ng

Compact manifolds of dimension $ngeq 12$ with positive isotropic curvature. (arXiv:1909.12265v4 [math.DG] UPDATED)

We prove the following result: Let $(M,g_0)$ be a compact manifold of dimension $ngeq 12$ with positive isotropic curvature. Then $M$ is diffeomorphic to a spherical space form, or a compact quotient manifold of $mathbb{S}^{n-1} imes mathbb{R}$ by diffeomorphisms, or a connected sum of a finite number of such manifolds. This extends a recent work of Brendle, and implies a conjecture of Schoen in dimensions $ngeq 12$. The proof uses Ricci flow with surgery on compact orbifolds with isolated singularities.




ng

Monochromatic Equilateral Triangles in the Unit Distance Graph. (arXiv:1909.09856v2 [math.CO] UPDATED)

Let $chi_{Delta}(mathbb{R}^{n})$ denote the minimum number of colors needed to color $mathbb{R}^{n}$ so that there will not be a monochromatic equilateral triangle with side length $1$. Using the slice rank method, we reprove a result of Frankl and Rodl, and show that $chi_{Delta}left(mathbb{R}^{n} ight)$ grows exponentially with $n$. This technique substantially improves upon the best known quantitative lower bounds for $chi_{Delta}left(mathbb{R}^{n} ight)$, and we obtain [ chi_{Delta}left(mathbb{R}^{n} ight)>(1.01446+o(1))^{n}. ]




ng

Multitype branching process with nonhomogeneous Poisson and generalized Polya immigration. (arXiv:1909.03684v2 [math.PR] UPDATED)

In a multitype branching process, it is assumed that immigrants arrive according to a nonhomogeneous Poisson or a generalized Polya process (both processes are formulated as a nonhomogeneous birth process with an appropriate choice of transition intensities). We show that the renormalized numbers of objects of the various types alive at time $t$ for supercritical, critical, and subcritical cases jointly converge in distribution under those two different arrival processes. Furthermore, some transient moment analysis when there are only two types of particles is provided. AMS 2000 subject classifications: Primary 60J80, 60J85; secondary 60K10, 60K25, 90B15.




ng

Decentralized and Parallelized Primal and Dual Accelerated Methods for Stochastic Convex Programming Problems. (arXiv:1904.09015v10 [math.OC] UPDATED)

We introduce primal and dual stochastic gradient oracle methods for decentralized convex optimization problems. Both for primal and dual oracles the proposed methods are optimal in terms of the number of communication steps. However, for all classes of the objective, the optimality in terms of the number of oracle calls per node in the class of methods with optimal number of communication steps takes place only up to a logarithmic factor and the notion of smoothness. By using mini-batching technique we show that all proposed methods with stochastic oracle can be additionally parallelized at each node.




ng

Diophantine Equations Involving the Euler Totient Function. (arXiv:1902.01638v4 [math.NT] UPDATED)

We deal with various Diophantine equations involving the Euler totient function and various sequences of numbers, including factorials, powers, and Fibonacci sequences.




ng

Exotic Springer fibers for orbits corresponding to one-row bipartitions. (arXiv:1810.03731v2 [math.RT] UPDATED)

We study the geometry and topology of exotic Springer fibers for orbits corresponding to one-row bipartitions from an explicit, combinatorial point of view. This includes a detailed analysis of the structure of the irreducible components and their intersections as well as the construction of an explicit affine paving. Moreover, we compute the ring structure of cohomology by constructing a CW-complex homotopy equivalent to the exotic Springer fiber. This homotopy equivalent space admits an action of the type C Weyl group inducing Kato's original exotic Springer representation on cohomology. Our results are described in terms of the diagrammatics of the one-boundary Temperley-Lieb algebra (also known as the blob algebra). This provides a first step in generalizing the geometric versions of Khovanov's arc algebra to the exotic setting.




ng

A Forward-Backward Splitting Method for Monotone Inclusions Without Cocoercivity. (arXiv:1808.04162v4 [math.OC] UPDATED)

In this work, we propose a simple modification of the forward-backward splitting method for finding a zero in the sum of two monotone operators. Our method converges under the same assumptions as Tseng's forward-backward-forward method, namely, it does not require cocoercivity of the single-valued operator. Moreover, each iteration only requires one forward evaluation rather than two as is the case for Tseng's method. Variants of the method incorporating a linesearch, relaxation and inertia, or a structured three operator inclusion are also discussed.




ng

The 2d-directed spanning forest converges to the Brownian web. (arXiv:1805.09399v3 [math.PR] UPDATED)

The two-dimensional directed spanning forest (DSF) introduced by Baccelli and Bordenave is a planar directed forest whose vertex set is given by a homogeneous Poisson point process $mathcal{N}$ on $mathbb{R}^2$. If the DSF has direction $-e_y$, the ancestor $h(u)$ of a vertex $u in mathcal{N}$ is the nearest Poisson point (in the $L_2$ distance) having strictly larger $y$-coordinate. This construction induces complex geometrical dependencies. In this paper we show that the collection of DSF paths, properly scaled, converges in distribution to the Brownian web (BW). This verifies a conjecture made by Baccelli and Bordenave in 2007.




ng

Expansion of Iterated Stratonovich Stochastic Integrals of Arbitrary Multiplicity Based on Generalized Iterated Fourier Series Converging Pointwise. (arXiv:1801.00784v9 [math.PR] UPDATED)

The article is devoted to the expansion of iterated Stratonovich stochastic integrals of arbitrary multiplicity $k$ $(kinmathbb{N})$ based on the generalized iterated Fourier series. The case of Fourier-Legendre series as well as the case of trigonotemric Fourier series are considered in details. The obtained expansion provides a possibility to represent the iterated Stratonovich stochastic integral in the form of iterated series of products of standard Gaussian random variables. Convergence in the mean of degree $2n$ $(nin mathbb{N})$ of the expansion is proved. Some modifications of the mentioned expansion were derived for the case $k=2$. One of them is based of multiple trigonomentric Fourier series converging almost everywhere in the square $[t, T]^2$. The results of the article can be applied to the numerical solution of Ito stochastic differential equations.




ng

Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces. (arXiv:1706.09490v2 [math.DG] UPDATED)

We use Ricci flow to obtain a local bi-Holder correspondence between Ricci limit spaces in three dimensions and smooth manifolds. This is more than a complete resolution of the three-dimensional case of the conjecture of Anderson-Cheeger-Colding-Tian, describing how Ricci limit spaces in three dimensions must be homeomorphic to manifolds, and we obtain this in the most general, locally non-collapsed case. The proofs build on results and ideas from recent papers of Hochard and the current authors.




ng

A Hamilton-Jacobi Formulation for Time-Optimal Paths of Rectangular Nonholonomic Vehicles. (arXiv:2005.03623v1 [math.OC])

We address the problem of optimal path planning for a simple nonholonomic vehicle in the presence of obstacles. Most current approaches are either split hierarchically into global path planning and local collision avoidance, or neglect some of the ambient geometry by assuming the car is a point mass. We present a Hamilton-Jacobi formulation of the problem that resolves time-optimal paths and considers the geometry of the vehicle.




ng

Positive Geometries and Differential Forms with Non-Logarithmic Singularities I. (arXiv:2005.03612v1 [hep-th])

Positive geometries encode the physics of scattering amplitudes in flat space-time and the wavefunction of the universe in cosmology for a large class of models. Their unique canonical forms, providing such quantum mechanical observables, are characterised by having only logarithmic singularities along all the boundaries of the positive geometry. However, physical observables have logarithmic singularities just for a subset of theories. Thus, it becomes crucial to understand whether a similar paradigm can underlie their structure in more general cases. In this paper we start a systematic investigation of a geometric-combinatorial characterisation of differential forms with non-logarithmic singularities, focusing on projective polytopes and related meromorphic forms with multiple poles. We introduce the notions of covariant forms and covariant pairings. Covariant forms have poles only along the boundaries of the given polytope; moreover, their leading Laurent coefficients along any of the boundaries are still covariant forms on the specific boundary. Whereas meromorphic forms in covariant pairing with a polytope are associated to a specific (signed) triangulation, in which poles on spurious boundaries do not cancel completely, but their order is lowered. These meromorphic forms can be fully characterised if the polytope they are associated to is viewed as the restriction of a higher dimensional one onto a hyperplane. The canonical form of the latter can be mapped into a covariant form or a form in covariant pairing via a covariant restriction. We show how the geometry of the higher dimensional polytope determines the structure of these differential forms. Finally, we discuss how these notions are related to Jeffrey-Kirwan residues and cosmological polytopes.




ng

Groups up to congruence relation and from categorical groups to c-crossed modules. (arXiv:2005.03601v1 [math.CT])

We introduce a notion of c-group, which is a group up to congruence relation and consider the corresponding category. Extensions, actions and crossed modules (c-crossed modules) are defined in this category and the semi-direct product is constructed. We prove that each categorical group gives rise to c-groups and to a c-crossed module, which is a connected, special and strict c-crossed module in the sense defined by us. The results obtained here will be applied in the proof of an equivalence of the categories of categorical groups and connected, special and strict c-crossed modules.




ng

Gluing curves of genus 1 and 2 along their 2-torsion. (arXiv:2005.03587v1 [math.AG])

Let $X$ (resp. $Y$) be a curve of genus 1 (resp. 2) over a base field $k$ whose characteristic does not equal 2. We give criteria for the existence of a curve $Z$ over $k$ whose Jacobian is up to twist (2,2,2)-isogenous to the products of the Jacobians of $X$ and $Y$. Moreover, we give algorithms to construct the curve $Z$ once equations for $X$ and $Y$ are given. The first of these involves the use of hyperplane sections of the Kummer variety of $Y$ whose desingularization is isomorphic to $X$, whereas the second is based on interpolation methods involving numerical results over $mathbb{C}$ that are proved to be correct over general fields a posteriori. As an application, we find a twist of a Jacobian over $mathbb{Q}$ that admits a rational 70-torsion point.




ng

Phase Transitions for one-dimensional Lorenz-like expanding Maps. (arXiv:2005.03558v1 [math.DS])

Given an one-dimensional Lorenz-like expanding map we prove that the conditionlinebreak $P_{top}(phi,partial mathcal{P},ell)<P_{top}(phi,ell)$ (see, subsection 2.4 for definition), introduced by Buzzi and Sarig in [1] is satisfied for all continuous potentials $phi:[0,1]longrightarrow mathbb{R}$. We apply this to prove that quasi-H"older-continuous potentials (see, subsection 2.2 for definition) have at most one equilibrium measure and we construct a family of continuous but not H"older and neither weak H"older continuous potentials for which we observe phase transitions. Indeed, this class includes all H"older and weak-H"older continuous potentials and form an open and [2].




ng

Toric Sasaki-Einstein metrics with conical singularities. (arXiv:2005.03502v1 [math.DG])

We show that any toric K"ahler cone with smooth compact cross-section admits a family of Calabi-Yau cone metrics with conical singularities along its toric divisors. The family is parametrized by the Reeb cone and the angles are given explicitly in terms of the Reeb vector field. The result is optimal, in the sense that any toric Calabi-Yau cone metric with conical singularities along the toric divisor (and smooth elsewhere) belongs to this family. We also provide examples and interpret our results in terms of Sasaki-Einstein metrics.




ng

On completion of unimodular rows over polynomial extension of finitely generated rings over $mathbb{Z}$. (arXiv:2005.03485v1 [math.AC])

In this article, we prove that if $R$ is a finitely generated ring over $mathbb{Z}$ of dimension $d, dgeq2, frac{1}{d!}in R$, then any unimodular row over $R[X]$ of length $d+1$ can be mapped to a factorial row by elementary transformations.




ng

Solving equations in dense Sidon sets. (arXiv:2005.03484v1 [math.CO])

We offer an alternative proof of a result of Conlon, Fox, Sudakov and Zhao on solving translation-invariant linear equations in dense Sidon sets. Our proof generalises to equations in more than five variables and yields effective bounds.




ng

Removable singularities for Lipschitz caloric functions in time varying domains. (arXiv:2005.03397v1 [math.CA])

In this paper we study removable singularities for regular $(1,1/2)$-Lipschitz solutions of the heat equation in time varying domains. We introduce an associated Lipschitz caloric capacity and we study its metric and geometric properties and the connection with the $L^2$ boundedness of the singular integral whose kernel is given by the gradient of the fundamental solution of the heat equation.




ng

Semiglobal non-oscillatory big bang singular spacetimes for the Einstein-scalar field system. (arXiv:2005.03395v1 [math-ph])

We construct semiglobal singular spacetimes for the Einstein equations coupled to a massless scalar field. Consistent with the heuristic analysis of Belinskii, Khalatnikov, Lifshitz or BKL for this system, there are no oscillations due to the scalar field. (This is much simpler than the oscillatory BKL heuristics for the Einstein vacuum equations.) Prior results are due to Andersson and Rendall in the real analytic case, and Rodnianski and Speck in the smooth near-spatially-flat-FLRW case. Similar to Andersson and Rendall we give asymptotic data at the singularity, which we refer to as final data, but our construction is not limited to real analytic solutions. This paper is a test application of tools (a graded Lie algebra formulation of the Einstein equations and a filtration) intended for the more subtle vacuum case. We use homological algebra tools to construct a formal series solution, then symmetric hyperbolic energy estimates to construct a true solution well-approximated by truncations of the formal one. We conjecture that the image of the map from final data to initial data is an open set of anisotropic initial data.




ng

Clear elements and clear rings. (arXiv:2005.03387v1 [math.AC])

An element in a ring $R$ is called clear if it is the sum of unit-regular element and unit. An associative ring is clear if every its element is clear. In this paper we defined clear rings and extended many results to wider class. Finally, we proved that a commutative B'ezout domain is an elementary divisor ring if and only if every full matrix order 2 over it is nontrivial clear.




ng

A regularity criterion of the 3D MHD equations involving one velocity and one current density component in Lorentz. (arXiv:2005.03377v1 [math.AP])

In this paper, we study the regularity criterion of weak solutions to the three-dimensional (3D) MHD equations. It is proved that the solution $(u,b)$ becomes regular provided that one velocity and one current density component of the solution satisfy% egin{equation} u_{3}in L^{frac{30alpha }{7alpha -45}}left( 0,T;L^{alpha ,infty }left( mathbb{R}^{3} ight) ight) ext{ with }frac{45}{7}% leq alpha leq infty , label{eq01} end{equation}% and egin{equation} j_{3}in L^{frac{2eta }{2eta -3}}left( 0,T;L^{eta ,infty }left( mathbb{R}^{3} ight) ight) ext{ with }frac{3}{2}leq eta leq infty , label{eq02} end{equation}% which generalize some known results.




ng

Converging outer approximations to global attractors using semidefinite programming. (arXiv:2005.03346v1 [math.OC])

This paper develops a method for obtaining guaranteed outer approximations for global attractors of continuous and discrete time nonlinear dynamical systems. The method is based on a hierarchy of semidefinite programming problems of increasing size with guaranteed convergence to the global attractor. The approach taken follows an established line of reasoning, where we first characterize the global attractor via an infinite dimensional linear programming problem (LP) in the space of Borel measures. The dual to this LP is in the space of continuous functions and its feasible solutions provide guaranteed outer approximations to the global attractor. For systems with polynomial dynamics, a hierarchy of finite-dimensional sum-of-squares tightenings of the dual LP provides a sequence of outer approximations to the global attractor with guaranteed convergence in the sense of volume discrepancy tending to zero. The method is very simple to use and based purely on convex optimization. Numerical examples with the code available online demonstrate the method.




ng

Evaluating the phase dynamics of coupled oscillators via time-variant topological features. (arXiv:2005.03343v1 [physics.data-an])

The characterization of phase dynamics in coupled oscillators offers insights into fundamental phenomena in complex systems. To describe the collective dynamics in the oscillatory system, order parameters are often used but are insufficient for identifying more specific behaviors. We therefore propose a topological approach that constructs quantitative features describing the phase evolution of oscillators. Here, the phase data are mapped into a high-dimensional space at each time point, and topological features describing the shape of the data are subsequently extracted from the mapped points. We extend these features to time-variant topological features by considering the evolution time, which serves as an additional dimension in the topological-feature space. The resulting time-variant features provide crucial insights into the time evolution of phase dynamics. We combine these features with the machine learning kernel method to characterize the multicluster synchronized dynamics at a very early stage of the evolution. Furthermore, we demonstrate the usefulness of our method for qualitatively explaining chimera states, which are states of stably coexisting coherent and incoherent groups in systems of identical phase oscillators. The experimental results show that our method is generally better than those using order parameters, especially if only data on the early-stage dynamics are available.




ng

Strong maximum principle and boundary estimates for nonhomogeneous elliptic equations. (arXiv:2005.03338v1 [math.AP])

We give a simple proof of the strong maximum principle for viscosity subsolutions of fully nonlinear elliptic PDEs on the form $$ F(x,u,Du,D^2u) = 0 $$ under suitable structure conditions on the equation allowing for non-Lipschitz growth in the gradient terms. In case of smooth boundaries, we also prove the Hopf lemma, the boundary Harnack inequality and that positive viscosity solutions vanishing on a portion of the boundary are comparable with the distance function near the boundary. Our results apply to weak solutions of an eigenvalue problem for the variable exponent $p$-Laplacian.




ng

On the Incomparability of Systems of Sets of Lengths. (arXiv:2005.03316v1 [math.AC])

Let $H$ be a Krull monoid with finite class group $G$ such that every class contains a prime divisor. We consider the system $mathcal L (H)$ of all sets of lengths of $H$ and study when $mathcal L (H)$ contains or is contained in a system $mathcal L (H')$ of a Krull monoid $H'$ with finite class group $G'$, prime divisors in all classes and Davenport constant $mathsf D (G')=mathsf D (G)$. Among others, we show that if $G$ is either cyclic of order $m ge 7$ or an elementary $2$-group of rank $m-1 ge 6$, and $G'$ is any group which is non-isomorphic to $G$ but with Davenport constant $mathsf D (G')=mathsf D (G)$, then the systems $mathcal L (H)$ and $mathcal L (H')$ are incomparable.




ng

Lorentz estimates for quasi-linear elliptic double obstacle problems involving a Schr"odinger term. (arXiv:2005.03281v1 [math.AP])

Our goal in this article is to study the global Lorentz estimates for gradient of weak solutions to $p$-Laplace double obstacle problems involving the Schr"odinger term: $-Delta_p u + mathbb{V}|u|^{p-2}u$ with bound constraints $psi_1 le u le psi_2$ in non-smooth domains. This problem has its own interest in mathematics, engineering, physics and other branches of science. Our approach makes a novel connection between the study of Calder'on-Zygmund theory for nonlinear Schr"odinger type equations and variational inequalities for double obstacle problems.




ng

A Note on Cores and Quasi Relative Interiors in Partially Finite Convex Programming. (arXiv:2005.03265v1 [math.FA])

The problem of minimizing an entropy functional subject to linear constraints is a useful example of partially finite convex programming. In the 1990s, Borwein and Lewis provided broad and easy-to-verify conditions that guarantee strong duality for such problems. Their approach is to construct a function in the quasi-relative interior of the relevant infinite-dimensional set, which assures the existence of a point in the core of the relevant finite-dimensional set. We revisit this problem, and provide an alternative proof by directly appealing to the definition of the core, rather than by relying on any properties of the quasi-relative interior. Our approach admits a minor relaxation of the linear independence requirements in Borwein and Lewis' framework, which allows us to work with certain piecewise-defined moment functions precluded by their conditions. We provide such a computed example that illustrates how this relaxation may be used to tame observed Gibbs phenomenon when the underlying data is discontinuous. The relaxation illustrates the understanding we may gain by tackling partially-finite problems from both the finite-dimensional and infinite-dimensional sides. The comparison of these two approaches is informative, as both proofs are constructive.




ng

The Congruence Subgroup Problem for finitely generated Nilpotent Groups. (arXiv:2005.03263v1 [math.GR])

The congruence subgroup problem for a finitely generated group $Gamma$ and $Gleq Aut(Gamma)$ asks whether the map $hat{G} o Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(G,Gamma ight)$? Here $hat{X}$ denotes the profinite completion of $X$. In the case $G=Aut(Gamma)$ we denote $Cleft(Gamma ight)=Cleft(Aut(Gamma),Gamma ight)$.

Let $Gamma$ be a finitely generated group, $ar{Gamma}=Gamma/[Gamma,Gamma]$, and $Gamma^{*}=ar{Gamma}/tor(ar{Gamma})congmathbb{Z}^{(d)}$. Denote $Aut^{*}(Gamma)= extrm{Im}(Aut(Gamma) o Aut(Gamma^{*}))leq GL_{d}(mathbb{Z})$. In this paper we show that when $Gamma$ is nilpotent, there is a canonical isomorphism $Cleft(Gamma ight)simeq C(Aut^{*}(Gamma),Gamma^{*})$. In other words, $Cleft(Gamma ight)$ is completely determined by the solution to the classical congruence subgroup problem for the arithmetic group $Aut^{*}(Gamma)$.

In particular, in the case where $Gamma=Psi_{n,c}$ is a finitely generated free nilpotent group of class $c$ on $n$ elements, we get that $C(Psi_{n,c})=C(mathbb{Z}^{(n)})={e}$ whenever $ngeq3$, and $C(Psi_{2,c})=C(mathbb{Z}^{(2)})=hat{F}_{omega}$ = the free profinite group on countable number of generators.




ng

On the Gorenstein property of the Ehrhart ring of the stable set polytope of an h-perfect graph. (arXiv:2005.03259v1 [math.CO])

In this paper, we give a criterion of the Gorenstein property of the Ehrhart ring of the stable set polytope of an h-perfect graph: the Ehrhart ring of the stable set polytope of an h-perfect graph $G$ is Gorenstein if and only if (1) sizes of maximal cliques are constant (say $n$) and (2) (a) $n=1$, (b) $n=2$ and there is no odd cycle without chord and length at least 7 or (c) $ngeq 3$ and there is no odd cycle without chord and length at least 5.




ng

Cohomological dimension of ideals defining Veronese subrings. (arXiv:2005.03250v1 [math.AC])

Given a standard graded polynomial ring over a commutative Noetherian ring $A$, we prove that the cohomological dimension and the height of the ideals defining any of its Veronese subrings are equal. This result is due to Ogus when $A$ is a field of characteristic zero, and follows from a result of Peskine and Szpiro when $A$ is a field of positive characteristic; our result applies, for example, when $A$ is the ring of integers.




ng

Approximate Performance Measures for a Two-Stage Reneging Queue. (arXiv:2005.03239v1 [math.PR])

We study a two-stage reneging queue with Poisson arrivals, exponential services, and two levels of exponential reneging behaviors, extending the popular Erlang A model that assumes a constant reneging rate. We derive approximate analytical formulas representing performance measures for the two-stage queue following the Markov chain decomposition approach. Our formulas not only give accurate results spanning the heavy-traffic to the light-traffic regimes, but also provide insight into capacity decisions.




ng

Packing of spanning mixed arborescences. (arXiv:2005.03218v1 [math.CO])

In this paper, we characterize a mixed graph $F$ which contains $k$ edge and arc disjoint spanning mixed arborescences $F_{1}, ldots, F_{k}$, such that for each $v in V(F)$, the cardinality of ${i in [k]: v ext{ is the root of } F_{i}}$ lies in some prescribed interval. This generalizes both Nash-Williams and Tutte's theorem on spanning tree packing for undirected graphs and the previous characterization on digraphs which was given by Cai [in: Arc-disjoint arborescences of digraphs, J. Graph Theory 7(2) (1983), 235-240] and Frank [in: On disjoint trees and arborescences, Algebraic Methods in Graph Theory, Colloquia Mathematica Soc. J. Bolyai, Vol. 25 (North-Holland, Amsterdam) (1978), 159-169].




ng

Some local Maximum principles along Ricci Flow. (arXiv:2005.03189v1 [math.DG])

In this note, we establish a local maximum principle along Ricci flow under scaling invariant curvature condition. This unifies the known preservation of nonnegativity results along Ricci flow with unbounded curvature. By combining with the Dirichlet heat kernel estimates, we also give a more direct proof of Hochard's localized version of a maximum principle given by R. Bamler, E. Cabezas-Rivas, and B. Wilking on the lower bound of curvature conditions.




ng

New constructions of strongly regular Cayley graphs on abelian groups. (arXiv:2005.03183v1 [math.CO])

In this paper, we give new constructions of strongly regular Cayley graphs on abelian groups as generalizations of a series of known constructions: the construction of covering extended building sets in finite fields by Xia (1992), the product construction of Menon-Hadamard difference sets by Turyn (1984), and the construction of Paley type partial difference sets by Polhill (2010). Then, we obtain new large families of strongly regular Cayley graphs of Latin square type or negative Latin square type.




ng

On solving quadratic congruences. (arXiv:2005.03129v1 [math.NT])

The paper proposes a polynomial formula for solution quadratic congruences in $mathbb{Z}_p$. This formula gives the correct answer for quadratic residue and zeroes for quadratic nonresidue. The general form of the formula for $p=3 ; m{mod},4$, $p=5 ; m{mod},8$ and for $p=9 ; m{mod},16$ are suggested.




ng

Categorifying Hecke algebras at prime roots of unity, part I. (arXiv:2005.03128v1 [math.RT])

We equip the type A diagrammatic Hecke category with a special derivation, so that after specialization to characteristic p it becomes a p-dg category. We prove that the defining relations of the Hecke algebra are satisfied in the p-dg Grothendieck group. We conjecture that the $p$-dg Grothendieck group is isomorphic to the Iwahori-Hecke algebra, equipping it with a basis which may differ from both the Kazhdan-Lusztig basis and the p-canonical basis. More precise conjectures will be found in the sequel.

Here are some other results contained in this paper. We provide an incomplete proof of the classification of all degree +2 derivations on the diagrammatic Hecke category, and a complete proof of the classification of those derivations for which the defining relations of the Hecke algebra are satisfied in the p-dg Grothendieck group. In particular, our special derivation is unique up to duality and equivalence. We prove that no such derivation exists in simply-laced types outside of finite and affine type A. We also examine a particular Bott-Samelson bimodule in type A_7, which is indecomposable in characteristic 2 but decomposable in all other characteristics. We prove that this Bott-Samelson bimodule admits no nontrivial fantastic filtrations in any characteristic, which is the analogue in the p-dg setting of being indecomposable.




ng

A note on Tonelli Lagrangian systems on $mathbb{T}^2$ with positive topological entropy on high energy level. (arXiv:2005.03108v1 [math.DS])

In this work we study the dynamical behavior Tonelli Lagrangian systems defined on the tangent bundle of the torus $mathbb{T}^2=mathbb{R}^2 / mathbb{Z}^2$. We prove that the Lagrangian flow restricted to a high energy level $ E_L^{-1}(c)$ (i.e $ c> c_0(L)$) has positive topological entropy if the flow satisfies the Kupka-Smale propriety in $ E_L^{-1}(c)$ (i.e, all closed orbit with energy $c$ are hyperbolic or elliptic and all heteroclinic intersections are transverse on $E_L^{-1}(c)$). The proof requires the use of well-known results in Aubry-Mather's Theory.




ng

Homotopy invariance of the space of metrics with positive scalar curvature on manifolds with singularities. (arXiv:2005.03073v1 [math.AT])

In this paper we study manifolds $M_{Sigma}$ with fibered singularities, more specifically, a relevant space $Riem^{psc}(X_{Sigma})$ of Riemannian metrics with positive scalar curvature. Our main goal is to prove that the space $Riem^{psc}(X_{Sigma})$ is homotopy invariant under certain surgeries on $M_{Sigma}$.




ng

A Note on Approximations of Fixed Points for Nonexpansive Mappings in Norm-attainable Classes. (arXiv:2005.03069v1 [math.FA])

Let $H$ be an infinite dimensional, reflexive, separable Hilbert space and $NA(H)$ the class of all norm-attainble operators on $H.$ In this note, we study an implicit scheme for a canonical representation of nonexpansive contractions in norm-attainable classes.




ng

Multi-Resolution POMDP Planning for Multi-Object Search in 3D. (arXiv:2005.02878v2 [cs.RO] UPDATED)

Robots operating in household environments must find objects on shelves, under tables, and in cupboards. Previous work often formulate the object search problem as a POMDP (Partially Observable Markov Decision Process), yet constrain the search space in 2D. We propose a new approach that enables the robot to efficiently search for objects in 3D, taking occlusions into account. We model the problem as an object-oriented POMDP, where the robot receives a volumetric observation from a viewing frustum and must produce a policy to efficiently search for objects. To address the challenge of large state and observation spaces, we first propose a per-voxel observation model which drastically reduces the observation size necessary for planning. Then, we present a novel octree-based belief representation which captures beliefs at different resolutions and supports efficient exact belief update. Finally, we design an online multi-resolution planning algorithm that leverages the resolution layers in the octree structure as levels of abstractions to the original POMDP problem. Our evaluation in a simulated 3D domain shows that, as the problem scales, our approach significantly outperforms baselines without resolution hierarchy by 25%-35% in cumulative reward. We demonstrate the practicality of our approach on a torso-actuated mobile robot searching for objects in areas of a cluttered lab environment where objects appear on surfaces at different heights.




ng

Modeling nanoconfinement effects using active learning. (arXiv:2005.02587v2 [physics.app-ph] UPDATED)

Predicting the spatial configuration of gas molecules in nanopores of shale formations is crucial for fluid flow forecasting and hydrocarbon reserves estimation. The key challenge in these tight formations is that the majority of the pore sizes are less than 50 nm. At this scale, the fluid properties are affected by nanoconfinement effects due to the increased fluid-solid interactions. For instance, gas adsorption to the pore walls could account for up to 85% of the total hydrocarbon volume in a tight reservoir. Although there are analytical solutions that describe this phenomenon for simple geometries, they are not suitable for describing realistic pores, where surface roughness and geometric anisotropy play important roles. To describe these, molecular dynamics (MD) simulations are used since they consider fluid-solid and fluid-fluid interactions at the molecular level. However, MD simulations are computationally expensive, and are not able to simulate scales larger than a few connected nanopores. We present a method for building and training physics-based deep learning surrogate models to carry out fast and accurate predictions of molecular configurations of gas inside nanopores. Since training deep learning models requires extensive databases that are computationally expensive to create, we employ active learning (AL). AL reduces the overhead of creating comprehensive sets of high-fidelity data by determining where the model uncertainty is greatest, and running simulations on the fly to minimize it. The proposed workflow enables nanoconfinement effects to be rigorously considered at the mesoscale where complex connected sets of nanopores control key applications such as hydrocarbon recovery and CO2 sequestration.




ng

Multi-task pre-training of deep neural networks for digital pathology. (arXiv:2005.02561v2 [eess.IV] UPDATED)

In this work, we investigate multi-task learning as a way of pre-training models for classification tasks in digital pathology. It is motivated by the fact that many small and medium-size datasets have been released by the community over the years whereas there is no large scale dataset similar to ImageNet in the domain. We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images. Then, we propose a simple architecture and training scheme for creating a transferable model and a robust evaluation and selection protocol in order to evaluate our method. Depending on the target task, we show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance. Fine-tuning improves performance over feature extraction and is able to recover the lack of specificity of ImageNet features, as both pre-training sources yield comparable performance.




ng

Temporal Event Segmentation using Attention-based Perceptual Prediction Model for Continual Learning. (arXiv:2005.02463v2 [cs.CV] UPDATED)

Temporal event segmentation of a long video into coherent events requires a high level understanding of activities' temporal features. The event segmentation problem has been tackled by researchers in an offline training scheme, either by providing full, or weak, supervision through manually annotated labels or by self-supervised epoch based training. In this work, we present a continual learning perceptual prediction framework (influenced by cognitive psychology) capable of temporal event segmentation through understanding of the underlying representation of objects within individual frames. Our framework also outputs attention maps which effectively localize and track events-causing objects in each frame. The model is tested on a wildlife monitoring dataset in a continual training manner resulting in $80\%$ recall rate at $20\%$ false positive rate for frame level segmentation. Activity level testing has yielded $80\%$ activity recall rate for one false activity detection every 50 minutes.




ng

Differential Machine Learning. (arXiv:2005.02347v2 [q-fin.CP] UPDATED)

Differential machine learning (ML) extends supervised learning, with models trained on examples of not only inputs and labels, but also differentials of labels to inputs.

Differential ML is applicable in all situations where high quality first order derivatives wrt training inputs are available. In the context of financial Derivatives risk management, pathwise differentials are efficiently computed with automatic adjoint differentiation (AAD). Differential ML, combined with AAD, provides extremely effective pricing and risk approximations. We can produce fast pricing analytics in models too complex for closed form solutions, extract the risk factors of complex transactions and trading books, and effectively compute risk management metrics like reports across a large number of scenarios, backtesting and simulation of hedge strategies, or capital regulations.

The article focuses on differential deep learning (DL), arguably the strongest application. Standard DL trains neural networks (NN) on punctual examples, whereas differential DL teaches them the shape of the target function, resulting in vastly improved performance, illustrated with a number of numerical examples, both idealized and real world. In the online appendices, we apply differential learning to other ML models, like classic regression or principal component analysis (PCA), with equally remarkable results.

This paper is meant to be read in conjunction with its companion GitHub repo https://github.com/differential-machine-learning, where we posted a TensorFlow implementation, tested on Google Colab, along with examples from the article and additional ones. We also posted appendices covering many practical implementation details not covered in the paper, mathematical proofs, application to ML models besides neural networks and extensions necessary for a reliable implementation in production.




ng

The Sensitivity of Language Models and Humans to Winograd Schema Perturbations. (arXiv:2005.01348v2 [cs.CL] UPDATED)

Large-scale pretrained language models are the major driving force behind recent improvements in performance on the Winograd Schema Challenge, a widely employed test of common sense reasoning ability. We show, however, with a new diagnostic dataset, that these models are sensitive to linguistic perturbations of the Winograd examples that minimally affect human understanding. Our results highlight interesting differences between humans and language models: language models are more sensitive to number or gender alternations and synonym replacements than humans, and humans are more stable and consistent in their predictions, maintain a much higher absolute performance, and perform better on non-associative instances than associative ones. Overall, humans are correct more often than out-of-the-box models, and the models are sometimes right for the wrong reasons. Finally, we show that fine-tuning on a large, task-specific dataset can offer a solution to these issues.




ng

Prediction of Event Related Potential Speller Performance Using Resting-State EEG. (arXiv:2005.01325v3 [cs.HC] UPDATED)

Event-related potential (ERP) speller can be utilized in device control and communication for locked-in or severely injured patients. However, problems such as inter-subject performance instability and ERP-illiteracy are still unresolved. Therefore, it is necessary to predict classification performance before performing an ERP speller in order to use it efficiently. In this study, we investigated the correlations with ERP speller performance using a resting-state before an ERP speller. In specific, we used spectral power and functional connectivity according to four brain regions and five frequency bands. As a result, the delta power in the frontal region and functional connectivity in the delta, alpha, gamma bands are significantly correlated with the ERP speller performance. Also, we predicted the ERP speller performance using EEG features in the resting-state. These findings may contribute to investigating the ERP-illiteracy and considering the appropriate alternatives for each user.




ng

On-board Deep-learning-based Unmanned Aerial Vehicle Fault Cause Detection and Identification. (arXiv:2005.00336v2 [eess.SP] UPDATED)

With the increase in use of Unmanned Aerial Vehicles (UAVs)/drones, it is important to detect and identify causes of failure in real time for proper recovery from a potential crash-like scenario or post incident forensics analysis. The cause of crash could be either a fault in the sensor/actuator system, a physical damage/attack, or a cyber attack on the drone's software. In this paper, we propose novel architectures based on deep Convolutional and Long Short-Term Memory Neural Networks (CNNs and LSTMs) to detect (via Autoencoder) and classify drone mis-operations based on sensor data. The proposed architectures are able to learn high-level features automatically from the raw sensor data and learn the spatial and temporal dynamics in the sensor data. We validate the proposed deep-learning architectures via simulations and experiments on a real drone. Empirical results show that our solution is able to detect with over 90% accuracy and classify various types of drone mis-operations (with about 99% accuracy (simulation data) and upto 88% accuracy (experimental data)).




ng

Recurrent Neural Network Language Models Always Learn English-Like Relative Clause Attachment. (arXiv:2005.00165v3 [cs.CL] UPDATED)

A standard approach to evaluating language models analyzes how models assign probabilities to valid versus invalid syntactic constructions (i.e. is a grammatical sentence more probable than an ungrammatical sentence). Our work uses ambiguous relative clause attachment to extend such evaluations to cases of multiple simultaneous valid interpretations, where stark grammaticality differences are absent. We compare model performance in English and Spanish to show that non-linguistic biases in RNN LMs advantageously overlap with syntactic structure in English but not Spanish. Thus, English models may appear to acquire human-like syntactic preferences, while models trained on Spanish fail to acquire comparable human-like preferences. We conclude by relating these results to broader concerns about the relationship between comprehension (i.e. typical language model use cases) and production (which generates the training data for language models), suggesting that necessary linguistic biases are not present in the training signal at all.




ng

Teaching Cameras to Feel: Estimating Tactile Physical Properties of Surfaces From Images. (arXiv:2004.14487v2 [cs.CV] UPDATED)

The connection between visual input and tactile sensing is critical for object manipulation tasks such as grasping and pushing. In this work, we introduce the challenging task of estimating a set of tactile physical properties from visual information. We aim to build a model that learns the complex mapping between visual information and tactile physical properties. We construct a first of its kind image-tactile dataset with over 400 multiview image sequences and the corresponding tactile properties. A total of fifteen tactile physical properties across categories including friction, compliance, adhesion, texture, and thermal conductance are measured and then estimated by our models. We develop a cross-modal framework comprised of an adversarial objective and a novel visuo-tactile joint classification loss. Additionally, we develop a neural architecture search framework capable of selecting optimal combinations of viewing angles for estimating a given physical property.