ath

God the father blessing, attended by five children and by cherubim. Engraving.




ath

Horses being ridden into the sea to bathe. Mezzotint by W. Ward, 1814, after G. Morland.

London (96, Gracechurch Street) : Published by R. Lambe, May 10th. 1814.




ath

A woman holding a baby; possibly Victoria Duchess of Kent and Strathearn at the christening of Princess Alexandrina Victoria (subsequently Queen Victoria). Wood engraving by P. Naumann, 18--.




ath

Aeneas carrying his father Anchises on his shoulders as he, his son Ascanius and his wife Creusa flee from the sack of Troy. Engraving by R. Guidi after Agostino Carracci after F. Barocci.




ath

The deathbed of the Emperor Henry IV on a makeshift bed outside a ramshackle house: a monk kneels and prays. Photograph by J. Mudd after A. Rethel.

[Manchester] : [James Mudd], [between 1800 and 1899]




ath

A young woman and a young man in the reign of King Charles II having a quarrel: they prepare to surrender each other's portrait miniature. Engraving by C. Heath, 1824, after G.S. Newton.

London (6 Seymour Place, Euston Square) : Charles Heath ; [London] (Poultry) : Robert Jennings, May 15 1827 ([London] : Printed by McQueen)




ath

Winter weather, associated with the struggle of high art against competition from lowlife artists. Etching by P. Testa, 1641.

Si stampano in Roma (alla Pace ; all'insegna di Parigi) : per Giovan Jacomo Rossi, [1641?]




ath

A musician in Venice is murdered before a tryst with a young woman who approaches the meeting place unaware of his death. Mezzotint by J.C. Bromley, 1836, after J.R. Herbert.

[London] (Haymarket) : Published ... for the proprietors, by T McLean, Septr. 1. 1836 ([London?] : Printed by Lahee & Co.)




ath

The death of the Venerable Bede. Photograph after W.B. Scott.

[19--?]




ath

Temple of the winds, Athens. Lithograph.




ath

Baiae (Baia), Italy: the dome of the part-submerged "temple of Mercury", containing the frigidarium of a public bath. Etching by C. Guttenberg, 178-, after H. Robert.

[Paris] : [de l'Imprimerie de Clousier], [between 1780 and 1789]




ath

Paraos (praus, boats) off the coast of the Philippines. Engraving by J. Heath, 1798.

London (Pater Noster Row) : G.G. & J. Robinson, Nov.r 1st 1798.




ath

The Catholic powers gather around the infant James Francis Edward Stuart. Etching by R. de Hooghe, 1688, with letterpress.

[The Netherlands] : [publisher not identified], [1688]




ath

The marriage of King Charles I and Princess Henrietta Maria in Notre Dame cathedral, Paris, 1625. Engraving by N. Dupuis, 1728, after L. Chéron.

London : Printed & sold by Thos. & John Bowles, printsellers, [1728]




ath

King Charles I at the battle of Naseby: the Earl of Carnwath leads the king's horse around and back from danger, causing confusion among the Royalist troops. Engraving by N.G. Dupuis after C. Parrocel.

[London] : [Thomas. Bowles] : [John Bowles], [1728]




ath

In Flint, Schools Overwhelmed by Special Ed. Needs in Aftermath of Lead Crisis

The children exposed to high levels of lead-laced drinking water from Michigan's Flint River are entering schools now and the school system is straining to meet their special education needs.




ath

These #HockeyAtHome videos are ridiculously fun and creative

NHL fans have to stay busy somehow, right? Their HockeyAtHome videos are almost too good to be true. By Brooke Destra




ath

Integrated treatment of eating disorders : beyond the body betrayed / Kathryn J. Zerbe.

New York ; London : W.W. Norton, 2008.




ath

Taking Herbal Baths | a zine about using herbs for bathing | relax rejuvenate soothing personal care | natural health bath spa | hand drawn

2019




ath

Resilient & Resisting: Leather Archive zine




ath

Pac-12 women's basketball student-athletes reflect on the influence of their moms ahead of Mother's Day

Pac-12 student-athletes give shout-outs to their moms ahead of Mother's Day on May 10th, 2020 including UCLA's Michaela Onyenwere, Oregon's Sabrina Ionescu and Satou Sabally, Arizona's Aari McDonald, Cate Reese, and Lacie Hull, Stanford's Kiana Williams, USC's Endyia Rogers, and Aliyah Jeune, and Utah's Brynna Maxwell.




ath

Path-Based Spectral Clustering: Guarantees, Robustness to Outliers, and Fast Algorithms

We consider the problem of clustering with the longest-leg path distance (LLPD) metric, which is informative for elongated and irregularly shaped clusters. We prove finite-sample guarantees on the performance of clustering with respect to this metric when random samples are drawn from multiple intrinsically low-dimensional clusters in high-dimensional space, in the presence of a large number of high-dimensional outliers. By combining these results with spectral clustering with respect to LLPD, we provide conditions under which the Laplacian eigengap statistic correctly determines the number of clusters for a large class of data sets, and prove guarantees on the labeling accuracy of the proposed algorithm. Our methods are quite general and provide performance guarantees for spectral clustering with any ultrametric. We also introduce an efficient, easy to implement approximation algorithm for the LLPD based on a multiscale analysis of adjacency graphs, which allows for the runtime of LLPD spectral clustering to be quasilinear in the number of data points.




ath

Scalar-on-function regression for predicting distal outcomes from intensively gathered longitudinal data: Interpretability for applied scientists

John J. Dziak, Donna L. Coffman, Matthew Reimherr, Justin Petrovich, Runze Li, Saul Shiffman, Mariya P. Shiyko.

Source: Statistics Surveys, Volume 13, 150--180.

Abstract:
Researchers are sometimes interested in predicting a distal or external outcome (such as smoking cessation at follow-up) from the trajectory of an intensively recorded longitudinal variable (such as urge to smoke). This can be done in a semiparametric way via scalar-on-function regression. However, the resulting fitted coefficient regression function requires special care for correct interpretation, as it represents the joint relationship of time points to the outcome, rather than a marginal or cross-sectional relationship. We provide practical guidelines, based on experience with scientific applications, for helping practitioners interpret their results and illustrate these ideas using data from a smoking cessation study.




ath

Statistical errors in Monte Carlo-based inference for random elements. (arXiv:2005.02532v2 [math.ST] UPDATED)

Monte Carlo simulation is useful to compute or estimate expected functionals of random elements if those random samples are possible to be generated from the true distribution. However, when the distribution has some unknown parameters, the samples must be generated from an estimated distribution with the parameters replaced by some estimators, which causes a statistical error in Monte Carlo estimation. This paper considers such a statistical error and investigates the asymptotic distributions of Monte Carlo-based estimators when the random elements are not only the real valued, but also functional valued random variables. We also investigate expected functionals for semimartingales in details. The consideration indicates that the Monte Carlo estimation can get worse when a semimartingale has a jump part with unremovable unknown parameters.




ath

How many modes can a constrained Gaussian mixture have?. (arXiv:2005.01580v2 [math.ST] UPDATED)

We show, by an explicit construction, that a mixture of univariate Gaussians with variance 1 and means in $[-A,A]$ can have $Omega(A^2)$ modes. This disproves a recent conjecture of Dytso, Yagli, Poor and Shamai [IEEE Trans. Inform. Theory, Apr. 2020], who showed that such a mixture can have at most $O(A^2)$ modes and surmised that the upper bound could be improved to $O(A)$. Our result holds even if an additional variance constraint is imposed on the mixing distribution. Extending the result to higher dimensions, we exhibit a mixture of Gaussians in $mathbb{R}^d$, with identity covariances and means inside $[-A,A]^d$, that has $Omega(A^{2d})$ modes.




ath

Excess registered deaths in England and Wales during the COVID-19 pandemic, March 2020 and April 2020. (arXiv:2004.11355v4 [stat.AP] UPDATED)

Official counts of COVID-19 deaths have been criticized for potentially including people who did not die of COVID-19 but merely died with COVID-19. I address that critique by fitting a generalized additive model to weekly counts of all registered deaths in England and Wales during the 2010s. The model produces baseline rates of death registrations expected in the absence of the COVID-19 pandemic, and comparing those baselines to recent counts of registered deaths exposes the emergence of excess deaths late in March 2020. Among adults aged 45+, about 38,700 excess deaths were registered in the 5 weeks comprising 21 March through 24 April (612 $pm$ 416 from 21$-$27 March, 5675 $pm$ 439 from 28 March through 3 April, then 9183 $pm$ 468, 12,712 $pm$ 589, and 10,511 $pm$ 567 in April's next 3 weeks). Both the Office for National Statistics's respective count of 26,891 death certificates which mention COVID-19, and the Department of Health and Social Care's hospital-focused count of 21,222 deaths, are appreciably less, implying that their counting methods have underestimated rather than overestimated the pandemic's true death toll. If underreporting rates have held steady, about 45,900 direct and indirect COVID-19 deaths might have been registered by April's end but not yet publicly reported in full.




ath

On a phase transition in general order spline regression. (arXiv:2004.10922v2 [math.ST] UPDATED)

In the Gaussian sequence model $Y= heta_0 + varepsilon$ in $mathbb{R}^n$, we study the fundamental limit of approximating the signal $ heta_0$ by a class $Theta(d,d_0,k)$ of (generalized) splines with free knots. Here $d$ is the degree of the spline, $d_0$ is the order of differentiability at each inner knot, and $k$ is the maximal number of pieces. We show that, given any integer $dgeq 0$ and $d_0in{-1,0,ldots,d-1}$, the minimax rate of estimation over $Theta(d,d_0,k)$ exhibits the following phase transition: egin{equation*} egin{aligned} inf_{widetilde{ heta}}sup_{ hetainTheta(d,d_0, k)}mathbb{E}_ heta|widetilde{ heta} - heta|^2 asymp_d egin{cases} kloglog(16n/k), & 2leq kleq k_0,\ klog(en/k), & k geq k_0+1. end{cases} end{aligned} end{equation*} The transition boundary $k_0$, which takes the form $lfloor{(d+1)/(d-d_0) floor} + 1$, demonstrates the critical role of the regularity parameter $d_0$ in the separation between a faster $log log(16n)$ and a slower $log(en)$ rate. We further show that, once encouraging an additional '$d$-monotonicity' shape constraint (including monotonicity for $d = 0$ and convexity for $d=1$), the above phase transition is eliminated and the faster $kloglog(16n/k)$ rate can be achieved for all $k$. These results provide theoretical support for developing $ell_0$-penalized (shape-constrained) spline regression procedures as useful alternatives to $ell_1$- and $ell_2$-penalized ones.




ath

A Distributionally Robust Area Under Curve Maximization Model. (arXiv:2002.07345v2 [math.OC] UPDATED)

Area under ROC curve (AUC) is a widely used performance measure for classification models. We propose two new distributionally robust AUC maximization models (DR-AUC) that rely on the Kantorovich metric and approximate the AUC with the hinge loss function. We consider the two cases with respectively fixed and variable support for the worst-case distribution. We use duality theory to reformulate the DR-AUC models and derive tractable convex optimization problems. The numerical experiments show that the proposed DR-AUC models -- benchmarked with the standard deterministic AUC and the support vector machine models - perform better in general and in particular improve the worst-case out-of-sample performance over the majority of the considered datasets, thereby showing their robustness. The results are particularly encouraging since our numerical experiments are conducted with training sets of small size which have been known to be conducive to low out-of-sample performance.




ath

Sampling random graph homomorphisms and applications to network data analysis. (arXiv:1910.09483v2 [math.PR] UPDATED)

A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph $F$ into a large network $mathcal{G}$. We propose two complementary MCMC algorithms for sampling a random graph homomorphisms and establish bounds on their mixing times and concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neigborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut distance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also apply our framework for network clustering and classification problems using the Facebook100 dataset and Word Adjacency Networks of a set of classic novels.




ath

Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model. (arXiv:1909.06155v2 [math.PR] UPDATED)

We study the problem of parameter estimation for a non-ergodic Gaussian Vasicek-type model defined as $dX_t=(mu+ heta X_t)dt+dG_t, tgeq0$ with unknown parameters $ heta>0$ and $muinR$, where $G$ is a Gaussian process. We provide least square-type estimators $widetilde{ heta}_T$ and $widetilde{mu}_T$ respectively for the drift parameters $ heta$ and $mu$ based on continuous-time observations ${X_t, tin[0,T]}$ as $T ightarrowinfty$.

Our aim is to derive some sufficient conditions on the driving Gaussian process $G$ in order to ensure that $widetilde{ heta}_T$ and $widetilde{mu}_T$ are strongly consistent, the limit distribution of $widetilde{ heta}_T$ is a Cauchy-type distribution and $widetilde{mu}_T$ is asymptotically normal. We apply our result to fractional Vasicek, subfractional Vasicek and bifractional Vasicek processes. In addition, this work extends the result of cite{EEO} studied in the case where $mu=0$.




ath

Phase Transitions of the Maximum Likelihood Estimates in the Tensor Curie-Weiss Model. (arXiv:2005.03631v1 [math.ST])

The $p$-tensor Curie-Weiss model is a two-parameter discrete exponential family for modeling dependent binary data, where the sufficient statistic has a linear term and a term with degree $p geq 2$. This is a special case of the tensor Ising model and the natural generalization of the matrix Curie-Weiss model, which provides a convenient mathematical abstraction for capturing, not just pairwise, but higher-order dependencies. In this paper we provide a complete description of the limiting properties of the maximum likelihood (ML) estimates of the natural parameters, given a single sample from the $p$-tensor Curie-Weiss model, for $p geq 3$, complementing the well-known results in the matrix ($p=2$) case (Comets and Gidas (1991)). Our results unearth various new phase transitions and surprising limit theorems, such as the existence of a 'critical' curve in the parameter space, where the limiting distribution of the ML estimates is a mixture with both continuous and discrete components. The number of mixture components is either two or three, depending on, among other things, the sign of one of the parameters and the parity of $p$. Another interesting revelation is the existence of certain 'special' points in the parameter space where the ML estimates exhibit a superefficiency phenomenon, converging to a non-Gaussian limiting distribution at rate $N^{frac{3}{4}}$. We discuss how these results can be used to construct confidence intervals for the model parameters and, as a byproduct of our analysis, obtain limit theorems for the sample mean, which provide key insights into the statistical properties of the model.




ath

Estimating customer impatience in a service system with balking. (arXiv:2005.03576v1 [math.PR])

This paper studies a service system in which arriving customers are provided with information about the delay they will experience. Based on this information they decide to wait for service or to leave the system. The main objective is to estimate the customers' patience-level distribution and the corresponding potential arrival rate, using knowledge of the actual workload process only. We cast the system as a queueing model, so as to evaluate the corresponding likelihood function. Estimating the unknown parameters relying on a maximum likelihood procedure, we prove strong consistency and derive the asymptotic distribution of the estimation error. Several applications and extensions of the method are discussed. In particular, we indicate how our method generalizes to a multi-server setting. The performance of our approach is assessed through a series of numerical experiments. By fitting parameters of hyperexponential and generalized-hyperexponential distributions our method provides a robust estimation framework for any continuous patience-level distribution.




ath

Learning on dynamic statistical manifolds. (arXiv:2005.03223v1 [math.ST])

Hyperbolic balance laws with uncertain (random) parameters and inputs are ubiquitous in science and engineering. Quantification of uncertainty in predictions derived from such laws, and reduction of predictive uncertainty via data assimilation, remain an open challenge. That is due to nonlinearity of governing equations, whose solutions are highly non-Gaussian and often discontinuous. To ameliorate these issues in a computationally efficient way, we use the method of distributions, which here takes the form of a deterministic equation for spatiotemporal evolution of the cumulative distribution function (CDF) of the random system state, as a means of forward uncertainty propagation. Uncertainty reduction is achieved by recasting the standard loss function, i.e., discrepancy between observations and model predictions, in distributional terms. This step exploits the equivalence between minimization of the square error discrepancy and the Kullback-Leibler divergence. The loss function is regularized by adding a Lagrangian constraint enforcing fulfillment of the CDF equation. Minimization is performed sequentially, progressively updating the parameters of the CDF equation as more measurements are assimilated.




ath

Convergence and inference for mixed Poisson random sums. (arXiv:2005.03187v1 [math.PR])

In this paper we obtain the limit distribution for partial sums with a random number of terms following a class of mixed Poisson distributions. The resulting weak limit is a mixing between a normal distribution and an exponential family, which we call by normal exponential family (NEF) laws. A new stability concept is introduced and a relationship between {alpha}-stable distributions and NEF laws is established. We propose estimation of the parameters of the NEF models through the method of moments and also by the maximum likelihood method, which is performed via an Expectation-Maximization algorithm. Monte Carlo simulation studies are addressed to check the performance of the proposed estimators and an empirical illustration on financial market is presented.




ath

Model Reduction and Neural Networks for Parametric PDEs. (arXiv:2005.03180v1 [math.NA])

We develop a general framework for data-driven approximation of input-output maps between infinite-dimensional spaces. The proposed approach is motivated by the recent successes of neural networks and deep learning, in combination with ideas from model reduction. This combination results in a neural network approximation which, in principle, is defined on infinite-dimensional spaces and, in practice, is robust to the dimension of finite-dimensional approximations of these spaces required for computation. For a class of input-output maps, and suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodology. Numerically we demonstrate the effectiveness of the method on a class of parametric elliptic PDE problems, showing convergence and robustness of the approximation scheme with respect to the size of the discretization, and compare our method with existing algorithms from the literature.




ath

Upper extremity injuries in young athletes

9783319566511 (electronic bk.)




ath

Tumor microenvironment : signaling pathways.

9783030355821 (electronic bk.)




ath

The evolution of feathers : from their origin to the present

9783030272234 electronic book




ath

Surgical pathology of the liver

Torbenson, Michael S., author.
9781496365798




ath

Racing for the surface : pathogenesis of implant infection and advanced antimicrobial strategies

9783030344757 (electronic bk.)




ath

Pathogenesis of periodontal diseases : biological concepts for clinicians

9783319537375




ath

Epidemics and society : from the Black Death to the present

Snowden, Frank M. (Frank Martin), 1946- author.
9780300249149 (electronic book)




ath

Beyond our genes : pathophysiology of gene and environment interaction and epigenetic inheritance

9783030352134 (electronic bk.)




ath

Atlas of mohs and frozen section cutaneous pathology

9783319748474 978-3-319-74847-4




ath

Anatomical chart company atlas of pathophysiology

Atlas of pathophysiology.
9781496370921





ath

Bayesian factor models for probabilistic cause of death assessment with verbal autopsies

Tsuyoshi Kunihama, Zehang Richard Li, Samuel J. Clark, Tyler H. McCormick.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 241--256.

Abstract:
The distribution of deaths by cause provides crucial information for public health planning, response and evaluation. About 60% of deaths globally are not registered or given a cause, limiting our ability to understand disease epidemiology. Verbal autopsy (VA) surveys are increasingly used in such settings to collect information on the signs, symptoms and medical history of people who have recently died. This article develops a novel Bayesian method for estimation of population distributions of deaths by cause using verbal autopsy data. The proposed approach is based on a multivariate probit model where associations among items in questionnaires are flexibly induced by latent factors. Using the Population Health Metrics Research Consortium labeled data that include both VA and medically certified causes of death, we assess performance of the proposed method. Further, we estimate important questionnaire items that are highly associated with causes of death. This framework provides insights that will simplify future data




ath

A statistical analysis of noisy crowdsourced weather data

Arnab Chakraborty, Soumendra Nath Lahiri, Alyson Wilson.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 116--142.

Abstract:
Spatial prediction of weather elements like temperature, precipitation, and barometric pressure are generally based on satellite imagery or data collected at ground stations. None of these data provide information at a more granular or “hyperlocal” resolution. On the other hand, crowdsourced weather data, which are captured by sensors installed on mobile devices and gathered by weather-related mobile apps like WeatherSignal and AccuWeather, can serve as potential data sources for analyzing environmental processes at a hyperlocal resolution. However, due to the low quality of the sensors and the nonlaboratory environment, the quality of the observations in crowdsourced data is compromised. This paper describes methods to improve hyperlocal spatial prediction using this varying-quality, noisy crowdsourced information. We introduce a reliability metric, namely Veracity Score (VS), to assess the quality of the crowdsourced observations using a coarser, but high-quality, reference data. A VS-based methodology to analyze noisy spatial data is proposed and evaluated through extensive simulations. The merits of the proposed approach are illustrated through case studies analyzing crowdsourced daily average ambient temperature readings for one day in the contiguous United States.




ath

Objective Bayes model selection of Gaussian interventional essential graphs for the identification of signaling pathways

Federico Castelletti, Guido Consonni.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2289--2311.

Abstract:
A signalling pathway is a sequence of chemical reactions initiated by a stimulus which in turn affects a receptor, and then through some intermediate steps cascades down to the final cell response. Based on the technique of flow cytometry, samples of cell-by-cell measurements are collected under each experimental condition, resulting in a collection of interventional data (assuming no latent variables are involved). Usually several external interventions are applied at different points of the pathway, the ultimate aim being the structural recovery of the underlying signalling network which we model as a causal Directed Acyclic Graph (DAG) using intervention calculus. The advantage of using interventional data, rather than purely observational one, is that identifiability of the true data generating DAG is enhanced. More technically a Markov equivalence class of DAGs, whose members are statistically indistinguishable based on observational data alone, can be further decomposed, using additional interventional data, into smaller distinct Interventional Markov equivalence classes. We present a Bayesian methodology for structural learning of Interventional Markov equivalence classes based on observational and interventional samples of multivariate Gaussian observations. Our approach is objective, meaning that it is based on default parameter priors requiring no personal elicitation; some flexibility is however allowed through a tuning parameter which regulates sparsity in the prior on model space. Based on an analytical expression for the marginal likelihood of a given Interventional Essential Graph, and a suitable MCMC scheme, our analysis produces an approximate posterior distribution on the space of Interventional Markov equivalence classes, which can be used to provide uncertainty quantification for features of substantive scientific interest, such as the posterior probability of inclusion of selected edges, or paths.




ath

A Bayesian mark interaction model for analysis of tumor pathology images

Qiwei Li, Xinlei Wang, Faming Liang, Guanghua Xiao.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1708--1732.

Abstract:
With the advance of imaging technology, digital pathology imaging of tumor tissue slides is becoming a routine clinical procedure for cancer diagnosis. This process produces massive imaging data that capture histological details in high resolution. Recent developments in deep-learning methods have enabled us to identify and classify individual cells from digital pathology images at large scale. Reliable statistical approaches to model the spatial pattern of cells can provide new insight into tumor progression and shed light on the biological mechanisms of cancer. We consider the problem of modeling spatial correlations among three commonly seen cells observed in tumor pathology images. A novel geostatistical marking model with interpretable underlying parameters is proposed in a Bayesian framework. We use auxiliary variable MCMC algorithms to sample from the posterior distribution with an intractable normalizing constant. We demonstrate how this model-based analysis can lead to sharper inferences than ordinary exploratory analyses, by means of application to three benchmark datasets and a case study on the pathology images of $188$ lung cancer patients. The case study shows that the spatial correlation between tumor and stromal cells predicts patient prognosis. This statistical methodology not only presents a new model for characterizing spatial correlations in a multitype spatial point pattern conditioning on the locations of the points, but also provides a new perspective for understanding the role of cell–cell interactions in cancer progression.