed inside main body section formed from an insulating material such that a specified space remains inside the main body section. Electrodes and are arranged along the outer walls of the main body section and voltage is applied to the electrodes. Processing gas present inside the main body section is plasmarized and plasma is emitted to the water flowing inside the main body section.




mitt

POWER SYSTEM FOR SUPPLYING HIGH VOLTAGE TO AN ELECTRON BEAM EMITTER

Power system for supplying high voltage to an electron beam emitter, which is adapted to sterilize a packaging container or a packaging material by electron beam irradiation, the power system comprising a voltage multiplier for generating a high voltage, a first voltage measurement device for measuring an output voltage level of the voltage multiplier and providing a first measured voltage value, and an actuator for modifying the output voltage level of the voltage multiplier based on the first measured voltage value provided by the first voltage measurement device, characterized in that the power system further comprises a second voltage measurement device adapted to independently measure the output voltage level of the voltage multiplier and provide a second measured voltage value.




mitt

POLYMER, ORGANIC LIGHT-EMITTING DEVICE MATERIAL INCLUDING THE SAME, AND ORGANIC LIGHT-EMITTING DEVICE INCLUDING THE ORGANIC LIGHT-EMITTING DEVICE MATERIAL

A polymer comprising a first repeating unit represented by Formula 1: wherein, in Formula 1, groups and variables are the same as described in the specification.




mitt

COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE INCLUDING THE SAME

A compound represented by Formula 1 and an organic light-emitting device including the same are provided:




mitt

ORGANIC LIGHT-EMITTING DIODE DISPLAY DEVICE

Disclosed is a display device having a display panel that includes a plurality of pixels in a display area, each pixel including a first thin film transistor (TFT); a plurality of pads in a non-display area outside the display area that provide operating signals to the plurality of pixels in the display area, each pad including a first signal line running toward the display area and a second signal line running toward an outer edge of the display panel, with each pad disposed between the first and second signal lines; and an extension line crossing one or more of second signal lines of the plurality of pads, two ends of the extension line running toward the outer edge of the display panel, wherein each of the one or more of second signal lines of the plurality of pads includes an active layer of a second TFT.




mitt

ORGANIC LIGHT-EMITTING DEVICE

According to one or more embodiments, an organic light-emitting device includes: a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, wherein the organic layer may include a first compound represented by one selected from Formulae 1-1 and 1-2, and a second compound represented by Formula 2:




mitt

HETEROCYCLIC COMPOUND AND ORGANIC LIGHT EMITTING DEVICE COMPRISING SAME

The present specification provides a hetero-cyclic compound and an organic light emitting device including the hetero-cyclic compound.




mitt

ORGANIC LIGHT-EMITTING DEVICE

According to one or more embodiments, an organic light-emitting device includes: a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer. The organic layer includes a first compound represented by Formula 1 and a second compound represented by one selected from Formulae 2-1 to 2-3:




mitt

Compound, Light-Emitting Element, Display Device, Electronic Device, and Lighting Device

A compound includes a benzofuropyrimidine skeleton or a benzothienopyrimidine skeleton, a first substituent, and a second substituent. Each of the first substituent and the second substituent includes a furan skeleton, a thiophene skeleton, or a pyrrole skeleton. The first substituent is bonded to a pyrimidine ring included in the benzofuropyrimidine skeleton or a pyrimidine ring included in the benzothienopyrimidine skeleton. The second substituent is bonded to a benzene ring included in the benzofuropyrimidine skeleton or a benzene ring included in the benzothienopyrimidine skeleton. The light-emitting element includes the compound.




mitt

CONDENSED CYCLIC COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE INCLUDING THE SAME

A condensed cyclic compound represented by Formula 1: Ar1-L1-L2-Ar2 Formula 1 wherein in Formula 1, Ar1, Ar2, L1, and L2 are the same as described in the specification.




mitt

ORGANIC LIGHT-EMITTING DEVICE

An organic light-emitting device includes: a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, wherein the organic layer includes a first compound represented by Formula 1 and a second compound represented by Formula 2, wherein a case where the first compound is 4,4'-bis(N-carbazolyl)-1,1'-biphenyl(CBP) is excluded:




mitt

ORGANIC LIGHT-EMITTING DEVICE

An organic light-emitting device includes: a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, wherein the organic layer includes a first compound represented by one selected from Formulae 1-1 and 1-2 and a second compound represented by one selected from Formulae 2-1 to 2-3.




mitt

COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE INCLUDING THE SAME

A compound is represented by Formula 1 and an organic light-emitting device including the same: wherein Formula 1 is the same as described above.




mitt

Light-Emitting Element, Display Device, Electronic Device, and Lighting Device

A light-emitting element with high emission efficiency and high reliability is provided. The light-emitting element includes a light-emitting layer containing a first organic compound, a second organic compound, and a guest material. The first organic compound has a nitrogen-containing six-membered heteroaromatic skeleton. In the light-emitting layer, the weight ratio of an organic compound having a nitrogen-containing five-membered heterocyclic skeleton with an NH group, a secondary amine skeleton with an NH group, or a primary amine skeleton with an NH group to the first organic compound is less than or equal to 0.03, or alternatively, the weight ratio of the organic compound having a nitrogen-containing five-membered heterocyclic skeleton with an NH group, a secondary amine skeleton with an NH group, or a primary amine skeleton with an NH group to the second organic compound is less than or equal to 0.01.




mitt

ORGANIC LIGHT-EMITTING DEVICE

An organic light-emitting device includes a first electrode, a second electrode facing the first electrode, and an emission layer disposed between the first electrode and the second electrode. An electron transport region is between the second electrode and the emission layer. The electron transport region includes an electron injection layer including a first component including at least one halide of an alkali metal (Group I), a second component including at least one organometallic compound, and a third component including at least one of a lanthanide metal or an alkaline earth metal (Group II).




mitt

ORGANIC LIGHT EMITTING DIODE AND ORGANIC LIGHT EMITTING DIODE DISPLAY DEVICE INCLUDING THE SAME

An organic light emitting element includes a first electrode a second electrode that faces the first electrode, an emission layer between the first electrode and the second electrode, the emission layer including quantum dots, and a hole transport layer between the first electrode and the emission layer. The quantum dots include at least one of a Group I-VI compound, a Group II-VI compound, and a Group III-VI compound. The hole transport layer includes at least one of a p-doped Group I-VI compound, a p-doped Group II-VI compound, and a p-doped Group III-VI compound.




mitt

ORGANIC LIGHT EMITTING DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME

An organic light emitting display (OLED) device can include a substrate on which first to third light emitting portions are defined, first electrodes respectively positioned on the first to third light emitting portions, a first stack formed on the first electrodes and including first, second and third light emitting layers corresponding to the first, second and third light emitting portions, respectively, an N-type charge generation layer (CGL) positioned on the first stack, a transition metal oxide layer positioned on the N-type CGL, a second stack positioned on the transition metal oxide layer and including fourth, fifth and sixth light emitting layers corresponding to the first, second and third light emitting portions, respectively, and a second electrode positioned on the second stack.




mitt

LIGHT EMITTING DIODE AND DISPLAY DEVICE INCLUDING THE SAME

A light emitting diode includes a first electrode, a second electrode facing the first electrode, and a mixture layer between the first electrode and the second electrode. The mixture layer includes a quantum dot, a hole transporting material, and an electron transporting material.




mitt

LIGHT-EMITTING DEVICE, DISPLAY APPARATUS AND LIGHTING APPARATUS

A light-emitting device includes a pair of first electrodes arranged separated from and opposing each other on a first surface of a substrate; a light-emitting layer arranged on at least one of the first electrodes; a second electrode arranged on the light-emitting layer; and a bridge layer connecting the first electrodes. The bridge layer is formed of a material having a resistance that falls within a range of 100 kΩ to 100 MΩ.




mitt

LIGHT-EMITTING DEVICE AND POWER-GENERATING DEVICE

A light-emitting device having a light-extraction structure includes: a first electrode; a second electrode; a light-emitting layer disposed between the first electrode and the second electrode; and an inorganic-material-based layer disposed between the first electrode and the light-emitting layer or between the second electrode and the light-emitting layer. The inorganic-material-based layer has thickness of 100 nm or more and has conductivity of 10−6 Ω−1cm−1 or more and 100 Ω−1cm−1 or less.




mitt

LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME

A light emitting device and a method for manufacturing the same are disclosed. Herein, the light emitting device comprises: a substrate having a light emitting region and a sealing region surrounding the light emitting region; an OLED unit disposed over the light emitting region; a protection layer disposed over the OLED unit; a support unit disposed over the sealing region, wherein materials of the protection layer and the support unit are the same, and the support unit connects to the protection layer; and a cover disposed over the protection layer and the support unit; wherein a first height is between a surface of the support unit adjacent to the cover and a surface of the substrate, a second height is between a surface of the protection layer adjacent to the cover and the surface of the substrate, and the first height is larger than the second height.




mitt

ORGANIC LIGHT EMITTING DISPLAY

An organic light emitting display includes: an organic light emitting display panel including a light emitting surface and a non-light emitting surface opposite the light emitting surface; a heat radiation layer on the non-light emitting surface and having an emissivity equal to or greater than about 0.8 and less than about 1; and a protective member spaced from the heat radiation layer such that an air layer is between the protective member and the heat radiation layer. The protective member includes a base layer and a heat absorbing layer having an emissivity greater than an emissivity of the base layer.




mitt

ORGANIC LIGHT-EMITTING DIODE (OLED) DISPLAY PANEL, ELECTRONIC DEVICE AND MANUFACTURING METHOD

The present disclosure provides an OLED display panel, an electronic device, and a manufacturing method. The OLED display panel comprises a substrate, a first electrode, a light-emitting function layer, and a second electrode including Ag or a metal alloy containing Ag. When the second electrode is made of the metal alloy containing Ag, a content of Ag in the second electrode is more than a sum of contents of all other elements in the second electrode.




mitt

ORGANIC LIGHT-EMITTING DISPLAY PANEL, DISPLAY APPARATUS CONTAINING THE SAME, AND RELATED PACKAGING METHOD

The present disclosure provides a method for packaging an organic light-emitting diode (OLED) display panel. The method includes providing a first substrate and a second substrate; forming a first bonding layer in a packaging region of the first substrate; and forming a second bonding layer in a packaging region of the second substrate. The method also includes bonding the first substrate with the second substrate by molecular bonding between the first bonding layer and the second bonding layer.




mitt

LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME

A light emitting device having a structure in which oxygen and moisture are prevented from reaching light emitting elements, and a method of manufacturing the same, are provided. Further, the light emitting elements are sealed by using a small number of process steps, without enclosing a drying agent. The present invention has a top surface emission structure. A substrate on which the light emitting elements are formed is bonded to a transparent sealing substrate. The structure is one in which a transparent second sealing material covers the entire surface of a pixel region when bonding the two substrates, and a first sealing material (having a higher viscosity than the second sealing material), which contains a gap material (filler, fine particles, or the like) for protecting a gap between the two substrates, surrounds the pixel region. The two substrates are sealed by the first sealing material and the second sealing material. Further, reaction between electrodes of the light emitting elements (cathodes or anodes) and the sealing materials can be prevented by covering the electrodes with a transparent protective layer, for example, CaF2, MgF2, or BaF2.




mitt

LIGHT EMITTING DIODE, DISPLAY SUBSTRATE AND DISPLAY DEVICE HAVING THE SAME, AND FABRICATING METHOD THEREOF

The present application discloses a light emitting diode comprising a plurality of sub-pixels comprising a first electrode layer, wherein the first electrode layer is a reflective electrode layer; a second electrode layer; a light emitting layer between the first electrode layer and the second electrode layer; a first microcavity tuning layer sandwiched by the first electrode layer and the light emitting layer within the plurality of sub-pixels; and a second microcavity tuning layer sandwiched by the first microcavity tuning layer and the light emitting layer within at least one of the plurality of sub-pixels, and the first microcavity tuning layer is sandwiched by the first electrode layer and the second microcavity tuning layer within the at least one of the plurality of sub-pixels. The first microcavity tuning layer is made of a material including a transparent conductive material in a first state and the second microcavity tuning layer is made of a material including a transparent conductive material in a second state, the first state and the second state are different states selected from a crystalline state and an amorphous state.




mitt

ORGANIC LIGHT-EMITTING DEVICE

An organic light-emitting device is provided. The organic light-emitting device includes a substrate having a first surface and a second surface opposite to the first surface; an organic light-emitting element disposed on the first surface; and a low refractive index layer disposed on the second surface, wherein the low refractive index layer includes a mixture including polyvinylidene fluoride and inorganic nano-platelet, a hyperbranched polysiloxane, or a combination thereof.




mitt

ORGANIC LIGHT-EMITTING DIODE (OLED) DISPLAY PANEL AND DISPLAY APPARATUS

An organic light-emitting diode (OLED) display panel and an OLED display apparatus are provided. The OLED display panel comprises: a first electrode and a second electrode disposed in a stacked configuration, wherein at least one of the first electrode and the second electrode is a light-output-side electrode; an organic luminescent layer disposed between the first electrode and the second electrode; an electron transport layer disposed between the organic luminescent layer and the second electrode; and an optical coupling layer disposed on a surface of the light-output-side electrode far away from the organic luminescent layer. The electron transport layer contains element ytterbium (Yb) with a volume percentage equal to or less than approximately 3%.




mitt

Eddie Howe says he is committed to Bournemouth after being linked with the Arsenal job

Bournemouth manager Eddie Howe is fully committed to the club amid speculation of a move to Arsenal.




mitt

General Assembly Committee Approves $43 Billion Biennial Budget

The Connecticut General Assembly Appropriations Committee approved a $43.3 billion two-year state budget proposal on Tuesday. It sets the stage for final budget negotiations in June with Democratic Governor Ned Lamont.




mitt

New Tax Plan Will Raise $2 Billion For Conn., Says Finance Committee

Connecticut’s finance committee has approved a tax package that increases revenue by more than $2 billion over the next two years. Democrats say the increase is needed to fund the state’s $43.3 billion two-year budget proposal.




mitt

Weltweite Reisewarnung ist bis Mitte Juni verlängert

Außenminister Heiko Maas gibt keine Prognose für die Reisesaison im Sommer. Die Bundesregierung kann nach wie vor „kein sorgenloses Reisen“ empfehlen, so Maas und begründete damit die Verlängerung der weltweiten Reisewarnung bis zum 14. Juni.