rc Chatham House appoints Tim Benton as Research Director for Energy, Environment and Resources By www.chathamhouse.org Published On :: Thu, 30 May 2019 08:44:55 +0000 Chatham House appoints Tim Benton as Research Director for Energy, Environment and Resources News Release sysadmin 30 May 2019 Chatham House is pleased to announce that Professor Tim Benton has been appointed as research director of the Energy, Environment and Resources Department. Full Article
rc Undercurrents: The Oversight Board's Trump decision, and Merkel's legacy By www.chathamhouse.org Published On :: Fri, 25 Jun 2021 09:46:41 +0000 Undercurrents: The Oversight Board's Trump decision, and Merkel's legacy Audio bhorton.drupal 25 June 2021 Was Facebook right to suspend Trump? And how will Merkel be remembered? In the wake of the storming of Capitol Hill on 6 January 2021, social media platforms took steps to remove former President Donald Trump from their websites for infringing community standards. This step was welcomed by many, but also raised serious questions about the power of social media companies to limit free speech and censor elected officials. The suspension of President Trump from Facebook was referred to the Oversight Board, an independent body of experts set up to scrutinise the platform’s content moderation decisions. In this episode, Ben speaks to Thomas Hughes and Kate Jones about the outcome of the Oversight Board’s inquiry into the Trump suspension, and the wider implications for content moderation on social media. Then Lara is joined by Hans Kundnani to assess the political outlook in Germany and reflect on the legacy of outgoing Chancellor Angela Merkel. Full Article
rc The Arg-293 of Cryptochrome1 is responsible for the allosteric regulation of CLOCK-CRY1 binding in circadian rhythm [Computational Biology] By www.jbc.org Published On :: 2020-12-11T00:06:20-08:00 Mammalian circadian clocks are driven by transcription/translation feedback loops composed of positive transcriptional activators (BMAL1 and CLOCK) and negative repressors (CRYPTOCHROMEs (CRYs) and PERIODs (PERs)). CRYs, in complex with PERs, bind to the BMAL1/CLOCK complex and repress E-box–driven transcription of clock-associated genes. There are two individual CRYs, with CRY1 exhibiting higher affinity to the BMAL1/CLOCK complex than CRY2. It is known that this differential binding is regulated by a dynamic serine-rich loop adjacent to the secondary pocket of both CRYs, but the underlying features controlling loop dynamics are not known. Here we report that allosteric regulation of the serine-rich loop is mediated by Arg-293 of CRY1, identified as a rare CRY1 SNP in the Ensembl and 1000 Genomes databases. The p.Arg293His CRY1 variant caused a shortened circadian period in a Cry1−/−Cry2−/− double knockout mouse embryonic fibroblast cell line. Moreover, the variant displayed reduced repressor activity on BMAL1/CLOCK driven transcription, which is explained by reduced affinity to BMAL1/CLOCK in the absence of PER2 compared with CRY1. Molecular dynamics simulations revealed that the p.Arg293His CRY1 variant altered a communication pathway between Arg-293 and the serine loop by reducing its dynamicity. Collectively, this study provides direct evidence that allosterism in CRY1 is critical for the regulation of circadian rhythm. Full Article
rc EU recovery fund is a chance to accelerate the circular economy By www.chathamhouse.org Published On :: Wed, 27 May 2020 11:55:52 +0000 Source EURACTIV URL https://www.euractiv.com/section/circular-economy/opinion/eu-recovery-fund-is-a-... Release date 27 May 2020 Expert Patrick Schröder In the news type Op-ed Hide date on homepage Full Article
rc Guinea-Bissau’s Political Crisis Could Make It a Narco-State Again By www.chathamhouse.org Published On :: Wed, 27 May 2020 12:07:17 +0000 Source World Politics Review URL https://www.worldpoliticsreview.com/articles/28750/amid-political-chaos-in-guine... Release date 11 May 2020 Expert Dr Alex Vines OBE In the news type Op-ed Hide date on homepage Full Article
rc Mining and the Circular Economy: Implications for the Minerals and Metals Industries By www.chathamhouse.org Published On :: Tue, 31 Oct 2017 10:00:00 +0000 Mining and the Circular Economy: Implications for the Minerals and Metals Industries 6 November 2017 — 4:00PM TO 5:30PM Anonymous (not verified) 31 October 2017 Chatham House, London The concept of the circular economy has climbed up the international agenda, promoted by China, the EU, and other major metals and minerals producers and consumers. International policy processes including the G7 and G20 have reaffirmed these commitments and have increasingly issued policy guidance on resource efficiency. Many of the core elements of the circular economy are familiar – including enhanced resource efficiency, recycling and the development of ‘secondary markets’. Others require new thinking, from the development of smart designs and systems that ensure ‘circularity’, to the creation of new business models and partnerships that aim to preserve the long-term value of metals and minerals. At this roundtable, Professor Paul Ekins will discuss the implications of the transition from a linear system of production-use-disposal, to a more circular economy. Looking at current trends, to what extent is a ‘decoupling’ of metal and mineral resources and economic growth underway in OECD and developing economies? Across the value chain, which actors are leading the way in resource efficiency and circular economy approaches? And what are the potential implications for primary demand and for the mining and metals industries and major mining economies? Attendance at this event is by invitation only. Full Article
rc An abstract approach to Marcinkiewicz-Zygmund inequalities for approximation and quadrature in modulation spaces By www.ams.org Published On :: Mon, 21 Oct 2024 15:01 EDT Martin Ehler and Karlheinz Gröchenig Math. Comp. 93 (), 2885-2919. Abstract, references and article information Full Article
rc Identifying the source term in the potential equation with weighted sparsity regularization By www.ams.org Published On :: Mon, 21 Oct 2024 15:01 EDT Ole Løseth Elvetun and Bjørn Fredrik Nielsen Math. Comp. 93 (), 2811-2836. Abstract, references and article information Full Article
rc Using Math to Support Cancer Research By www.ams.org Published On :: Thu, 29 Dec 2022 2:39:14 -0400 Stacey Finley from University of Southern California discusses how mathematical models support the research of cancer biology. Cancer research is a crucial job, but a difficult one. Tumors growing inside the human body are affected by all kinds of factors. These conditions are difficult (if not impossible) to recreate in the lab, and using real patients as subjects can be painful and invasive. Mathematical models give cancer researchers the ability to run experiments virtually, testing the effects of any number of factors on tumor growth and other processes — all with far less money and time than an experiment on human subjects or in the lab would use. Full Article
rc Natural Resources & Economic Development - 11/14/2024 By capitol.texas.gov Published On :: Time: 10:00 AM, Location: E1.012 (Hearing Room) Full Article
rc Borel conjecture for the Marczewski ideal By www.ams.org Published On :: Tue, 05 Nov 2024 15:05 EST Jörg Brendle and Wolfgang Wohofsky Proc. Amer. Math. Soc. 152 (), 5395-5410. Abstract, references and article information Full Article
rc Trichotomy for the orbits of a hypercyclic operator on a Banach space By www.ams.org Published On :: Tue, 05 Nov 2024 15:05 EST Jian Li Proc. Amer. Math. Soc. 152 (), 5207-5217. Abstract, references and article information Full Article
rc 46 Receive AMS-Simons Research Enhancement Grants for PUI Faculty By www.ams.org Published On :: Mon, 28 Oct 2024 00:00:00 EST Forty-six mathematical scientists have been named recipients of AMS-Simons Research Enhancement Grants for Primarily Undergraduate Institution (PUI) Faculty. Each awardee will receive $3,000 per year for three years. The grants foster and support research collaboration by full-time mid-career mathematicians at US institutions that do not offer a mathematics doctoral degree. This year’s grant recipients hail from 42 institutions across 21 US states. The grants will support their research in several different areas, from number theory to applied mathematics. This is the grant program’s second cohort, said Sarah Bryant, associate vice president of programs. “Over the first two years, we’ve worked with faculty from 75 different institutions, including 19 minority-serving institutions, which shows just how much this program is expanding and making an impact,” Bryant said. She noted that “in the first year, the grants supported 87 trips, helped produce 70 publications and preprints, and gave awardees the resources needed to collaborate and advance their work.” The grant allows for any activities that will further the awardee’s research program. Expenses include but are not limited to conference participation, institute visits, collaboration travel (awardee or collaborator), computer equipment or software, family-care expenses, and teaching assistants. Administration of the award by the grantee’s institution is required; annual discretionary funds for a grantee’s department and administrative funds for a grantee's institution will be available at the end of each grant year. The grants are made possible through funding from the Simons Foundation and the American Mathematical Society (AMS), as well as Eve, Kirsten, Lenore, and Ada of the Menger family. Applications for the next cohort are anticipated to open on MathPrograms.org on January 9, 2025. Visit the AMS website to view an informational PowerPoint or sign up to receive email updates about the program. Faculty who applied for but did not receive the 2023 or 2024 awards are encouraged to reapply if they are still eligible for the grant. Full Article
rc Apple to announce AI wall tablet as soon as March, Bloomberg News reports By finance.yahoo.com Published On :: 2024-11-12T21:29:49Z Full Article
rc Driver rams his car into crowd in China, killing 35. Police say he was upset about his divorce By www.yahoo.com Published On :: 2024-11-11T17:34:35Z Full Article
rc C-tag TNF: a reporter system to study TNF shedding [Methods and Resources] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 TNF is a highly pro-inflammatory cytokine that contributes not only to the regulation of immune responses but also to the development of severe inflammatory diseases. TNF is synthesized as a transmembrane protein, which is further matured via proteolytic cleavage by metalloproteases such as ADAM17, a process known as shedding. At present, TNF is mainly detected by measuring the precursor or the mature cytokine of bulk cell populations by techniques such as ELISA or immunoblotting. However, these methods do not provide information on the exact timing and extent of TNF cleavage at single-cell resolution and they do not allow the live visualization of shedding events. Here, we generated C-tag TNF as a genetically encoded reporter to study TNF shedding at the single-cell level. The functionality of the C-tag TNF reporter is based on the exposure of a cryptic epitope on the C terminus of the transmembrane portion of pro-TNF on cleavage. In both denatured and nondenatured samples, this epitope can be detected by a nanobody in a highly sensitive and specific manner only upon TNF shedding. As such, C-tag TNF can successfully be used for the detection of TNF cleavage in flow cytometry and live-cell imaging applications. We furthermore demonstrate its applicability in a forward genetic screen geared toward the identification of genetic regulators of TNF maturation. In summary, the C-tag TNF reporter can be employed to gain novel insights into the complex regulation of ADAM-dependent TNF shedding. Full Article
rc Molecular architecture and domain arrangement of the placental malaria protein VAR2CSA suggests a model for carbohydrate binding [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 VAR2CSA is the placental-malaria–specific member of the antigenically variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. It is expressed on the surface of Plasmodium falciparum-infected host red blood cells and binds to specific chondroitin-4-sulfate chains of the placental proteoglycan receptor. The functional ∼310 kDa ectodomain of VAR2CSA is a multidomain protein that requires a minimum 12-mer chondroitin-4-sulfate molecule for specific, high affinity receptor binding. However, it is not known how the individual domains are organized and interact to create the receptor-binding surface, limiting efforts to exploit its potential as an effective vaccine or drug target. Using small angle X-ray scattering and single particle reconstruction from negative-stained electron micrographs of the ectodomain and multidomain constructs, we have determined the structural architecture of VAR2CSA. The relative locations of the domains creates two distinct pores that can each accommodate the 12-mer of chondroitin-4-sulfate, suggesting a model for receptor binding. This model has important implications for understanding cytoadherence of infected red blood cells and potentially provides a starting point for developing novel strategies to prevent and/or treat placental malaria. Full Article
rc Managing natural resources By www.chathamhouse.org Published On :: Thu, 16 Jan 2020 12:57:26 +0000 Managing natural resources Research analyzing options for the sustainable management of natural resources and how to use them in a way that enhances the resilience of ecosystems. nfaulds-adams… 16 January 2020 Areas of focus include examining what is the future for fossil fuels and other extractive industries (especially coal, oil and natural gas), forest governance in light of continued illegal logging and deforestation, and ocean governance. Natural resources are vital for the future sustainability of major industries such as agriculture, mining, tourism, fisheries and forestry. Research is carried out in areas such as land use planning, water management, biodiversity conservation, and the scientific and technical understanding of resources governance. Full Article
rc Polydisperse molecular architecture of connexin 26/30 heteromeric hemichannels revealed by atomic force microscopy imaging [Protein Structure and Folding] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Connexin (Cx) protein forms hemichannels and gap junctional channels, which play diverse and profound roles in human physiology and diseases. Gap junctions are arrays of intercellular channels formed by the docking of two hemichannels from adjacent cells. Each hexameric hemichannel contains the same or different Cx isoform. Although homomeric Cxs forms have been largely described functionally and structurally, the stoichiometry and arrangement of heteromeric Cx channels remain unknown. The latter, however, are widely expressed in human tissues and variation might have important implications on channel function. Investigating properties of heteromeric Cx channels is challenging considering the high number of potential subunit arrangements and stoichiometries, even when only combining two Cx isoforms. To tackle this problem, we engineered an HA tag onto Cx26 or Cx30 subunits and imaged hemichannels that were liganded by Fab-epitope antibody fragments via atomic force microscopy. For Cx26-HA/Cx30 or Cx30-HA/Cx26 heteromeric channels, the Fab-HA binding distribution was binomial with a maximum of three Fab-HA bound. Furthermore, imaged Cx26/Cx30-HA triple liganded by Fab-HA showed multiple arrangements that can be derived from the law of total probabilities. Atomic force microscopy imaging of ringlike structures of Cx26/Cx30-HA hemichannels confirmed these findings and also detected a polydisperse distribution of stoichiometries. Our results indicate a dominant subunit stoichiometry of 3Cx26:3Cx30 with the most abundant subunit arrangement of Cx26-Cx26-Cx30-Cx26-Cx30-Cx30. To our knowledge, this is the first time that the molecular architecture of heteromeric Cx channels has been revealed, thus providing the basis to explore the functional effect of these channels in biology. Full Article
rc The heptameric structure of the flagellar regulatory protein FlrC is indispensable for ATPase activity and disassembled by cyclic-di-GMP [Protein Structure and Folding] By www.jbc.org Published On :: 2020-12-11T00:06:20-08:00 The bacterial enhancer-binding protein (bEBP) FlrC, controls motility and colonization of Vibrio cholerae by regulating the transcription of class-III flagellar genes in σ54-dependent manner. However, the mechanism by which FlrC regulates transcription is not fully elucidated. Although, most bEBPs require nucleotides to stimulate the oligomerization necessary for function, our previous study showed that the central domain of FlrC (FlrCC) forms heptamer in a nucleotide-independent manner. Furthermore, heptameric FlrCC binds ATP in “cis-mediated” style without any contribution from sensor I motif 285REDXXYR291 of the trans protomer. This atypical ATP binding raises the question of whether heptamerization of FlrC is solely required for transcription regulation, or if it is also critical for ATPase activity. ATPase assays and size exclusion chromatography of the trans-variants FlrCC-Y290A and FlrCC-R291A showed destabilization of heptameric assembly with concomitant abrogation of ATPase activity. Crystal structures showed that in the cis-variant FlrCC-R349A drastic shift of Walker A encroached ATP-binding site, whereas the site remained occupied by ADP in FlrCC-Y290A. We postulated that FlrCC heptamerizes through concentration-dependent cooperativity for maximal ATPase activity and upon heptamerization, packing of trans-acting Tyr290 against cis-acting Arg349 compels Arg349 to maintain proper conformation of Walker A. Finally, a Trp quenching study revealed binding of cyclic-di-GMP with FlrCC. Excess cyclic-di-GMP repressed ATPase activity of FlrCC through destabilization of heptameric assembly, especially at low concentration of protein. Systematic phylogenetic analysis allowed us to propose similar regulatory mechanisms for FlrCs of several Vibrio species and a set of monotrichous Gram-negative bacteria. Full Article
rc Evolving the naturally compromised chorismate mutase from Mycobacterium tuberculosis to top performance [Protein Structure and Folding] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Chorismate mutase (CM), an essential enzyme at the branch-point of the shikimate pathway, is required for the biosynthesis of phenylalanine and tyrosine in bacteria, archaea, plants, and fungi. MtCM, the CM from Mycobacterium tuberculosis, has less than 1% of the catalytic efficiency of a typical natural CM and requires complex formation with 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase for high activity. To explore the full potential of MtCM for catalyzing its native reaction, we applied diverse iterative cycles of mutagenesis and selection, thereby raising kcat/Km 270-fold to 5 × 105 m−1s−1, which is even higher than for the complex. Moreover, the evolutionarily optimized autonomous MtCM, which had 11 of its 90 amino acids exchanged, was stabilized compared with its progenitor, as indicated by a 9 °C increase in melting temperature. The 1.5 Å crystal structure of the top-evolved MtCM variant reveals the molecular underpinnings of this activity boost. Some acquired residues (e.g. Pro52 and Asp55) are conserved in naturally efficient CMs, but most of them lie beyond the active site. Our evolutionary trajectories reached a plateau at the level of the best natural enzymes, suggesting that we have exhausted the potential of MtCM. Taken together, these findings show that the scaffold of MtCM, which naturally evolved for mediocrity to enable inter-enzyme allosteric regulation of the shikimate pathway, is inherently capable of high activity. Full Article
rc A highly potent CD73 biparatopic antibody blocks organization of the enzyme active site through dual mechanisms [Methods and Resources] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 The dimeric ectonucleotidase CD73 catalyzes the hydrolysis of AMP at the cell surface to form adenosine, a potent suppressor of the immune response. Blocking CD73 activity in the tumor microenvironment can have a beneficial effect on tumor eradication and is a promising approach for cancer therapy. Biparatopic antibodies binding different regions of CD73 may be a means to antagonize its enzymatic activity. A panel of biparatopic antibodies representing the pairwise combination of 11 parental monoclonal antibodies against CD73 was generated by Fab-arm exchange. Nine variants vastly exceeded the potency of their parental antibodies with ≥90% inhibition of activity and subnanomolar EC50 values. Pairing the Fabs of parents with nonoverlapping epitopes was both sufficient and necessary whereas monovalent antibodies were poor inhibitors. Some parental antibodies yielded potent biparatopics with multiple partners, one of which (TB19) producing the most potent. The structure of the TB19 Fab with CD73 reveals that it blocks alignment of the N- and C-terminal CD73 domains necessary for catalysis. A separate structure of CD73 with a Fab (TB38) which complements TB19 in a particularly potent biparatopic shows its binding to a nonoverlapping site on the CD73 N-terminal domain. Structural modeling demonstrates a TB19/TB38 biparatopic antibody would be unable to bind the CD73 dimer in a bivalent manner, implicating crosslinking of separate CD73 dimers in its mechanism of action. This ability of a biparatopic antibody to both crosslink CD73 dimers and fix them in an inactive conformation thus represents a highly effective mechanism for the inhibition of CD73 activity. Full Article
rc How is the war in Ukraine affecting perceptions of Russia in Africa? By www.chathamhouse.org Published On :: Fri, 10 Jun 2022 08:23:56 +0000 How is the war in Ukraine affecting perceptions of Russia in Africa? Explainer Video NCapeling 10 June 2022 Aanu Adeoye outlines how the invasion of Ukraine is affecting perceptions of Russia across the Africa region. He says the voting patterns at the United Nations (UN) shows that the majority of African countries are unhappy about Russia’s actions, but there is not a united voice as there is in the European Union (EU) and North America. Certain countries are heavily influenced by historical ties with Russia going back to the Soviet era and their own struggles for liberation, while others tend to remain non-aligned whenever possible. Full Article
rc CD70-Targeted Immuno-PET/CT Imaging of Clear Cell Renal Cell Carcinoma: A Translational Study By jnm.snmjournals.org Published On :: 2024-11-07T04:28:31-08:00 Visual Abstract Full Article
rc OpenPepXL: An Open-Source Tool for Sensitive Identification of Cross-Linked Peptides in XL-MS By www.mcponline.org Published On :: 2020-12-01 Eugen NetzDec 1, 2020; 19:2157-2167Technological Innovation and Resources Full Article
rc Proteomic analyses identify differentially expressed proteins and pathways between low-risk and high-risk subtypes of early-stage lung adenocarcinoma and their prognostic impacts By www.mcponline.org Published On :: 2020-11-30 Juntuo ZhouNov 30, 2020; 0:RA120.002384v1-mcp.RA120.002384Research Full Article
rc PTM-Shepherd: analysis and summarization of post-translational and chemical modifications from open search results By www.mcponline.org Published On :: 2020-12-01 Daniel J. GeiszlerDec 1, 2020; 0:TIR120.002216v1-mcp.TIR120.002216Technological Innovation and Resources Full Article
rc Mycobacterium tuberculosis infection up-regulates MFN2 expression to promote NLRP3 inflammasome formation [Cell Biology] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (MTB), is one of the leading causes of death worldwide, especially in children. However, the mechanisms by which MTB infects its cellular host, activates an immune response, and triggers inflammation remain unknown. Mitochondria play important roles in the initiation and activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, where mitochondria-associated endoplasmic reticulum membranes (MAMs) may serve as the platform for inflammasome assembly and activation. Additionally, mitofusin 2 (MFN2) is implicated in the formation of MAMs, but, the roles of mitochondria and MFN2 in MTB infection have not been elucidated. Using mircroarry profiling of TB patients and in vitro MTB stimulation of macrophages, we observed an up-regulation of MFN2 in the peripheral blood mononuclear cells of active TB patients. Furthermore, we found that MTB stimulation by MTB-specific antigen ESAT-6 or lysate of MTB promoted MFN2 interaction with NLRP3 inflammasomes, resulting in the assembly and activation of the inflammasome and, subsequently, IL-1β secretion. These findings suggest that MFN2 and mitochondria play important role in the pathogen-host interaction during MTB infection. Full Article
rc AggreCount: an unbiased image analysis tool for identifying and quantifying cellular aggregates in a spatially defined manner [Methods and Resources] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Protein quality control is maintained by a number of integrated cellular pathways that monitor the folding and functionality of the cellular proteome. Defects in these pathways lead to the accumulation of misfolded or faulty proteins that may become insoluble and aggregate over time. Protein aggregates significantly contribute to the development of a number of human diseases such as amyotrophic lateral sclerosis, Huntington's disease, and Alzheimer's disease. In vitro, imaging-based, cellular studies have defined key biomolecular components that recognize and clear aggregates; however, no unifying method is available to quantify cellular aggregates, limiting our ability to reproducibly and accurately quantify these structures. Here we describe an ImageJ macro called AggreCount to identify and measure protein aggregates in cells. AggreCount is designed to be intuitive, easy to use, and customizable for different types of aggregates observed in cells. Minimal experience in coding is required to utilize the script. Based on a user-defined image, AggreCount will report a number of metrics: (i) total number of cellular aggregates, (ii) percentage of cells with aggregates, (iii) aggregates per cell, (iv) area of aggregates, and (v) localization of aggregates (cytosol, perinuclear, or nuclear). A data table of aggregate information on a per cell basis, as well as a summary table, is provided for further data analysis. We demonstrate the versatility of AggreCount by analyzing a number of different cellular aggregates including aggresomes, stress granules, and inclusion bodies caused by huntingtin polyglutamine expansion. Full Article
rc Visualizing, quantifying, and manipulating mitochondrial DNA in vivo [Methods and Resources] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Mitochondrial DNA (mtDNA) encodes proteins and RNAs that support the functions of mitochondria and thereby numerous physiological processes. Mutations of mtDNA can cause mitochondrial diseases and are implicated in aging. The mtDNA within cells is organized into nucleoids within the mitochondrial matrix, but how mtDNA nucleoids are formed and regulated within cells remains incompletely resolved. Visualization of mtDNA within cells is a powerful means by which mechanistic insight can be gained. Manipulation of the amount and sequence of mtDNA within cells is important experimentally and for developing therapeutic interventions to treat mitochondrial disease. This review details recent developments and opportunities for improvements in the experimental tools and techniques that can be used to visualize, quantify, and manipulate the properties of mtDNA within cells. Full Article
rc PDE5 inhibition rescues mitochondrial dysfunction and angiogenic responses induced by Akt3 inhibition by promotion of PRC expression [Bioenergetics] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 Akt3 regulates mitochondrial content in endothelial cells through the inhibition of PGC-1α nuclear localization and is also required for angiogenesis. However, whether there is a direct link between mitochondrial function and angiogenesis is unknown. Here we show that Akt3 depletion in primary endothelial cells results in decreased uncoupled oxygen consumption, increased fission, decreased membrane potential, and increased expression of the mitochondria-specific protein chaperones, HSP60 and HSP10, suggesting that Akt3 is required for mitochondrial homeostasis. Direct inhibition of mitochondrial homeostasis by the model oxidant paraquat results in decreased angiogenesis, showing a direct link between angiogenesis and mitochondrial function. Next, in exploring functional links to PGC-1α, the master regulator of mitochondrial biogenesis, we searched for compounds that induce this process. We found that, sildenafil, a phosphodiesterase 5 inhibitor, induced mitochondrial biogenesis as measured by increased uncoupled oxygen consumption, mitochondrial DNA content, and voltage-dependent anion channel protein expression. Sildenafil rescued the effects on mitochondria by Akt3 depletion or pharmacological inhibition and promoted angiogenesis, further supporting that mitochondrial homeostasis is required for angiogenesis. Sildenafil also induces the expression of PGC-1 family member PRC and can compensate for PGC-1α activity during mitochondrial stress by an Akt3-independent mechanism. The induction of PRC by sildenafil depends upon cAMP and the transcription factor CREB. Thus, PRC can functionally substitute during Akt3 depletion for absent PGC-1α activity to restore mitochondrial homeostasis and promote angiogenesis. These findings show that mitochondrial homeostasis as controlled by the PGC family of transcriptional activators is required for angiogenic responses. Full Article
rc The anti-tubercular activity of simvastatin is mediated by cholesterol-driven autophagy via the AMPK-mTORC1-TFEB axis By www.jlr.org Published On :: 2020-12-01 Natalie BruinersDec 1, 2020; 61:1617-1628Research Articles Full Article
rc Problem Notes for SAS®9 - 48028: Custom Time Frame-based data versions do not aggregate correctly when referenced in worksheets with standard hierarchy levels By Published On :: Wed, 26 Aug 2020 16:17:42 EST In SAS Merchandise Financial Planning, custom time frame-based data versions do not aggregate correctly when referenced in worksheets with standard hierarchy levels. The data does not aggregate correctly from l Full Article MMFINANCPLN+SAS+Merchandise+Financial+Pl
rc WITHDRAWN: Structural and mechanistic studies of hydroperoxide conversions catalyzed by a CYP74 clan epoxy alcohol synthase from amphioxus (Branchiostoma floridae) [Research Articles] By www.jlr.org Published On :: 2014-03-04T09:59:12-08:00 This manuscript has been withdrawn by the Author. Full Article
rc Dietary sphinganine is selectively assimilated by members of the mammalian gut microbiome [Research Articles] By www.jlr.org Published On :: 2020-07-09T14:33:39-07:00 Functions of the gut microbiome have a growing number of implications for host metabolic health, with diet being one of the most significant influences on microbiome composition. Compelling links between diet and the gut microbiome suggest key roles for various macronutrients, including lipids, yet how individual classes of dietary lipids interact with the microbiome remains largely unknown. Sphingolipids are bioactive components of most foods and are also produced by prominent gut microbes. This makes sphingolipids intriguing candidates for shaping diet–microbiome interactions. Here, we used a click chemistry–based approach to track the incorporation of bioorthogonal dietary omega-alkynyl sphinganine (sphinganine alkyne [SAA]) into the murine gut microbial community (Bioorthogonal labeling). We identified microbial and SAA-specific metabolic products through fluorescence-based sorting of SAA-containing microbes (Sort), 16S rRNA gene sequencing to identify the sphingolipid-interacting microbes (Seq), and comparative metabolomics to identify products of SAA assimilation by the microbiome (Spec). Together, this approach, termed Bioorthogonal labeling-Sort-Seq-Spec (BOSSS), revealed that SAA assimilation is nearly exclusively performed by gut Bacteroides, indicating that sphingolipid-producing bacteria play a major role in processing dietary sphinganine. Comparative metabolomics of cecal microbiota from SAA-treated mice revealed conversion of SAA to a suite of dihydroceramides, consistent with metabolic activities of Bacteroides and Bifidobacterium. Additionally, other sphingolipid-interacting microbes were identified with a focus on an uncharacterized ability of Bacteroides and Bifidobacterium to metabolize dietary sphingolipids. We conclude that BOSSS provides a platform to study the flux of virtually any alkyne-labeled metabolite in diet–microbiome interactions. Full Article
rc Hepatic Deletion of Mboat7 (Lpiat1) Causes Activation of SREBP-1c and Fatty Liver [Research Articles] By www.jlr.org Published On :: 2020-08-28T09:33:17-07:00 Genetic variants that increase the risk of fatty liver disease (FLD) and cirrhosis have recently been identified in the proximity of membrane bound O-acyltransferase domain-containing 7 (MBOAT7). To elucidate the link between these variants and FLD we characterized Mboat7 liver-specific knock-out mice (Mboat7-LSKO). Chow-fed Mboat7-LSKO mice developed fatty livers and associated liver injury. Lipidomic analysis of liver using mass spectrometry revealed a pronounced reduction in 20-carbon polyunsaturated fatty acid content in phosphatidylinositols (PIs), but not in other phospholipids. The change in fatty acid composition of PIs in these mice was associated with a marked increase in de novo lipogenesis due to activation of SREBP-1c, a transcription factor that coordinates the activation of genes encoding enzymes in the fatty acid biosynthesis pathway. Hepatic removal of both SREBP cleavage activating protein (Scap) and Mboat7 normalized hepatic triglycerides relative to Scap only hepatic knock-out showing increased SREBP-1c processing is required for Mboat7 induced steatosis. This study reveals a clear relationship between PI fatty acid composition and regulation of hepatic fat synthesis and delineates the mechanism by which mutations in MBOAT7 cause hepatic steatosis. Full Article
rc Lipid and Metabolic Syndrome Traits in Coronary Artery Disease: A Mendelian Randomization Study [Patient-Oriented and Epidemiological Research] By www.jlr.org Published On :: 2020-09-09T12:33:17-07:00 Mendelian randomization (MR) of lipid traits in coronary artery disease (CAD) has provided evidence for causal associations of low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG) in CAD, but many lipid trait genetic variants have pleiotropic effects on other cardiovascular risk factors that may bias MR associations. The goal of this study was to evaluate pleiotropic effects of lipid trait genetic variants and to account for these effects in MR of lipid traits in CAD. We performed multivariable MR using inverse variance-weighted (IVW) and MR-Egger methods in large (n ≥ 300,000) GWAS datasets. We found that 30% of lipid trait genetic variants have effects on metabolic syndrome traits, including body mass index (BMI), type 2 diabetes (T2D), and systolic blood pressure (SBP). Nonetheless, in multivariable MR analysis, LDL-C, high-density lipoprotein cholesterol (HDL-C), TG, BMI, T2D, and SBP are independently associated with CAD, and each of these associations is robust to adjustment for directional pleiotropy. MR at loci linked to direct effects on HDL-C and TG suggests locus- and mechanism-specific causal effects of these factors on CAD. Full Article
rc High-density lipoprotein-associated miRNA is increased following Roux-en-Y gastric bypass surgery for severe obesity [Research Articles] By www.jlr.org Published On :: 2020-10-22T06:30:32-07:00 Roux-en-Y gastric bypass (RYGB) is one of the most commonly performed weight-loss procedures, but how severe obesity and RYGB affects circulating HDL-associated microRNAs (miRNAs) remains unclear. Here, we aim to investigate how HDL-associated miRNAs are regulated in severe obesity and how weight loss after RYGB surgery affects HDL-miRNAs. Plasma HDL were isolated from patients with severe obesity (n=53) before, 6 and 12 months after RYGB by immunoprecipitation using goat anti-human apoA-I microbeads. HDL were also isolated from 18 healthy participants. miRNAs were extracted from isolated HDL and levels of miR-24, miR-126, miR-222 and miR-223 were determined by TaqMan miRNA assays. We found that HDL-associated miR-126, miR-222 and miR-223 levels, but not miR-24 levels, were significantly higher in patients with severe obesity when compared with healthy controls. There were significant increases in HDL-associated miR-24, miR-222 and miR-223 at 12 months after RYGB. Additionally, cholesterol efflux capacity and paraoxonase (PON1) activity were increased and intracellular adhesion molecule-1 (ICAM-1) levels decreased. The increases in HDL-associated miR-24 and miR-223 were positively correlated with increase in cholesterol efflux capacity (r=0.326, P=0.027 and r=0.349, P=0.017 respectively). An inverse correlation was observed between HDL-associated miR-223 and ICAM-1 at baseline. Together, these findings show that HDL-associated miRNAs are differentially regulated in healthy versus patients with severe obesity and are altered after RYGB. These findings provide insights into how miRNAs are regulated in obesity before and after weight reduction, and may lead to the development of novel treatment strategies for obesity and related metabolic disorders. Full Article
rc Adiponectin forms a complex with atherogenic LDL and inhibits its downstream effects [Research Articles] By www.jlr.org Published On :: 2020-11-03T06:36:28-08:00 Adiponectin, an adipocyte-derived protein, has anti-atherogenic and anti-diabetic effects, but how it confers the anti-atherogenic effects is not well understood. To study the anti-atherogenic mechanisms of adiponectin, we examined whether it interacts with atherogenic low-density lipoprotein (LDL) to attenuate LDL’s atherogenicity. L5, the most electronegative subfraction of LDL, induces atherogenic responses similarly to copper-oxidized LDL (oxLDL). Unlike native LDL endocytosed via the LDL receptor, L5 and oxLDL are internalized by cells via the lectin-like oxidized LDL receptor-1 (LOX-1). Using enzyme-linked immunosorbent assays (ELISAs), we showed that adiponectin preferentially bound oxLDL but not native LDL. In Chinese hamster ovary (CHO) cells transfected with LOX-1 or LDL receptor, adiponectin selectively inhibited the uptake of oxLDL but not of native LDL, respectively. Furthermore, adiponectin suppressed the internalization of oxLDL in human coronary artery endothelial cells (HCAECs) and THP-1–derived macrophages. Western blot analysis of human plasma showed that adiponectin was abundant in L5 but not in L1, the least electronegative subfraction of LDL. Sandwich ELISAs with anti-adiponectin and anti–apolipoprotein B antibodies confirmed the binding of adiponectin to L5 and oxLDL. In LOX-1–expressing CHO cells, adiponectin inhibited cellular responses to oxLDL and L5, including nuclear factor-B activation and ERK phosphorylation. In HCAECs, adiponectin inhibited oxLDL-induced endothelin-1 secretion and ERK phosphorylation. Conversely, oxLDL suppressed the adiponectin-induced activation of adenosine monophosphate–activated protein kinase in COS-7 cells expressing adiponectin receptor AdipoR1. Our findings suggest that adiponectin binds and inactivates atherogenic LDL, providing novel insight into the anti-atherogenic mechanisms of adiponectin. Full Article
rc Structure dynamics of ApoA-I amyloidogenic variants in small HDL increase their ability to mediate cholesterol efflux [Research Articles] By www.jlr.org Published On :: 2020-11-17T08:30:36-08:00 Apolipoprotein A-I (ApoA-I) of high-density lipoprotein (HDL) is essential for the transportation of cholesterol between peripheral tissues and the liver. However, specific mutations in Apolipoprotein A-I (ApoA-I) of high-density lipoprotein (HDL) are responsible for a late-onset systemic amyloidosis, the pathological accumulation of protein fibrils in tissues and organs. Carriers of these mutations do not exhibit increased cardiovascular disease risk despite displaying reduced levels of ApoA-I/ HDL-cholesterol. To explain this paradox, we show that the HDL particle profile of patients carrying either L75P or L174S ApoA-I amyloidogenic variants a higher relative abundance of the 8.4 nm vs 9.6 nm particles, and that serum from patients, as well as reconstituted 8.4 and 9.6 nm HDL particles (rHDL), possess increased capacity to catalyze cholesterol efflux from macrophages. Synchrotron radiation circular dichroism and hydrogen-deuterium exchange revealed that the variants in 8.4 nm rHDL have altered secondary structure composition and display a more flexible binding to lipids compared to their native counterpart. The reduced HDL-cholesterol levels of patients carrying ApoA-I amyloidogenic variants are thus balanced by higher proportion of small, dense HDL particles and better cholesterol efflux due to altered, region-specific protein structure dynamics. Full Article
rc Insights on the kinetics and dynamics of the furin-cleaved form of PCSK9 [Research Articles] By www.jlr.org Published On :: 2020-11-17T08:30:36-08:00 Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates cholesterol metabolism by inducing the degradation of hepatic low-density lipoprotein receptor (LDLR). Plasma PCSK9 has two main molecular forms: a 62-kDa mature form (PCSK9_62) and a 55-kDa, furin-cleaved form (PCSK9_55). PCSK9_55 is considered less active than PCSK9_62 in degrading LDLR. We aimed to identify the site of PCSK9_55 formation (intra- vs. extracellular) and to further characterize the LDLR-degradative function of PCSK9_55 relative to PCSK9_62. Co-expressing PCSK9_62 with furin in cell culture induced formation of PCSK9_55, most of which was found in the extracellular space. Under the same conditions we found that: i) adding a cell-permeable furin inhibitor preferentially decreased the formation of PCSK9_55 extracellularly; ii) using pulse-chase, we observed the formation of PCSK9_55 exclusively extracellularly in a time-dependent manner. A recombinant form of PCSK9_55 was efficiently produced but displayed impaired secretion that resulted in its intracellular trapping. However, the non-secreted PCSK9_55 was able to induce degradation of LDLR, though with 50% lower efficiency compared with PCSK9_62. Collectively, our data show that PCSK9_55 is generated in the extracellular space, and that intracellular PCSK9_55 is not secreted but retains the ability to degrade the LDLR through an intracellular pathway. Full Article
rc Generation and validation of a conditional knockout mouse model for the study of the Smith-Lemli-Opitz Syndrome [Research Articles] By www.jlr.org Published On :: 2020-11-17T11:30:28-08:00 Smith-Lemli-Opitz Syndrome (SLOS) is a developmental disorder (OMIM #270400) caused by autosomal recessive mutations in the Dhcr7 gene, which encodes the enzyme 3β-hydroxysterol-7 reductase. SLOS patients present clinically with dysmorphology and neurological, behavioral and cognitive defects, with characteristically elevated levels of 7-dehydrocholesterol (7-DHC) in all bodily tissues and fluids. Previous mouse models of SLOS have been hampered by postnatal lethality when Dhcr7 is knocked out globally, while a hypomorphic mouse model showed improvement in the biochemical phenotype with ageing, and did not manifest most other characteristic features of SLOS. We report the generation of a conditional knockout of Dhcr7 (Dhcr7flx/flx), validated by generating a mouse with a liver-specific deletion (Dhcr7L-KO). Phenotypic characterization of liver-specific knockout mice revealed no significant changes in viability, fertility, growth curves, liver architecture, hepatic triglyceride secretion, or parameters of systemic glucose homeostasis. Furthermore, qPCR and RNA-Seq analyses of livers revealed no perturbations in pathways responsible for cholesterol synthesis, either in male or female Dhcr7L-KO mice, suggesting hepatic disruption of post-squalene cholesterol synthesis leads to minimal impact on sterol metabolism in the liver. This validated conditional Dhcr7 knockout model may now allow us to systematically explore the pathophysiology of SLOS, by allowing for temporal, cell and tissue-specific loss of DHCR7. Full Article
rc Multi-modal Functional Imaging of Brown Adipose Tissue [Images in Lipid Research] By www.jlr.org Published On :: 2020-11-18T10:30:48-08:00 Full Article
rc rHDL modelling and the anchoring mechanism of LCAT activation [Research Articles] By www.jlr.org Published On :: 2020-12-02T13:30:37-08:00 Lecithin:cholesterol-acyl-transferase (LCAT) plays a major role in cholesterol metabolism as it is the only extracellular enzyme able to esterify cholesterol. LCAT activity is required for lipoprotein remodelling and, most specifically, for the growth and maturation of HDLs. In fact, genetic alterations affecting LCAT func- tionality may cause a severe reduction in plasma levels of HDL-cholesterol with important clinical consequences. Although several hypotheses were formulated, the exact molecular recognition mechanism between LCAT and HDLs is still unknown. We employed a combination of structural bioinformatics procedures to deepen the insights into the HDL-LCAT interplay that promotes LCAT activation and cholesterol esterification. We have generated a data-driven model of reconstituted HDL (rHDL) and studied the dynamics of an assembled rHDL::LCAT supramolecular complex, pinpointing the conformational changes originating from the interaction between LCAT and apolipoprotein A-I (apoA-I) that are necessary for LCAT activation. Specifically, we propose a mechanism in which the anchoring of LCAT lid to apoA-I helices allows the formation of a hydrophobic hood that expands LCAT active site and shields it from the solvent, allowing the enzyme to process large hydrophobic substrates. Full Article
rc Apolipoprotein C3 and apolipoprotein B colocalize in proximity to macrophages in atherosclerotic lesions in diabetes [Images in Lipid Research] By www.jlr.org Published On :: 2020-12-08T14:30:11-08:00 Full Article
rc Human CETP lacks lipopolysaccharide transfer activity, but worsens inflammation and sepsis outcomes in mice [Research Articles] By www.jlr.org Published On :: 2020-12-09T11:36:34-08:00 Bacterial lipopolysaccharides (LPSs or endotoxins) can bind most proteins of the lipid transfer/LPS-binding protein (LT/LBP) family in host organisms. The LPS-bound LT/LBP proteins then trigger either an LPS-induced proinflammatory cascade or LPS binding to lipoproteins that are involved in endotoxin inactivation and detoxification. Cholesteryl ester transfer protein (CETP) is an LT/LBP member, but its impact on LPS metabolism and sepsis outcome is unclear. Here, we performed fluorescent LPS transfer assays to assess the ability of CETP to bind and transfer LPS. The effects of intravenous (iv) infusion of purified LPS or polymicrobial infection (cecal ligation and puncture [CLP]) were compared in transgenic mice expressing human CETP and wild-type mice naturally having no CETP activity. CETP displayed no LPS transfer activity in vitro, but it tended to reduce biliary excretion of LPS in vivo. The CETP expression in mice was associated with significantly lower basal plasma lipid levels and with higher mortality rates in both models of endotoxemia and sepsis. Furthermore, CETPTg plasma modified cytokine production of macrophages in vitro. In conclusion, despite having no direct LPS binding and transfer property, human CETP worsens sepsis outcomes in mice by altering the protective effects of plasma lipoproteins against endotoxemia, inflammation, and infection. Full Article
rc Mutation in the distal NPxY motif of LRP1 alleviates dietary cholesterol-induced dyslipidemia and tissue inflammation [Research Articles] By www.jlr.org Published On :: 2020-12-09T08:30:22-08:00 The LDL receptor-related protein-1 (LRP1) is highly expressed in numerous cell types, and its impairment is associated with obesity, diabetes, and fatty liver disease. However, the mechanisms linking LRP1 to metabolic disease are not completely understood. Here, we compared the metabolic phenotype of C57BL/6J wild type and LRP1 knock-in mice carrying an inactivating mutation in the distal NPxY motif after feeding a low fat (LF) diet or high fat diets with (HFHC) or without (HF) cholesterol supplementation. In response to HF feeding, both groups developed hyperglycemia, hyperinsulinemia, and hyperlipidemia, as well as increased adiposity with adipose tissue inflammation and liver steatosis. However, when animals were fed the HF diet supplemented with cholesterol, the LRP1 NPxY mutation prevents hypercholesterolemia, reduces adipose tissue and brain inflammation, and limits liver progression to steatohepatitis. Nevertheless, insulin signaling is impaired in LRP1 NPxY mutant hepatocytes and this mutation does not protect against HFHC-induced insulin resistance. The selective metabolic improvement observed in HFHC-fed LRP1 NPxY mutant mice is due to an apparent increase of hepatic LDL receptor levels, leading to an elevated rate of plasma lipoprotein clearance and lowering of plasma and hepatic cholesterol levels. The unique metabolic phenotypes displayed by LRP1 NPxY mutant mice in response to HF or HFHC diet feeding indicate an LRP1-cholesterol axis in modulating tissue inflammation. The LRP1 NPxY mutant mouse phenotype differs from phenotypes observed in mice with tissue-specific LRP1 inactivation, thus highlighting the importance of an integrative approach to evaluate how global LRP1 dysfunction contributes to metabolic disease development. Full Article
rc Distinct patterns of apolipoprotein C-I, C-II and C-III isoforms are associated with markers of Alzheimers disease [Research Articles] By www.jlr.org Published On :: 2020-12-11T08:33:28-08:00 Apolipoproteins C-I, C-II and C-III interact with ApoE to regulate lipoprotein metabolism and contribute to Alzheimer’s disease pathophysiology. In plasma, apoC-I and C-II exist as truncated isoforms, while apoC-III exhibits multiple glycoforms. This study aimed to 1. delineate apoC-I, C-II and C-III isoform profiles in CSF and plasma in a cohort of non-demented older individuals (n = 61), and 2. examine the effect of APOE4 on these isoforms and their correlation with CSF Aβ42, a surrogate of brain amyloid accumulation. The isoforms of the apoCs were immunoaffinity enriched and measured with MALDI-TOF mass spectrometry, revealing a significantly higher percentage of truncated apoC-I and apoC-II in CSF compared to matched plasma, with positive correlation between CSF and plasma. A greater percentage of monosialylated and disialylated apoC-III isoforms was detected in CSF, accompanied by a lower percentage of the two non-sialylated apoC-III isoforms, with significant linear correlations between CSF and plasma. Furthermore, a greater percentage of truncated apoC-I in CSF, and apoC-II in plasma and CSF, was observed in individuals carrying at least one apoE E4 allele. Increased apoC-I and apoC-II truncations were associated with lower CSF Aβ42. Finally, monosialylated apoC-III was lower, and disialylated apoC-III greater in the CSF of E4 carriers. Together, these results reveal distinct patterns of the apoCs isoforms in CSF, implying CSF-specific apoCs processing. These patterns were accentuated in APOE E4 allele carriers, suggesting an association between APOE4 genotype and Alzheimer’s disease pathology with apoCs processing and function in the brain. Full Article
rc Deletion of lysophosphatidylcholine acyltransferase3 in myeloid cells worsens hepatic steatosis after a high fat diet [Research Articles] By www.jlr.org Published On :: 2020-12-11T09:30:19-08:00 Recent studies have highlighted an important role for lysophosphatidylcholine acyltransferase 3 (LPCAT3) in controlling the PUFA composition of cell membranes in the liver and intestine. In these organs, LPCAT3 critically supports cell membrane-associated processes such as lipid absorption or lipoprotein secretion. However, the role of LPCAT3 in macrophages remains controversial. Here, we investigated LPCAT3’s role in macrophages both in vitro and in vivo in mice with atherosclerosis and obesity. To accomplish this, we used the LysMCre strategy to develop a mouse model with conditional Lpcat3 deficiency in myeloid cells (Lpcat3KOMac). We observed that partial Lpcat3 deficiency (approx. 75% reduction) in macrophages alters the PUFA composition of all phospholipid (PL) subclasses, including phosphatidylinositols and phosphatidylserines. A reduced incorporation of C20 PUFAs (mainly arachidonic acid [AA]) into PLs was associated with a redistribution of these FAs toward other cellular lipids such as cholesteryl esters. Lpcat3 deficiency had no obvious impact on macrophage inflammatory response or endoplasmic reticulum (ER) stress; however, Lpcat3KOMac macrophages exhibited a reduction in cholesterol efflux in vitro. In vivo, myeloid Lpcat3 deficiency did not affect atherosclerosis development in LDL receptor deficient mouse (Ldlr-/-) mice. Lpcat3KOMac mice on a high-fat diet displayed a mild increase in hepatic steatosis associated with alterations in several liver metabolic pathways and in liver eicosanoid composition. We conclude that alterations in AA metabolism along with myeloid Lpcat3 deficiency may secondarily affect AA homeostasis in the whole liver, leading to metabolic disorders and triglyceride accumulation. Full Article
rc Perilipin 5 S155 phosphorylation by PKA is required for the control of hepatic lipid metabolism and glycemic control [Research Articles] By www.jlr.org Published On :: 2020-12-17T12:30:20-08:00 Perilipin (PLIN) 5 is a lipid droplet-associated protein that coordinates intracellular lipolysis in highly oxidative tissues and is thought to regulate lipid metabolism in response to phosphorylation by protein kinase A (PKA). We sought to identify PKA phosphorylation sites in PLIN5 and assess their functional relevance in cultured cells and the livers of mice. We detected phosphorylation on S155, S161 and S163 of recombinant PLIN5 by PKA in vitro and identified S155 as a functionally important site for lipid metabolism. Expression of phosphorylation-defective PLIN5 S155A in Plin5 null cells resulted in decreased rates of lipolysis and triglyceride-derived fatty acid oxidation compared with cells expressing wildtype PLIN5. These differences in lipid metabolism were not associated with differences in the cellular distribution of PLIN5. Rather, FLIM-FRET analysis of protein-protein interactions showed that PLIN5 S155 phosphorylation regulates PLIN5 interaction with adipose triglyceride lipase (ATGL) at the lipid droplet, but not with the co-activator of ATGL, α-β hydrolase domain-containing 5 (ABHD5). Re-expression of PLIN5 S155A in the liver of Plin5 liver-specific null mice reduced lipolysis when compared to mice with wildtype PLIN5 re-expression, but was not associated with other changes in hepatic lipid metabolism, such as fatty acid oxidation, de novo lipogenesis and triglyceride secretion. Furthermore, glycemic control was impaired in mice with expression of PLIN5 S155A compared with mice expressing PLIN5. Together, these studies demonstrate that PLIN5 S155 is required for PKA-mediated lipolysis and builds on the body of evidence demonstrating a critical role for PLIN5 in coordinating lipid and glucose metabolism Full Article