ntr

Brake control device

A brake control device for a brake system. The control device can perform both an interlocking brake control and an antilock brake control. The brake system includes a front-wheel hydraulic circuit, a front-wheel-side braking part; a rear-wheel hydraulic circuit, a rear-wheel-side braking part; and an electrically-operated pump which pressurizes the brake fluid. The brake control device includes a usual voltage mode where the interlocking brake control or the anti-lock brake control is performed when the supply voltage is a first voltage or more, and a low voltage mode where at least one of the interlocking brake control and the anti-lock brake control is performed in a limited manner when the supplied voltage is a second, lower voltage. An operation mode is changed from the usual voltage mode to the low voltage mode when it is determined that the supply voltage becomes lower than the first voltage.




ntr

Control method of electronic parking brake system

Disclosed is a control method of an electronic parking brake system, which variably controls the duty of voltage applied to a motor upon release of the electronic parking brake system. The control method includes controlling voltage applied to a motor to a first duty ratio upon release of the electronic parking brake system, controlling the voltage applied to the motor to a second duty ratio greater than the first duty ratio if locking of the motor occurs and the motor is not operated, and controlling the voltage applied to the motor to the first duty ratio if locking of the motor is released and the motor begins to operate, after the control of voltage to the second duty ratio.




ntr

Pressure control valve arrangement having pressure medium guiding surface integrally formed onto a projection of the cover

A pressure control valve arrangement for controlling a fluid pressure in an ABS brake system of a vehicle so that, while there is a tendency of individual wheels of the vehicle to lock, the brake pressure in at least one associated brake cylinder can be adaptively adjusted, including: a housing; and at least one diaphragm valve is accommodated in the housing, the diaphragm valve having a diaphragm as the valve body, which diaphragm can be acted upon by introducing pressure medium into a control chamber that is covered on the outside of the housing by a cover so that the control chamber is formed between the diaphragm and the cover, wherein at least one pressure medium channel carrying pressure medium is formed in the housing in the region of the cover, wherein at least one cover has at least one projection projecting into the pressure medium channel in the housing, a pressure medium guiding surface for directing the flow of the pressure medium carried in the pressure medium channel being formed on the projection.




ntr

Hydraulic block for a slip-controlled vehicle brake system

A flat, box-shaped hydraulic block for the mechanical fastening and hydraulic interconnection of solenoid valves, pump elements, etc. of a slip-controlled vehicle brake system connects connections of installation spaces for the pump elements to connectors for a brake master cylinder and connections of receptacles for pressure build-up valves which run past one another via flat chambers on longitudinal sides of the hydraulic block and short blind bores. As a result, the receptacles of the pressure build-up valves are connected to the connectors for the brake master cylinder. The chambers damp pressure pulses of the pump elements of a piston pump.




ntr

Vehicle yaw stability control method and apparatus

A vehicle yaw stability control method and a vehicle yaw stability control apparatus are provided. The yaw rate {dot over (ψ)} of the vehicle is measured. A first reference yaw rate {dot over (ψ)}ref is set. A difference yaw rate Δ{dot over (ψ)} is set. Stabilizing braking intervention is triggered when a value of the difference yaw rate Δ{dot over (ψ)} exceeds limits defined by difference yaw rate threshold values Δ{dot over (ψ)}min, Δ{dot over (ψ)}max. Information regarding the shape of the road ahead of the vehicle is acquired. The reliability of the driver steering input δ is evaluated upon stabilizing braking intervention being triggered. In case the driver steering input δ is deemed unreliable a replacement reference yaw rate {dot over (ψ)}refroad is set based on the acquired road shape and a replacement difference yaw rate Δ{dot over (ψ)}road is set whereupon stabilizing braking intervention is performed based on the replacement difference yaw rate Δ{dot over (ψ)}road.




ntr

Method and device for controlling an electric motor

A method and a device for controlling and/or regulating an electric motor. Such electric motors are used for example in motor vehicles in the form of pump motors. In general, the electric motor is supplied with electrical energy from a battery and/or using a generator. The controlling and regulation take place using a high-frequency pulse width modulation (PWM). When the electric motor is started, the PWM is used to continuously increase the motor current required for the operation of the electric motor, e.g. beginning from 0.




ntr

Method and apparatus for load dependent speed control of a motor

A variable speed power converter controls the speed of a load in a material handling system as a function of the torque required to move the load. While the power converter is running, the torque being produced in the motor is determined. The power converter then determines the maximum rotational speed of the motor as a function of the torque currently being produced and of the torque-speed curve of the motor. The power converter then commands the motor to rotate at this maximum rotational speed. The power converter periodically monitors the torque being produced and adjusts the maximum rotational speed of the motor throughout the run.




ntr

Motor control device

A motor control device comprises: an acceleration upper limit estimating unit; a target acceleration setting unit; a motor control unit; and a deficit calculating unit, wherein the target acceleration setting unit corrects the target acceleration based on the acceleration profile by an amount corresponding to the acceleration deficit within a range in which the target acceleration does not exceed the acceleration upper limit on the basis of the acceleration deficit calculated by the deficit calculating unit to set the target acceleration at each time.




ntr

Motor control apparatus and image forming apparatus

A motor control apparatus for controlling a DC motor includes a first detection unit configured to detect an angular velocity of the DC motor, a driven member configured to be driven by the DC motor, a control unit configured to perform, during start-up of the DC motor, feed forward control for changing a control value used for controlling drive of the DC motor from a first control value corresponding to an angular velocity smaller than a target angular velocity to a second control value corresponding to the target angular velocity, and to change the feed forward control to feedback control for controlling the control value based on a detection result by the first detection unit to keep the DC motor at the target angular velocity, and a second detection unit configured to detect whether the driven member has been replaced.




ntr

Electric motor, and device for generating a signal for controlling the same

An electric motor, having a stator (465), a rotor (470), and an apparatus for evaluating a signal provided for controlling said motor (110), comprises a receiving unit (430, 440) for receiving a control signal (PWM_mod), which is a pulse width modulated signal (PWM) onto which a data signal (DIR, DATA) is modulated. An evaluation unit (440) is provided for evaluating the modulated control signal (PWM_mod). The unit is configured to extract, from the modulated control signal (PWM_mod), data provided for operation of the motor (110). The control apparatus includes a signal generator (450) configured to generate, on the basis of the extracted or ascertained data provided for operation of the motor (110), at least one control signal for the motor (110), such as a commanded direction of rotation. Piggybacking other control data onto the PWM power level signal reduces hardware investment, by permitting omission of a signal lead which would otherwise be required in the motor structure.




ntr

Low cost blender control permitting low actuation force switches

A control circuit for a blender provides low-cost power conditioning through the use of a high resistance which provides temporary power for operation of low-voltage logic circuitry and low-voltage switches for a time sufficient to switch the motor on, and a lower resistance which provides sufficient power for maintaining the motor on state indefinitely as instructed by the low-voltage logic circuitry. Low average power dissipation is provided by powering the low-voltage logic circuitry and low-voltage switches using the high resistance in a standby mode and switching in the lower resistance only when the motor is activated.




ntr

Method and device for controlling an electric motor

A method and device for controlling an electric motor, in particular a machine tool drive, wherein during a sensorless open-loop control mode of operation of the electric motor the speed and the torque are determined from the motor current and the motor voltage, and the moment of inertia of the electric motor torque are determined from the determined motor current and the determined motor voltage, wherefrom then a control torque is determined, which is then associated with an open-loop torque control value and supplied as the torque setpoint value to a control element for setting the motor current and/or the motor voltage in the open-loop mode of operation. As long as the speed is below a minimum speed, the control element receives as input variable a control or pilot control torque generated from a predefined moment of inertia for a sensorless closed-loop control mode of operation of the electric motor.




ntr

Power supply system, vehicle including the same, control method for power supply system, and computer-readable recording medium recording program for causing computer to execute the control method

A lower limit value setting unit (52) variably sets a lower limit value (Vth) of a target voltage (Vh*) in a range of a voltage that is higher than the maximum value of voltages (Vb1, Vb2) of power storage devices and is not affected by a dead time provided for converters, based on temperatures (Tb1, Tb2) and required electric powers (Pb1*, Pb2*). A maximum value selection unit (53) sets the maximum value among the voltages (Vb1, Vb2) of the power storage devices and required voltages (Vm1*, Vm2*) of motor-generators, as the target voltage. A target voltage limiting unit (54) compares the target voltage with the lower limit value (Vth), and if the target voltage is lower than the lower limit value (Vth), the target voltage limiting unit (54) sets the lower limit value (Vth) as the target voltage (Vh*).




ntr

Methods and apparatus for electric motor controller protection

A method for monitoring input power to an electronically commutated motor (ECM) is described. The method includes determining, with a processing device, an average input current to the motor, the average input current based on a voltage drop across a shunt resistor in series with the motor, measuring an average input voltage applied to the motor utilizing the processing device, multiplying the average input current by the average voltage to determine an approximate input power, and communicating the average input power to an external interface.




ntr

Electric motor assembly, method for operating an electric motor, and motor control device

The invention relates to an electric motor assembly, particularly for driving a fan for an engine cooling system and/or an air conditioner of a motor vehicle, comprising an electric motor and a motor control device for activating the electric motor. According to the invention, the motor control device can be adjusted according to a characteristic curve (1,2,3,4) of the electric motor and/or of the fan, and thereby the power and/or rotational speed of the electric motor can be adjusted.




ntr

Detection control system

A detection control system includes a sensing unit, a control module and a driving module for a motor including a rotor and a stator. The sensing unit electrically connects the motor to sense a first and a second magnetic pole of the rotor cross a chip disposed between the rotor and the stator; a third magnetic pole is alternated to a forth magnetic pole of the stator to generate a sensing signal. A detection unit of the control module detects a kickback voltage value generated by a first current value changing to a second current value to calculate a minimum current value to generate a detecting signal. A timing unit receives the sensing and the detecting signal to calculate a first and a second period of time, and a discharging time. The driving module drives the rotor by receiving a control signal the control unit generates by controlling an alternating time.




ntr

Control circuit and method for manipulating a power tool

The present application discloses a control circuit for a power tool and a method for manipulating the power tool. The control circuit has a detection circuit for battery packs, a calculating control circuit, a battery capacity indicating circuit for indicating the calculation result of the battery capacity, and a current measure and calculating circuit for measuring the current flowing through motors. The calculation result further includes the voltages consumed by the battery pack internally and the discharge loop. The method for manipulating the power tool includes pressing the switch to electrically connect the motor and the battery pack, measuring the parameters of the battery pack and allowing the motor to operate or not according the measured parameters. Further, after the motor is in operation, the battery capacity is calculated and the results are displayed.




ntr

Integrated circuit for controlling an electric motor

An integrated circuit for controlling an electric motor, which has a primary component with a coil and a permanently magnetic secondary component cooperatively connected via an air gap to the primary component, has a semiconductor substrate in which are integrated a microcontroller and/or a pre-amplifier for controlling the coil of the electric motor. For detecting the position of the permanently magnetic secondary component, at least two magnetic field sensors with their measurement axes aligned crosswise relative to each other are integrated in the semiconductor substrate.




ntr

Control circuit for fan

A control circuit for a fan includes a fan controller, a switch controller, and a frequency detector. When a pulse-width modulation (PWM) signal output pin of the fan controller outputs PWM signals, the frequency detector outputs a high level signal, connecting an input pin of the switch controller to an output pin of the switch controller. The fan receives the PWM signal. When the PWM signal output pin of the fan controller does not output PWM signals, the frequency detector outputs a low level signal, such that the output pin of the switch controller does not output any signal. In this state, the fan receives a high level signal through a resistor and a power supply, enabling the fan to continue operating.




ntr

Method and apparatus to convert a minimally controlled pulse stream into a proper mechatronic trajectory

An apparatus or method which accepts a burst of pulses at a frequency which may not be tightly controlled and converts this into a trajectory command that is a suitable motion profile for an incremental motor control application. The output of the invention can be a pulse stream that can be fed to an existing incremental pulse input motor drive or the invention can be embedded into a motor drive where its output is a numerical sequence that defines a physically realizable trajectory to be fed to the control circuits and software within the motor drive.




ntr

Motor current detection apparatus, motor controller, and electric power tool

A motor current detection apparatus in the present invention includes: a current detection unit, a first filter, and a second filter. The detection unit detects a conduction current flowing from a battery to a brushless motor and outputs a conduction current signal corresponding to the detected conduction current. The first filter extracts a first current signal which is included in the conduction current signal outputted from the detection unit and is a signal component in a frequency band equal to or lower than a predetermined first cutoff frequency. The second filter extracts a second current signal which is included in the conduction current signal outputted from the detection unit and is a signal component in a predetermined frequency band within a frequency band equal to or lower than a predetermined second cutoff frequency higher than the first cutoff frequency and having the second cutoff frequency as a maximum value.




ntr

Heat dissipation system, rotation speed control circuit and method thereof

A rotation speed control circuit is disclosed. The rotation speed control circuit includes a temperature-controlled voltage duty generator, a pulse-width signal duty generator, a multiplier and a rotation speed signal generator. The temperature-controlled voltage duty generator converts temperature-controlled voltage to digital temperature-controlled voltage and executes linear interpolation operation according to a first setting data so as to output temperature-controlled voltage duty signal. The pulse-width signal duty generator coverts pulse-width input signal to a digital pulse-width input signal and executes linear interpolation operation according to a second setting data so as to output a pulse-width duty signal. The temperature-controlled voltage duty signal and the pulse-width duty signal are executed for multiplication by the multiplier so as to output mixing-duty signal. The rotation speed generator receives the mixing-duty signal and a third setting data, and executes a minimum output duty operation so as to output a pulse-width output signal.




ntr

Controller and method for improving motor driving efficiency

The present invention discloses a controller and a method for improving motor driving efficiency. According to the present invention, multiple control parameters are inputted to the controller so that the controller can adjust timings of PWM driving signals for driving the motor to advance or delay the turned-ON or turned-OFF points, whereby the motor is driven efficiently.




ntr

Method and system for controlling motor

A method for controlling a motor is provided. The method comprises obtaining electrical signals of the motor with a signal unit, the electrical signals comprising a motor torque and an angular velocity, calculating a voltage phase angle of a voltage vector with a calculating component, wherein a command torque, the motor torque, the angular velocity and a voltage amplitude of the voltage vector are inputs of the calculating component, and wherein the voltage phase angle is a variable and the voltage amplitude is a constant. The method further comprises modulating the voltage phase angle and the voltage amplitude to a switching signal for controlling an inverter; converting a direct current voltage to the voltage vector according to the switching signal, and applying the voltage vector to the motor.




ntr

Method and system for locally controlling support of a flat object

A non-contact support platform system is provided for supporting a substantially flat object. The system includes a platform with a first plurality of pressure ports and a first plurality of vacuum ports for inducing a fluid cushion to support the object at a distance from the platform. The system further includes a second plurality of pressure ports located at a predetermined zone of the platform for increasing the distance of the object from the platform at the predetermined zone.




ntr

Wheel loader and method for controlling wheel loader

A traction force control section of a wheel loader, when the determination conditions are satisfied during traction force control, increases the maximum traction force. The determination conditions include that the wheel loader is performing an excavation operation, that the vehicle speed is less than or equal to a prescribed speed threshold value, that the amount of operation of the accelerator operating member is equal to or more than a prescribed accelerator threshold value, and that the amount of operation of the inching operating member is less than or equal to a prescribed inching operation threshold value.




ntr

Devices, systems and methods for reinforcing a traffic control assembly

Reinforcement devices and systems for holding a traffic control assembly in compression are provided. The traffic control assembly includes a traffic signal disconnect hanger and/or a traffic signal and a first span wire positioned above the traffic control assembly. In some embodiments, the reinforcement device includes an upper support device connected to the first span wire where the upper support device has a length that is greater than a width of the traffic control assembly and the upper support device is configured to spread the load of the traffic signal assembly to the first span wire. The reinforcement device includes a lower support device operably connected to the traffic signal, a first vertical support member, and a second vertical support member where the first and second vertical members are tensioned when the upper support device, the lower support device and the first and second vertical support members are connected together.




ntr

Method for controlling power usage of a reporting device

A system and method for controlling power usage of a reporting device associated with an asset is disclosed. According to one embodiment, a method determines whether the reporting device is in a sleep mode or an active mode and in response to determining the reporting device is in the sleep mode, the method maintains the sleep mode and in response to determining a state change associated with the reporting device, the method powers up the reporting device to the active mode.




ntr

Display device, display system, display control method for same, electronic device, program, computer-readable recording medium, and light guide element

An interface (303) between adjacent ones of light guide sections (310) is inclined with respect to an incident surface (301) and an emission surface (302) of the light guide element (300A) so that an incident surface (311) of at least a part of the light guide sections (310) overlaps a part of a display region (202) in a liquid crystal panel (200A) and an emission surface (312) of said at least a part of the light guide sections (310) overlaps at least a part of a frame region (203) above which an image on the display region (202) is to be displayed. Furthermore, a relation 5°




ntr

Automated pointing and control of high resolution cameras using video analytics

An automated method for cueing a high resolution video camera to a mobile object involves first detecting the presence of an object by a wide-area surveillance asset such as a radar and using the radar's positional information to cue the video camera iteratively, while updating the positional information each time. Then, a video analytics algorithm detects the object and generates more accurate positional and rate information on the object, which is then used to cue the video camera into a higher resolution setting for classifying/identifying the object. Once the object is identified, the positional and rate information is updated and the updated information is used to further cue the video camera into a higher resolution setting for recording a video clip of the moving object while the video camera is dynamically steered.




ntr

User programmable motor vehicle driving parameter control system

A user programmable motor vehicle driving parameter control system includes a motor vehicle including at least one active aerodynamic control element, and a user/vehicle interface member, and a controller including a memory having stored therein a user defined deployment schedule and a processor configured and disposed to selectively deploy the at least one aerodynamic control element based on the user defined deployment schedule.




ntr

Configurable light timer and method of receiving data to control the operation of a configurable light timer

A configurable light timer adapted to receive data to control the operation of the configurable light timer is disclosed. The configurable light timer comprises a control circuit; an input portion coupled to receive a portable memory device by way of a connector on the configurable light timer, wherein the portable memory device stores data to be used by the configurable light timer and is adapted to be removed after the data is downloaded; and a memory coupled to receive the data stored on the portable memory device; wherein control circuit accesses the data from the memory after the data is downloaded and the portable memory device is removed. A method of receiving data to control the operation of the configurable light timer is also disclosed.




ntr

Molecularly imprinted polymer for detecting the pentraxin, and method for preparing same

The present disclosure relates to a molecularly imprinted structure for detection of a pentraxin protein and a method for preparing the same by synthesizing a reactive group-pentraxin protein ligand complex specifically reacting with the pentraxin protein and being polymerizable with a crosslink agent to detect a pentraxin protein by using the complex. The present disclosure also provides a chip for detection of a C-reactive protein and a method for preparing the same, the chip including a molecularly imprinted layer having excellent sensitivity to a C-reactive protein and an improved binding force to a metal substrate by using click chemistry.




ntr

Apparatus and method for measuring concentrations of scale-forming ions

This invention relates to methods and apparatus for determination of ion concentrations, particularly in downhole water from hydrocarbon wells, aquifers etc. It is useful in a wide range of applications, including predicting the formation of scale and fingerprinting waters from different sources. More particularly, the invention relates to the use of ligands whose electronic configuration is altered by the binding of the scaling ions within a water sample. These alterations are detected electrochemically by applying varying potential to electrodes and measuring current flow as potential is varied, from which is derived the concentration of scaling ions in the fluid.




ntr

Device and method for controlling compression of tissue

A method and device for controlling the compression of tissue include clamping tissue between a first clamping member and a second clamping member by driving at least one of the clamping members with an electric motor toward a predetermined tissue gap between the clamping members and, during the clamping, monitoring a parameter of the electric motor indicative of a clamping force exerted to the tissue by the clamping members. The method and device include, during the clamping, controlling the electric motor, based on the monitored parameter, to limit the clamping force to a predetermined maximum limit.




ntr

Tool selection method for machine tool, control device, and numerically controlled lathe

A tool selection method, for a machine tool, comprising the steps of identifying the maximum tip distance (D2) of a currently selected tool (141), a next designated tool (142) and an intermediate tool (143) disposed therebetween; moving a tool rest (10) in the +(plus)X-axis direction after a machining by the currently selected tool (141) is completed until the tip of the currently selected tool (141) is spaced from a workpiece (W) along the X-axis by a distance provided by adding a clearance distance (E) to a difference between the maximum tip distance (D2) and the tip distance (D3) of the currently selected tool (141); moving the tool rest (10) in the +(plus)Y-axis direction until the tip of the next designated tool (142) is aligned with the rotation center axis (12a) of the workpiece (W) in the X-axis direction; and moving the tool rest (10) in the −(minus)X-axis direction.




ntr

Method and an apparatus for performing a program controlled process on a component

A drilling machine drills at a multiplicity of target locations on a component. Two robots, calibrated with calibration data, move the component in a 6-D coordinate system. A metrology system ascertains the position of the component relative to the drilling machine. The movement of the robots is effected by commands generated by off-line programming. The component is moved relative to the drilling machine to a target position, ready for drilling, by a closed-loop process in which the differences in position between the expected position (the target position) and the actual position (as viewed by the metrology system) are corrected.




ntr

Refrigerator, monitoring system having refrigerator and control method thereof

A refrigerator for monitoring the status of another space by means of a display device mounted to the refrigerator, a monitoring system having the refrigerator and a control method thereof. The refrigerator includes a body which is formed with a storage chamber, a door for opening and closing the storage chamber, and a display device which is mounted to a front side of the door, the display device having a receiving part for receiving a monitoring image signal from a predetermined outside signal supply source, an image signal processing part for processing the received monitoring image signal, a display part for displaying the monitoring image signal and a control part for controlling the image signal processing part so that the received monitoring image signal is displayed on the display part.




ntr

Tool selection method for machine tool, control device, and numerically controlled lathe

A tool selection method, for a machine tool, comprising the steps of identifying the maximum tip distance (D2) of a currently selected tool (141), a next designated tool (142) and an intermediate tool (143) disposed therebetween; moving a tool rest (10) in the +(plus)X-axis direction after a machining by the currently selected tool (141) is completed until the tip of the currently selected tool (141) is spaced from a workpiece (W) along the X-axis by a distance provided by adding a clearance distance (E) to a difference between the maximum tip distance (D2) and the tip distance (D3) of the currently selected tool (141); moving the tool rest (10) in the +(plus)Y-axis direction until the tip of the next designated tool (142) is aligned with the rotation center axis (12a) of the workpiece (W) in the X-axis direction; and moving the tool rest (10) in the −(minus)X-axis direction.




ntr

Method and an apparatus for performing a program controlled process on a component

A drilling machine drills at a multiplicity of target locations on a component. Two robots, calibrated with calibration data, move the component in a 6-D coordinate system. A metrology system ascertains the position of the component relative to the drilling machine. The movement of the robots is effected by commands generated by off-line programming. The component is moved relative to the drilling machine to a target position, ready for drilling, by a closed-loop process in which the differences in position between the expected position (the target position) and the actual position (as viewed by the metrology system) are corrected.




ntr

Combinations of atmosphere control members

Combinations of atmosphere control members are used to control the atmosphere within a sealed container which contains a respiring biological material. The combination makes use of a first ACM having a first R ratio (the ratio of carbon dioxide permeability to oxygen permeability) and a second ACM having a second R ratio, the first R ratio being substantially greater than 1.0, and the second R ratio being less than the first R ratio. This combination (31, 321, 322, 331, 332) can form part of the sealed container (1) itself, or can be part of an assembly (31, 32, 34) through which the packaging atmosphere within the sealed container (1) is circulated.




ntr

Fluid control device

A fluid control device includes a vibrating plate unit, a driver, a flexible plate, and a base plate. The vibrating plate unit includes a vibrating plate including first and second main surfaces, and a frame plate surrounding the surrounding of the vibrating plate. The driver is bonded to the first or the second main surface of the vibrating plate and vibrates the vibrating plate. The flexible plate includes a hole provided therein, and is bonded to the frame plate so as to face the vibrating plate. The base plate is bonded to the main surface of the flexible plate on a side opposite to the vibrating plate. A size relationship between the coefficients of linear expansion of the material of the base plate and the frame plate is equal to a size relationship between the coefficients of linear expansion of the material of the vibrating plate and the driver.




ntr

Air pump having an auto-stop control device

An air pump includes a casing, a blower connected with a motor, an air flow direction switching device, an air valve, and an auto-stop control device. The air flow direction switching device includes a pressure sensor and a pressure switch. The air flow direction switching device includes a movable box and a driving device which drives the movable box. The movable box has an arm and an activation portion. An inflation switch and a deflation switch are electrically connected in parallel to a circuit and are controlled to activate by the activation portion. The pressure switch includes a dynamic contact point connected to the motor, and two static contact points respectively electrically connected to the inflation switch and the deflation switch. The dynamic contact point has a terminal which alternatively contacts the two static contact points.




ntr

Displacement control system for variable displacement compressor

A displacement control system (A) of a variable displacement compressor sets a target for pressure in an intake chamber or a crank chamber, on the basis of a detected evaporator-outlet air temperature and a target for evaporator-outlet air temperature. The pressure of a refrigerant in a high-pressure section is detected, and a regulating current is supplied to a solenoid (316) of a displacement control valve, on the basis of the pressure of the refrigerant in the high-pressure section and the target for pressure.




ntr

Control valve body with integrated pump for automatic transmissions

An integrated control valve body and hydraulic pump for an automatic transmission includes a control valve body having a plurality of control valves and passageways and an internal cavity having an inlet and an outlet, a pump rotor received within the internal cavity and having a plurality of radially and axially extending slots, radially moveable vanes and a shaft, and a device for transferring drive energy from a drive shaft extending between an output of a torque converter and an input of the transmission to the shaft of the hydraulic pump. The device for transferring drive energy may be a pair of chain sprockets and a chain, a pair of spur or helical gears or other inter-axis power transfer components and may affect a speed increase or reduction.




ntr

Strain gauge pump control switch

A control switch incorporates a solid state transducer, a strain gauge. The transducer responds to a local environmental condition, such as fluid level, or pressure and exhibits a parameter change which can be detected as an electrical output. Control circuits coupled to the transducer can sense the parameter change and switch a source of electrical energy to a load in response thereto.




ntr

Control apparatus for electric oil pump

A temperature range in which an electric oil pump to supply oil to a vehicle drive system can start is enlarged to enhance an effective use degree, enhance a start success probability, and suppress malfunction occurrence. When a measured oil temperature To is in a temperature range (T1≦To




ntr

Supercharged compressor and method for controlling a supercharged compressor

A supercharged compressor and method of operating the compressor supplies a commercial vehicle with compressed air. The compressor includes a piston chamber, a dead space or clearance volume and a valve unit for switching the clearance volume. The valve element is configured such that the air volume supplied by the supercharged compressor can be reduced to a value that is different from zero by activating the clearance volume.




ntr

Centrifugal blower with asymmetric blade spacing

A centrifugal blower in a cooling system of an electronic device having asymmetrical blade spacing with acceptable balance. The asymmetrical blade spacing is determined according to a set of desired acoustic artifacts that are favorable and balance that is similar to that found with equal fan blade spacing. In one embodiment, the fan impeller can include thirty one fan blades. The perceived sound quality from the fan is improved with essentially no effect on the thermal performance of the fan.




ntr

Image capturing apparatus and control method of the same

An image capturing apparatus comprises: an image sensor configured to capture an image; a vibration detection unit configured to detect a vibration; a vector detection unit configured to detect a motion vector from images; a first correction unit configured to optically correct an image blur; a second correction unit configured to electrically correct the image blur; a first calculation unit configured to calculate, on the basis of the vibration, a first vibration correction amount for controlling the first correction unit; a second calculation unit configured to calculate, on the basis of the motion vector, a second vibration correction amount for controlling the second correction unit; and a control unit configured to control the first and second calculation units so that the first and second vibration correction amounts are suppressed when a vibration amount is greater than a first threshold.