mitt

Semiconductor light-emitting device

A semiconductor light-emitting device includes a lamination of semiconductor layers including a first layer of a first conductivity type, an active layer, and a second layer of a second conductivity type; a transparent conductive film formed on a principal surface of the lamination and having an opening; a pad electrode formed on part the opening; and a wiring electrode connected with the pad electrode, formed on another part of the opening while partially overlapping the transparent conductive film; wherein contact resistance between the transparent conductive film and the lamination is larger than contact resistance between the wiring electrode and the lamination. Field concentration at the wiring electrode upon application of high voltage is mitigated by the overlapping transparent conductive film.




mitt

Substrate for mounting light-emitting element and light-emitting device

There is provided a substrate for light-emitting element, including a mounting surface on which a light-emitting element is to be mounted, the mounting surface being one of two opposed main surfaces of the substrate. The substrate of the present invention is provided with a protection element for the light-emitting element, the protection element comprising a voltage-dependent resistive layer embedded in a body of the substrate, and comprising a first electrode and a second electrode each of which is in connection with the voltage-dependent resistive layer wherein the light-emitting element is to be mounted such that it is positioned in an overlapping relation with the voltage-dependent resistive layer.




mitt

Semiconductor light emitting device

According to one embodiment, a semiconductor light emitting device includes a stacked structure body, a first electrode, a second electrode, and a dielectric body part. The stacked structure body includes a first semiconductor layer, having a first portion and a second portion juxtaposed with the first portion, a light emitting layer provided on the second portion, a second semiconductor layer provided on the light emitting layer. The first electrode includes a contact part provided on the first portion and contacting the first layer. The second electrode includes a first part provided on the second semiconductor layer and contacting the second layer, and a second part electrically connected with the first part and including a portion overlapping with the contact part when viewed from the first layer toward the second layer. The dielectric body part is provided between the contact part and the second part.




mitt

Light emitting device and lighting system with the same

A light emitting device including a light emitting structure having a first conduction type semiconductor layer, an active layer, and a second conduction type semiconductor layer, a transparent conductive layer disposed on the light emitting structure, a metal filter having an irregular pattern disposed between the light emitting structure and the transparent conductive layer, and openings disposed between the irregular patterns in the metal filter.




mitt

Display device having light emitting elements with red color filters

A display device comprising TFT elements having satisfactory characteristics and being easy to assemble. In the display device, a pixel emitting red light comprises a red color filter. The red color filter forms a light shielding film for the TFT elements in a driver circuit portion or in a pixel portion.




mitt

Semiconductor light emitting device

According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, a light emitting unit, a second semiconductor layer, a reflecting electrode, an oxide layer and a nitrogen-containing layer. The first semiconductor layer is of a first conductivity type. The light emitting unit is provided on the first semiconductor layer. The second semiconductor layer is provided on the light emitting unit and is of a second conductivity type. The reflecting electrode is provided on the second semiconductor layer and includes Ag. The oxide layer is provided on the reflecting electrode. The oxide layer is insulative and has a first opening. The nitrogen-containing layer is provided on the oxide layer. The nitrogen-containing layer is insulative and has a second opening communicating with the first opening.




mitt

Light-emitting element, light-emitting device, and electronic device

A light-emitting element includes a first electrode, a first light-emitting layer formed over the first electrode, a second light-emitting layer formed on and in contact with the first light-emitting layer to be in contact therewith, and a second electrode formed over the second light-emitting layer. The first light-emitting layer includes a first light-emitting substance and a hole-transporting organic compound, and the second light-emitting layer includes a second light-emitting substance and an electron-transporting organic compound. Substances are selected such that a difference in LUMO levels between the first light-emitting substance, the second light-emitting substance, and the electron-transporting organic compound is 0.2 eV or less, a difference in HOMO levels between the hole-transporting organic compound, the first light-emitting substance, and the second light-emitting substance is 0.2 eV or less, and a difference in LUMO levels between the hole-transporting organic compound and the first light-emitting substance is greater than 0.3 eV.




mitt

Light emitting device having an organic light emitting diode that emits white light

The present invention has an object of providing a light-emitting device including an OLED formed on a plastic substrate, which prevents degradation due to penetration of moisture or oxygen. On a plastic substrate, a plurality of films for preventing oxygen or moisture from penetrating into an organic light-emitting layer in the OLED (“barrier films”) and a film having a smaller stress than the barrier films (“stress relaxing film”), the film being interposed between the barrier films, are provided. Owing to a laminate structure, if a crack occurs in one of the barrier films, the other barrier film(s) can prevent moisture or oxygen from penetrating into the organic light emitting layer. The stress relaxing film, which has a smaller stress than the barrier films, is interposed between the barrier films, making it possible to reduce stress of the entire sealing film. Therefore, a crack due to stress hardly occurs.




mitt

Identifying the presence of an individual near medical radiation emitting equipment

Systems and methods are disclosed herein to a radiation safety system comprising radiation emitting medical equipment; a radiation safety system controller connected to the radiation emitting medical equipment through a first communication means configured to determine a number of people within a radiation room housing the radiation emitting medical equipment and prevent the radiation emitting medical equipment from performing radiation emitting functions if the radiation safety system controller determines that more people than a maximum allowed number of people are presently in the radiation room; and a scanner connected to the radiation safety controller through a second communication means configured to detect people in the radiation room and communicate to the radiation safety system controller that a person has been detected.




mitt

Light collecting and emitting apparatus, method, and applications

A light guide apparatus includes a light guide layer having a top surface and a bottom surface, and a transversely oriented side-end surface that forms an output aperture of the light guide, characterized by an index of refraction, n1, and further characterized by a length dimension in an intended light propagation direction towards the output aperture, where the intended light propagation direction is a z-axis direction of a Cartesian coordinate system; and a plurality of light injection elements disposed in the form of at least one linear strip in at least one of the top and bottom surfaces of the light guide layer, wherein some of the plurality of light injection elements are disposed on one lateral side of the strip and some other of the plurality of light injection elements are disposed on an opposing lateral side of the strip at a rotation angle Δz about the y-axis.




mitt

Organic light emitting device

Provided is an organic light emitting device. The organic light emitting device comprising a first light emitting part on a substrate, emitting a first light of a first wavelength, wherein the first light emitting part includes a transparent first electrode, a first organic light emitting layer, and a transparent second electrode sequentially stacked on the substrate, a second light emitting part on the first light emitting part, emitting a second light of a second wavelength, wherein the second light emitting part includes a transparent third electrode, a second organic light emitting layer, and a reflective fourth electrode sequentially stacked on the first light emitting part, and a fluorescent material disposed at least one between the substrate and the first light emitting part, and between the first light emitting part and second light emitting part.




mitt

Apparatus, system, and method for digital base modulation of power amplifier in polar transmitter

An amplifier receives an amplitude signal of a polar modulated signal at a base terminal of a transistor and receives a phase modulated carrier signal of the polar modulated signal at the base terminal of the transistor. The amplifier combines the amplitude signal and the phase modulated signal to produce a full complex waveform at a collector terminal of the transistor.




mitt

Multiplexed configurable sigma delta modulators for noise shaping in a 25-percent duty cycle digital transmitter

A modulator generates a baseband digital signal from an information-bearing digital signal. The baseband signal has time-varying phase and amplitude defined by a sequence of complex data words, each having an in-phase (I) component and a quadrature (Q) component. A noise-shaping modulator generates a noise-shaped digital signal from the baseband digital signal such that quantization noise in the noise-shaping modulator is attenuated by a spectral null of its noise transfer function. The spectral null is selected by a noise-shaping parameter corresponding to a selected one of a plurality of output frequencies. A signal converter generates an analog signal conveying the information of the information-bearing digital signal on an analog carrier signal having the selected output frequency.




mitt

Signal generator for a transmitter or a receiver, a transmitter and a receiver

A signal generator for a transmitter or a receiver for transmitting or receiving RF-signals according to a given communication protocol includes an oscillator and a mismatch compensator. The oscillator is configured to provide a signal generator output signal having a signal generator output frequency and comprises a fine tuning circuit for providing a fine adjustment of the signal generator output frequency based on a fine tuning signal and a coarse tuning circuit for providing a course adjustment of the signal generator output frequency based on a coarse tuning signal. The mismatch compensator is configured to receive the signal generator output signal and compensate a frequency mismatch between a desired signal generator output frequency and the signal generator output frequency generated by the oscillator by providing the fine tuning signal for changing the state of the fine tuning circuit of the oscillator and by providing the coarse tuning signal for changing a state of the coarse tuning circuit of the oscillator. The mismatch compensator provides the coarse tuning signal during a guard period defined in the given communication protocol, during which no RF-signals are transmitted by the transmitter or no RF-signals are to be received by the receiver, such that the state of the coarse tuning circuit is changed within the guard period.




mitt

Transmitting apparatus and communication system

Parallel/serial conversion is performed on an N (where N is a natural number)-bit first parallel data signal with a first converted clock acquired by multiplying a reference clock by N, and parallel/serial conversion is performed on an (N×K)-bit (where K is a natural number) second parallel data signal with a second converted clock acquired by multiplying the reference clock by N×K.




mitt

Method for tuning a digital compensation filter within a transmitter, and associated digital compensation filter

A method for tuning a digital compensation filter within a transmitter includes: obtaining at least one resistance-capacitance (RC) detection result, wherein the digital compensation filter includes an RC compensation module; and tuning the digital compensation filter by inputting the RC detection result into the RC compensation module. For example, the RC detection result may correspond to a detected value representing a product of a resistance value and a capacitance value. In another example, the at least one RC detection result may be obtained by performing RC detection on at least a portion of the transmitter without individually measuring resistance values of resistors therein and capacitance values of capacitors therein. An associated digital compensation filter and an associated calibration circuit are also provided.




mitt

Communications transmitter having high-efficiency combination modulator

A communications transmitter includes a baseband processor configured to generate amplitude, angle, in-phase and quadrature baseband signals and a combination modulator that is configurable to modulate in the polar domain and, alternatively, in the quadrature domain. The combination modulator includes a quadrature modulator and a separate and distinct angle modulator that is configured to serve as a local oscillator for the quadrature modulator. In one embodiment of the invention the combination modulator is configured to modulate in the quadrature domain when the transmitter is operating according to a first communications condition (e.g., first transmit power level or first modulation scheme) and is configured to modulate in the polar domain when the transmitter is operating according to a second communications condition (e.g., second transmit power level or second modulation scheme).




mitt

Polar transmitter having frequency modulating path with interpolation in compensating feed input and related method thereof

A frequency modulating path for generating a frequency modulated clock includes a direct feed input arranged for directly modulating frequency of an oscillator, and a compensating feed input arranged for compensating effects of frequency modulating on a phase error; wherein the compensating feed input is resampled by a down-divided clock that is an integer edge division of the oscillator. A reference phase generator for generating a reference phase output includes a resampling circuit, an accumulator and a sampler. The resampling circuit is for resampling a modulating frequency command word (FCW) input to produce a plurality of samples. The accumulator is for accumulating the samples to generate an accumulated result. The sampler is for sampling the accumulated result according to a frequency reference clock, and accordingly generating a sampled result, wherein the reference phase output is updated according to at least the sampled result.




mitt

Apparatus and method for transmitting and receiving data in a communication or broadcasting system using linear block code

Provided is a method for transmitting data in a communication or broadcasting system using a linear block code by generating a codeword by encoding input information data bits, interleaving the codeword; outputting modulation signal-constituting bits by bit-mapping the interleaved codeword using a bit-mapping table predetermined depending on a modulation scheme and a coding rate, outputting a modulation signal by modulating the modulation signal-constituting bits and transmitting the modulation signal via a transmit antenna.




mitt

Method for the phase modulation of a carrier signal transmitted from a transmitter to a contactless transponder, and device for implementing same

A method for phase modulation of a carrier signal from a transmitter to a contactless transponder in which data is coded as consecutive symbols, each corresponding to a predefined number of carrier cycles, and in which a symbol time is at least two cycles of the carrier signal includes, at the transmitter, spreading a phase jump of a symbol in relation to a preceding symbol over a first part of the symbol time. The establishment of the phase jump is completed in the first part of the symbol time. The periods of the cycles are constant during a second part of the symbol time.




mitt

ASK modulator and transmitter having the same

A modulator which has a first terminal to receive a carrier signal, a second terminal to receive a first control signal to control a frequency band of the carrier signal and a third terminal to receive a second control signal to control a modulation depth of the carrier signal.




mitt

Light emitting apparatus, manufacturing method for the light emitting apparatus, printer, and manufacturing method for the printer

A light emitting apparatus including: a plurality of light emitting elements; a drive circuit including a transistor and a capacitor having one end connected to a gate of the transistor; and a signal supply circuit for receiving a digital gradation signal and outputting an analog voltage signal to the drive circuit, including a computation circuit configured to correct the input digital gradation signal to generate a corrected digital gradation signal, in which the drive circuit is configured to conduct an auto-zero operation which reduce the gate-source voltage of the transistor to a threshold voltage by flowing the drain current to the capacitor, and the computation circuit is configured to generate the corrected digital gradation signal by multiplying a correction coefficient to the input digital gradation signal subtracted by a particular signal common to the plurality of light emitting elements.




mitt

Automatic gain control device and method, power adjusting device and radio transmitting system

An automatic gain control device includes: a variable gain adjusting unit, for adjusting an input signal by a variable gain and outputting an adjustment result; an analog-digital converting unit, for performing analog-digital conversion on the adjustment result to obtain an analog-digital conversion result; and a gain determining unit, for determining a distribution status over a predetermined period of time of a maximum or a minimum of the analog-digital conversion result, comparing the distribution status with a first distribution condition, and if the distribution status meets the first distribution condition, then keeping the variable gain unchanged, otherwise changing the variable gain and determining newly a distribution status until the newly determined distribution status meets a second distribution condition which is at least as strict as the first distribution condition.




mitt

Combination cylinder with power-transmitting transmission having variable gear ratio

The invention relates to a combination cylinder, including a service brake cylinder as an active service brake with at least one service brake piston actuated by a pressure medium, the piston actuating a brake mechanism via a service brake piston rod, and further including a spring-loaded brake cylinder as a passive parking brake with a spring-loaded brake piston actuated by a pressure medium against the action of at least one pre-loaded spring, wherein the spring-loaded brake piston in the event of the parking brake is actuated transmits the power of the at least one pre-loaded spring by means of a power-transmitting transmission to the service brake piston rod. According to the invention, the transmission is designed such that the movements of the spring-loaded brake piston and the service brake piston rod are coaxial and the power transmission increases with increasing stroke of the spring-loaded brake piston.




mitt

Low dropout light emitting diode (LED) ballast circuit and method therefor

A ballast circuit for a Light Emitting Diode (LED) has a regulator element coupled to the LED and to an input voltage source. A control circuit is coupled to the LED and to an input voltage source. A first switching device is coupled in series with the regulator element. A second switching device is coupled to the input voltage and the control circuit.




mitt

System for eliminating current surges in electronic systems and equipment having intermittent current consumption

The invention relates to a system for eliminating current surges that includes a first voltage regulator (7) having a current limit programmable to a value (I(limit)) that depends on the value of the intermittent current surges (IO(surge)) required by the intermittent load (3) and the relationship thereof to the work cycle, a second voltage regulator (9), a condenser (4) connected between the first and second regulators (7, 9), that loads when the current is no longer required and that unloads when there is a need for output current to provide current to the second regulator (9) which absorbs the changes in voltage produced by the loading/unloading of the condenser and provides a constant voltage for any value of the required output current surge, independently of voltage changes in the condenser (4), and a control loop between a sensor for the output current provided to the load and an input limit (15) for the input current (II) in the first regulator (7). Thus, the input current (I(limit)) (1) and the output voltage (VLoad) are constant for any value of the output current surge (IO(surge)).




mitt

Device comprising a source for emitting ultraviolet light

A device (1) comprises a source (20) for emitting ultraviolet light, an inlet (30) for letting in fluid to the device (1), an outlet (40) for letting out fluid from the device (1), and means (51, 52) for performing a straightening action of a flow of fluid through the device (1). The flow straightening means comprise at least one flow straightening element (51, 52) having inlet openings for letting in fluid at one side and outlet openings for letting out fluid at another side, wherein each inlet opening is in communication with a plurality of outlet openings, and wherein the element (51, 52) comprises a maze of randomly arranged, interconnected holes. In such a structure, a water element that is moving from one side of the element (51, 52) to another side may take one of various paths, as a result of which variations in inlet conditions can be dampened.




mitt

Organic light emitting device comprising encapsulating structure

Provided is an organic light emitting diode including an organic light-emitting part including a first electrode, an organic material layer having a light-emitting layer, and a second electrode, and an encapsulating layer included on an entire top surface of the organic light-emitting part. Here, the encapsulating layer has a structure in which at least two of a water barrier film, a glass cap, a metal foil and a conductive film are stacked. Accordingly, the diode may have excellent water and oxygen barrier effects, and deterioration of the diode or running failure may be prevented.




mitt

Organic light emitting display device and method for manufacturing the same

The organic light emitting display device includes an organic light emitting display panel and a data driver, wherein the organic light emitting display panel includes an active region which includes pixel driving TFTs for embodying an image and organic luminescent elements respectively connected with the pixel driving TFTs to emit light, a GIP region which includes a gate driver formed with a plurality of gate driving TFTs for respectively driving gate lines of the active region, a GND region formed between the GIP region and the active region to be formed with a base voltage line for supplying base voltage to the organic luminescent elements of the active region, and a sealant region formed with a sealant for attaching an upper substrate to a lower substrate, and wherein the GND region includes out-gassing blocking holes.




mitt

Electron emission element, electron emission device, charge device, image forming device, electron radiation curing device, light-emitting device, image display device, blower device, cooling device, and manufacturing method for electron emission element

An electron emission element (1) includes an electrode substrate (2) and a thin film electrode (3), and emits electrons from the thin film electrode (3) by voltage application across the electrode substrate (2) and the thin film electrode (3). An electron accelerating layer (4) containing at least insulating fine particles (5) is provided between the electrode substrate (2) and the thin film electrode (3). The electrode substrate (2) has a convexoconcave surface. The thin film electrode (3) has openings (6) above convex parts of the electrode substrate (2).




mitt

Light emitting device package and light emitting module

A light emitting device package is disclosed. The light emitting device package includes a package body, at least one light emitting diode disposed on the package body, a molding layer surrounding the light emitting diode, and a phosphor layer provided on the package body, wherein the phosphor layer extends upward from surface of the package body.




mitt

Method of manufacturing an organic light emitting display

An organic light emitting display resulting in an improved aperture ratio and a manufacturing method thereof. The organic light emitting display that includes a plurality of pixels arranged between first and second substrates, each of said pixels includes a plurality of thin film transistors, an organic light emitting diode, and a capacitor. The thin film transistors and the organic light emitting diode are formed on the first substrate and the capacitor is formed on the second substrate, and the thin film transistors and the capacitor are electrically connected with each other upon the first substrate being bonded to the second substrate.




mitt

Solid state light emitting devices including adjustable melatonin suppression effects

Solid state light emitting devices include multiple LED components providing adjustable melatonin suppression effects. Multiple LED components may be operated simultaneously according to different operating modes according to which their combined output provides the same or similar chromaticity, but provides melatonin suppressing effects that differ by at least a predetermined threshold amount between the different operating modes. Switching between operating modes may be triggered by user input elements, timers/clocks, or sensors (e.g., photosensors). Chromaticity of combined output of multiple LED components may also be adjusted, together with providing adjustable melatonin suppression effects at each selected combined output chromaticity.




mitt

Organic light-emitting device

An organic light-emitting device including: a substrate; a display unit on the substrate; and an encapsulation layer covering the display unit, the encapsulation layer having an alternating stack structure of an organic layer and an inorganic layer, and the organic layer including a polymer polymerized from monomers of Formula 1 and Formula 2:




mitt

Carbazole derivative, light-emitting element material, light-emitting element, light-emitting device, electronic device, and lighting device

A carbazole derivative represented by the general formula (1) is provided. In the formula, Ar1 represents a substituted or unsubstituted aryl group having 6 to 10 carbon atoms which form a ring; α and β independently represent a substituted or unsubstituted arylene group having 6 to 12 carbon atoms which form a ring; R1 represents an alkyl group having 1 to 4 carbon atoms or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms which form a ring; and R11 to R17 and R21 to R28 independently represent hydrogen, an alkyl group having 1 to 4 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms which form a ring.




mitt

Thin film transistor and organic light emitting pixel having the same

A thin film transistor (TFT) that includes a control electrode, a semiconductor pattern, a first input electrode, a second input electrode, and an output electrode is disclosed. in one aspect, the semiconductor pattern includes a first input area, a second input area, a channel area, and an output area. The channel area is formed between the first input area and the output area and overlapped with the control electrode to be insulated from the control electrode. The second input area is formed between the first input area and the channel area and doped with a doping concentration different from a doping concentration of the first input areas. The second input electrode makes contact with the second input area and receives a control voltage to control a threshold voltage.




mitt

Organic light emitting display panel and organic light emitting display device having the same

An organic light emitting display panel includes a substrate, an organic light emitting diode disposed on a first side of the substrate, and a first light scattering layer disposed on a second side of the substrate opposite to the first side of the substrate, where the first light scattering layer includes a transparent thin layer including an indium, and a plurality of first micro-lenses is disposed on a plasma-treated side of the first light scattering layer.




mitt

Organic EL element having at least one organic light-emitting layers formed of a mixture containing a polymer material and method for manufacturing the organic EL element

To form stabilized organic light-emitting medium layers using the relief printing method and to provide an organic EL element excellent in terms of pattern-forming accuracy, film thickness uniformity and light-emitting characteristics, a substrate 2, first electrode layers 3 provided on the substrate 2, organic light-emitting medium layers 5 which are provided on the first electrode layers 3 and emit light when electrically connected, and second electrodes 6 which are provided on the organic light-emitting medium layers 5 and make the organic light-emitting medium layers 5 electrically connected when voltage is applied between the first electrodes 3 and the second electrodes are provided. In addition, at least one of the organic light-emitting medium layers 5 is formed of a mixture containing a polymer material having a weight-average molecular weight in a range of 1.5 million to 25 million and at least one low molecular material having a non-repetitive structure. Also, the mixing ratio between the polymer material and the low molecular material is set in a range of 0.05:1 to 0.5:1 in terms of weight ratio.




mitt

Semiconductor light emitting device

According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, a light emitting layer, a second semiconductor layer, a p-side electrode, a plurality of n-side electrodes, a first insulating film, a p-side interconnect unit, and an n-side interconnect unit. The p-side interconnect unit is provided on the first insulating film to connect to the p-side electrode through a first via piercing the first insulating film. The n-side interconnect unit is provided on the first insulating film to commonly connect to the plurality of n-side electrodes through a second via piercing the first insulating film. The plurality of n-side regions is separated from each other without being linked at the second surface. The p-side region is provided around each of the n-side regions at the second surface.




mitt

Display panel, organic light emitting display device having the same, and method of manufacturing a display panel

A method of manufacturing a display panel of an organic light emitting display device includes determining a plurality of pixel groups, the pixel groups corresponding to groups of pixels of the display panel, calculating aperture ratios for the pixels, respective aperture ratios being calculated by pixel group based on respective distances between a power unit and the pixel groups, and forming the pixels of the display panel to have the respective aperture ratios according to the corresponding pixel groups.




mitt

Double-side light emitting display panel

A double-side light emitting display panel includes a substrate, a plurality of top emission pixel structures and a plurality of bottom emission pixel structures. The top emission pixel structures are disposed on the substrate, and the bottom emission pixel structures are disposed on the substrate. The top emission pixel structures and the bottom emission pixel structures are arranged alternatively on the substrate.




mitt

Self-light emitting display unit and electronic device

A self-light emitting display unit capable of improving manufacturing yield is provided. Sizes of color pixel circuits corresponding to pixels for R, G, and B are respectively set unevenly within a pixel circuit according to a magnitude ratio of drive currents which allow color self-light emitting elements in the pixel to emit with a same light emission luminance. Thereby, the pattern densities of color pixel circuits respectively corresponding to the pixels for R, G, and B become even to each other, and the pattern defect rate as the whole pixel circuit is decreased.




mitt

Light-emitting element, light-emitting device, and electronic device including first and second light-emitting units

The light-emitting element of the present invention includes a light-emitting layer and a layer for controlling movement of carriers between a pair of electrodes. The layer for controlling movement of carriers includes a first organic compound having a carrier transporting property and a second organic compound for reducing the carrier transporting property of the first organic compound, and the second organic compound is dispersed in the first organic compound. The layer for controlling movement of carriers is provided in such a manner, whereby change in carrier balance with time can be suppressed. Therefore, a light-emitting element having a long lifetime can be obtained.




mitt

Light-emitting device package

A light-emitting device package is provided including: a package substrate and a light-emitting device mounted on the package substrate. The package substrate includes first and second conductive regions each having a portion overlapping the light-emitting device. An electrode separator extends across the package substrate while penetrating the package substrate between the first and second conductive regions to electrically separate the first and second conductive regions from each other. A stress release portion surrounds at least a portion of each of the first and second conductive regions at an edge part of the package substrate. The stress release portion has different widths on both sides of the electrode separator interposed therebetween.




mitt

Volumetric light emitting device

A volumetric light emitting device includes a substrate, a semiconductor light emitting diode disposed on the substrate and a reflector ring extending axially from the substrate. The reflector ring defines a first volume bounded by the substrate, an inner wall of the reflector ring, and a terminal plane at a distal end of the reflector ring. An encapsulant fills the first volume and encapsulates the semiconductor light emitting diode. A volumetric light conversion element surrounds the reflector ring and the first volume wherein the volumetric light conversion element is adapted to down-convert light emitted from the semiconductor light emitting diode at a first wavelength and emit the down-converted light at a second wavelength. A second volume of encapsulant or scattering material extends axially between the terminal plane and the volumetric light conversion element.




mitt

Light-emitting element, light-emitting device, electronic device, and lighting device comprising a metal complex having a metal-oxygen bond and an aromatic ligand

A light-emitting element which emits light with high luminance and can be driven at low voltage. The light-emitting element includes n (n is a natural number of 2 or more) EL layers between an anode and a cathode, and includes a first layer, a second layer, and a third layer between an m-th (m is a natural number, 1≦m≦n−1) EL layer from the anode and an (m+1)th EL layer. The first layer functions as a charge-generation region, has hole-transport properties, and contains an acceptor substance. The third layer has electron-transport properties and contains an alkali metal or the like. The second layer formed of a metal complex having a metal-oxygen bond and an aromatic ligand is provided between the first and third layers, whereby an injection barrier at the time of injecting electrons generated in the first layer into the m-th EL layer through the third layer can be lowered.




mitt

Organic light emitting device

An organic light emitting device including a plurality of organic layers between a first electrode and an emitting layer, wherein the organic layer includes an electron blocking layer. In one embodiment, a first organic layer, an electron blocking layer, a second organic layer and an emitting layer are formed on the first electrode. The electron blocking layer has a Lowest Unoccupied Molecular Orbital (LUMO) level which is lower than that of the first organic layer. Thus, the electron blocking layer traps excess electrons injected from the emitting layer, thereby improving lifetime characteristics of the OLED.




mitt

ADAPTER FOR TRANSMITTING SIGNALS

Examples of adapters for transmitting signals are disclosed. In one example implementation according to aspects of the present disclosure, an adapter may include a first connector communicatively couplable to PCIe port of a computing system via a first plurality of pins and a second connecter communicatively couplable to an electronic device via a second plurality of pins. The first plurality of pins is communicatively coupled to the second plurality of pins. Additionally, signals of a first type are transmittable between the computing system and the electronic device via a first subset of the first and the second pluralities of pins and signals of a second type are transmittable between the computing system and the electronic device via a second subset of the first and the second pluralities of pins. The second subset of the first plurality of pins and the second plurality of pins conforms to the SFF 8639 standard.




mitt

Pressure transmitter with fill tube

A pressure transmitter has a pressure sensor, an isolator diaphragm, and a fill tube. Interior passages in the pressure sensor module body are filled with isolator fluid and provide fluid connections. The isolator fluid couples pressure from the first isolator diaphragm assembly to the pressure sensor. A first crimp portion of the fill tube radially narrows into a substantially solid circular cylindrical cross section to form a first primary seal that is resistant to high pressure cycling.




mitt

Systems and methods for intermittently colored yarn

Intermittently colored yarns having an intermittent and random dye spacing pattern, and systems and methods of making the same, are disclosed. Such intermittently colored yarns exhibit higher quality and lower manufacturing costs over the known intermittently colored yarns. The intermittent coloring takes place while the yarn is in caterpillar form. Carpets made from such intermittently colored yarns exhibit enhanced aesthetics over carpets made from known intermittently colored yarns. Alternatively, a stain resist, colorless base dye, or bleaching agent can be applied in the same intermittent and random spacing pattern to the intermittently colored yarns prior to subsequent dyeing. This creates a mirror image like color effect to the resulting yarn.