form

Du diagnostic et du traitement des maladies du coeur et en particulier de leur formes anomales / par Germain Sée ; leçons recueillies par F. Labadie-Lagrave.

Paris : V. Adrien Delahaye, 1879.




form

Du molluscum : recherches critiques sur les formes, la nature et le traitement des affections cutanées de ce nom, suivies de la description détaillée d'une nouvelle variété / par Maximilien Maurice Jacobovics.

Londres : Paris, 1840.




form

Du passage de quelques médicaments dans les urines : modifications qu'ils y apportent, transformations qu'ils subissent dans l'organisme / par Léopold Bruneau.

Paris : V.A. Delahaye, 1880.




form

Eine neue Methode zur Bestimmung der Schädelform von Menschen und Säugethieren / von Ch. Aeby.

Braunschweig : G. Westermann, 1862.




form

Epidemic cerebro-spinal meningitis and its relation to other forms of meningitis : a report to the State Board of Health of Massachusetts / Report made by W.T. Councilman, F.B. Mallory, and J.H. Wright.

Boston : Wright & Potter Printing Co, 1898.




form

Educational Opportunities and Performance in Florida

This Quality Counts 2019 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in Florida

This Quality Counts 2020 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in Idaho

This Quality Counts 2019 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in Idaho

This Quality Counts 2020 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in Iowa

This Quality Counts 2019 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in Iowa

This Quality Counts 2020 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in Minnesota

This Quality Counts 2019 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in Minnesota

This Quality Counts 2020 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in West Virginia

This Quality Counts 2020 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in Mississippi

This Quality Counts 2019 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in Mississippi

This Quality Counts 2020 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in Vermont

This Quality Counts 2019 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in Vermont

This Quality Counts 2020 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in Alaska

This Quality Counts 2019 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in Alaska

This Quality Counts 2020 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Allegorical tomb of Archduchess Maria Christina of Austria, in the form of a pyramid into which sculpted mourners carry her urn. Engraving by P. Bonato, 1805, after D. Del Frate after A. Canova.

([Rome] : Raffaelle Jacomini impresse)




form

Paul brings herbs to refresh Virginie after she has performed a long walk barefoot. Stipple engraving by J.P. Simon after C.P. Landon.

A Paris (rue St Denis No. 214) : chez Bance aîné, [1810?]




form

A Moroccan horseman setting off with a rifle to perform at an equestrian display (fantasia, Tbourida). Etching and drypoint by L.A. Lecouteux after H. Regnault, 1870.




form

Former New Mexico Schools Chief Hanna Skandera on Coronavirus

"The current situation may force our hand to adjust our measures of evaluation, and, personally, I think it is beyond time that we push our thinking to include new ideas," says Hanna Skandera.




form

Educational Opportunities and Performance in Michigan

This Quality Counts 2019 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in Michigan

This Quality Counts 2020 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in Illinois

This Quality Counts 2019 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in Illinois

This Quality Counts 2020 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Reports: NHL may skip rest of regular season, jump to 24-team playoff format

One of many possible plans if the league can resume play.




form

Former Flyer Mark Howe knows NHL is trying to stay 'open-minded' about 2019-20 season

Former Flyer and current Red Wings scout Mark Howe said the "open-minded" NHL is determined to finish the 2019-20 season. By Joe Fordyce




form

Educational Opportunities and Performance in Missouri

This Quality Counts 2019 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Educational Opportunities and Performance in Missouri

This Quality Counts 2020 Highlights Report captures all the data you need to assess your state's performance on key educational outcomes.




form

Management information systems in the drug field / edited by George M. Beschner, Neil H. Sampson, National Institute on Drug Abuse ; and Christopher D'Amanda, Coordinating Office for Drug and Alcohol Abuse, City of Philadelphia.

Rockville, Maryland : National Institute on Drug Abuse, 1979.




form

Evaluating drug information programs / Panel on the Impact of Information on Drug Use and Misuse, National Research Council ; prepared for National Institute of Mental Health.

Springfield, Virginia : National Technical Information Service, 1973.




form

Survey of drug information needs and problems associated with communications directed to practicing physicians : part III : remedial ad survey / [Arthur Ruskin, M.D.]

Springfield, Virginia : National Technical Information Service, 1974.




form

Effect of marihuana and alcohol on visual search performance / H.A. Moskowitz, K. Ziedman, S. Sharma.

Washington : Dept. of Transportation, National Highway Traffic Safety Administration, 1976.




form

Making the connection : health care needs of drug using prostitutes : information pack / by Jean Faugier and Steve Cranfield.

[Manchester] : School of Nursing Studies, University of Manchester, [1995?]




form

Drug abuse information source book / [Foreword by Edward S. Brady].

[West Point, Pa.] : [Merck Sharp & Dohme], [1977?]




form

Former OSU guard Sydney Wiese talks unwavering support while recovering from coronavirus

Pac-12 Networks' Mike Yam interviews former Oregon State guard Sydney Wiese to hear how she's recovering from contracting COVID-19. Wiese recounts her recent travel and how she's been lifted up by steadfast support from friends, family and fellow WNBA players. See more from Wiese during "Pac-12 Playlist" on Monday, April 6 at 7 p.m. PT/ 8 p.m. MT on Pac-12 Network.




form

Former Alabama prep star Davenport transfers to Georgia

Maori Davenport, who drew national attention over an eligibility dispute during her senior year of high school, is transferring to Georgia after playing sparingly in her lone season at Rutgers. Lady Bulldogs coach Joni Taylor announced Davenport's decision Wednesday. The 6-foot-4 center from Troy, Alabama will have to sit out a season under NCAA transfer rules before she is eligible to join Georgia in 2021-22.




form

Charli Turner Thorne drops by 'Pac-12 Playlist' to surprise former player Dr. Michelle Tom

Pac-12 Networks' Ashley Adamson speaks with former Arizona State women's basketball player Michelle Tom, who is now a doctor treating COVID-19 patients in Winslow, Arizona.




form

Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes

François Bachoc, José Betancourt, Reinhard Furrer, Thierry Klein.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1962--2008.

Abstract:
The asymptotic analysis of covariance parameter estimation of Gaussian processes has been subject to intensive investigation. However, this asymptotic analysis is very scarce for non-Gaussian processes. In this paper, we study a class of non-Gaussian processes obtained by regular non-linear transformations of Gaussian processes. We provide the increasing-domain asymptotic properties of the (Gaussian) maximum likelihood and cross validation estimators of the covariance parameters of a non-Gaussian process of this class. We show that these estimators are consistent and asymptotically normal, although they are defined as if the process was Gaussian. They do not need to model or estimate the non-linear transformation. Our results can thus be interpreted as a robustness of (Gaussian) maximum likelihood and cross validation towards non-Gaussianity. Our proofs rely on two technical results that are of independent interest for the increasing-domain asymptotic literature of spatial processes. First, we show that, under mild assumptions, coefficients of inverses of large covariance matrices decay at an inverse polynomial rate as a function of the corresponding observation location distances. Second, we provide a general central limit theorem for quadratic forms obtained from transformed Gaussian processes. Finally, our asymptotic results are illustrated by numerical simulations.




form

Sparse equisigned PCA: Algorithms and performance bounds in the noisy rank-1 setting

Arvind Prasadan, Raj Rao Nadakuditi, Debashis Paul.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 345--385.

Abstract:
Singular value decomposition (SVD) based principal component analysis (PCA) breaks down in the high-dimensional and limited sample size regime below a certain critical eigen-SNR that depends on the dimensionality of the system and the number of samples. Below this critical eigen-SNR, the estimates returned by the SVD are asymptotically uncorrelated with the latent principal components. We consider a setting where the left singular vector of the underlying rank one signal matrix is assumed to be sparse and the right singular vector is assumed to be equisigned, that is, having either only nonnegative or only nonpositive entries. We consider six different algorithms for estimating the sparse principal component based on different statistical criteria and prove that by exploiting sparsity, we recover consistent estimates in the low eigen-SNR regime where the SVD fails. Our analysis reveals conditions under which a coordinate selection scheme based on a sum-type decision statistic outperforms schemes that utilize the $ell _{1}$ and $ell _{2}$ norm-based statistics. We derive lower bounds on the size of detectable coordinates of the principal left singular vector and utilize these lower bounds to derive lower bounds on the worst-case risk. Finally, we verify our findings with numerical simulations and a illustrate the performance with a video data where the interest is in identifying objects.




form

Bayesian variance estimation in the Gaussian sequence model with partial information on the means

Gianluca Finocchio, Johannes Schmidt-Hieber.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 239--271.

Abstract:
Consider the Gaussian sequence model under the additional assumption that a fixed fraction of the means is known. We study the problem of variance estimation from a frequentist Bayesian perspective. The maximum likelihood estimator (MLE) for $sigma^{2}$ is biased and inconsistent. This raises the question whether the posterior is able to correct the MLE in this case. By developing a new proving strategy that uses refined properties of the posterior distribution, we find that the marginal posterior is inconsistent for any i.i.d. prior on the mean parameters. In particular, no assumption on the decay of the prior needs to be imposed. Surprisingly, we also find that consistency can be retained for a hierarchical prior based on Gaussian mixtures. In this case we also establish a limiting shape result and determine the limit distribution. In contrast to the classical Bernstein-von Mises theorem, the limit is non-Gaussian. We show that the Bayesian analysis leads to new statistical estimators outperforming the correctly calibrated MLE in a numerical simulation study.




form

Simultaneous transformation and rounding (STAR) models for integer-valued data

Daniel R. Kowal, Antonio Canale.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1744--1772.

Abstract:
We propose a simple yet powerful framework for modeling integer-valued data, such as counts, scores, and rounded data. The data-generating process is defined by Simultaneously Transforming and Rounding (STAR) a continuous-valued process, which produces a flexible family of integer-valued distributions capable of modeling zero-inflation, bounded or censored data, and over- or underdispersion. The transformation is modeled as unknown for greater distributional flexibility, while the rounding operation ensures a coherent integer-valued data-generating process. An efficient MCMC algorithm is developed for posterior inference and provides a mechanism for adaptation of successful Bayesian models and algorithms for continuous data to the integer-valued data setting. Using the STAR framework, we design a new Bayesian Additive Regression Tree model for integer-valued data, which demonstrates impressive predictive distribution accuracy for both synthetic data and a large healthcare utilization dataset. For interpretable regression-based inference, we develop a STAR additive model, which offers greater flexibility and scalability than existing integer-valued models. The STAR additive model is applied to study the recent decline in Amazon river dolphins.




form

A fast MCMC algorithm for the uniform sampling of binary matrices with fixed margins

Guanyang Wang.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1690--1706.

Abstract:
Uniform sampling of binary matrix with fixed margins is an important and difficult problem in statistics, computer science, ecology and so on. The well-known swap algorithm would be inefficient when the size of the matrix becomes large or when the matrix is too sparse/dense. Here we propose the Rectangle Loop algorithm, a Markov chain Monte Carlo algorithm to sample binary matrices with fixed margins uniformly. Theoretically the Rectangle Loop algorithm is better than the swap algorithm in Peskun’s order. Empirically studies also demonstrates the Rectangle Loop algorithm is remarkablely more efficient than the swap algorithm.




form

Reduction problems and deformation approaches to nonstationary covariance functions over spheres

Emilio Porcu, Rachid Senoussi, Enner Mendoza, Moreno Bevilacqua.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 890--916.

Abstract:
The paper considers reduction problems and deformation approaches for nonstationary covariance functions on the $(d-1)$-dimensional spheres, $mathbb{S}^{d-1}$, embedded in the $d$-dimensional Euclidean space. Given a covariance function $C$ on $mathbb{S}^{d-1}$, we chase a pair $(R,Psi)$, for a function $R:[-1,+1] o mathbb{R}$ and a smooth bijection $Psi$, such that $C$ can be reduced to a geodesically isotropic one: $C(mathbf{x},mathbf{y})=R(langle Psi (mathbf{x}),Psi (mathbf{y}) angle )$, with $langle cdot ,cdot angle $ denoting the dot product. The problem finds motivation in recent statistical literature devoted to the analysis of global phenomena, defined typically over the sphere of $mathbb{R}^{3}$. The application domains considered in the manuscript makes the problem mathematically challenging. We show the uniqueness of the representation in the reduction problem. Then, under some regularity assumptions, we provide an inversion formula to recover the bijection $Psi$, when it exists, for a given $C$. We also give sufficient conditions for reducibility.




form

Estimation of a semiparametric transformation model: A novel approach based on least squares minimization

Benjamin Colling, Ingrid Van Keilegom.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 769--800.

Abstract:
Consider the following semiparametric transformation model $Lambda_{ heta }(Y)=m(X)+varepsilon $, where $X$ is a $d$-dimensional covariate, $Y$ is a univariate response variable and $varepsilon $ is an error term with zero mean and independent of $X$. We assume that $m$ is an unknown regression function and that ${Lambda _{ heta }: heta inTheta }$ is a parametric family of strictly increasing functions. Our goal is to develop two new estimators of the transformation parameter $ heta $. The main idea of these two estimators is to minimize, with respect to $ heta $, the $L_{2}$-distance between the transformation $Lambda _{ heta }$ and one of its fully nonparametric estimators. We consider in particular the nonparametric estimator based on the least-absolute deviation loss constructed in Colling and Van Keilegom (2019). We establish the consistency and the asymptotic normality of the two proposed estimators of $ heta $. We also carry out a simulation study to illustrate and compare the performance of our new parametric estimators to that of the profile likelihood estimator constructed in Linton et al. (2008).




form

Weighted Message Passing and Minimum Energy Flow for Heterogeneous Stochastic Block Models with Side Information

We study the misclassification error for community detection in general heterogeneous stochastic block models (SBM) with noisy or partial label information. We establish a connection between the misclassification rate and the notion of minimum energy on the local neighborhood of the SBM. We develop an optimally weighted message passing algorithm to reconstruct labels for SBM based on the minimum energy flow and the eigenvectors of a certain Markov transition matrix. The general SBM considered in this paper allows for unequal-size communities, degree heterogeneity, and different connection probabilities among blocks. We focus on how to optimally weigh the message passing to improve misclassification.




form

Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions

We consider the standard model of distributed optimization of a sum of functions $F(mathbf z) = sum_{i=1}^n f_i(mathbf z)$, where node $i$ in a network holds the function $f_i(mathbf z)$. We allow for a harsh network model characterized by asynchronous updates, message delays, unpredictable message losses, and directed communication among nodes. In this setting, we analyze a modification of the Gradient-Push method for distributed optimization, assuming that (i) node $i$ is capable of generating gradients of its function $f_i(mathbf z)$ corrupted by zero-mean bounded-support additive noise at each step, (ii) $F(mathbf z)$ is strongly convex, and (iii) each $f_i(mathbf z)$ has Lipschitz gradients. We show that our proposed method asymptotically performs as well as the best bounds on centralized gradient descent that takes steps in the direction of the sum of the noisy gradients of all the functions $f_1(mathbf z), ldots, f_n(mathbf z)$ at each step.