ali

Chandigarh Municipality to do drone-based sanitisation




ali

Fortis-Mohali designates separate Emergency for Covid-19 patients




ali

Punjab CM assures support to industrialists amid pandemic




ali

Mohali woman, 81, defeats coronavirus in Punjab




ali

Mohali administration, CU collaborate to establish Punjab's largest COVID-19 isolation facility




ali

Jalianwala Bagh memorial to remain closed for visitors till June 15




ali

Coronavirus positive cases reach 50 in Punjab's Mohali




ali

COVID-19 positive cases reach 54 in Punjab's Mohali




ali

Montek Ahluwalia to head expert group for post-COVID-19 revival in Punjab




ali

Punjab Health Minister launches sanitisation drive via drones in Mohali




ali

Restore funds under MPLADS, Stalin says

The works for this year under MPLADS have already started, he said and demanded withdrawal of the circular of the Union Ministry of Statistics and Policy Implementation suspending the funds.




ali

Infant mortality rate drops by one point in Tamil Nadu

The State’s IMR has been on the decreasing trend.




ali

Ban on entry of unregistered Keralites through Talapady

Surge in number of returnees without registration




ali

Over 4,000 released from Italian hospitals

Another 1,083 people tested positive, half of them in hard-hit Lombardy, bringing Italy’s confirmed number of cases to 218,268.




ali

Coronavirus | Fatalities dog Andhra Pradesh, Telangana battle against virus

Two expatriates test positive in Kerala; Karnataka focuses on Bengaluru cases




ali

Elon Musk threatens to exit California over virus restrictions

He wrote that whether the company keeps any manufacturing in Fremont depends on how Tesla is treated in the future.




ali

12 rescued so far after portion of chawl collapses in Kandivali, NDRF called in

Search and rescue operations are still under way, incident escalated to a Level II emergency




ali

'Thank you for creating mommy': Sara Ali Khan makes mother Amrita Singh & grandmother Rukhsana Sultana feel special

Sara Ali Khan shared a beautiful picture of Amrita Singh and Rukhsana Sultana holding her newborn self




ali

Mumbai: Several trapped after building collapses in Kandivali West; rescue operation underway

Further details are awaited.




ali

'Co-morbidity, late hospitalization ailing Guj'

Director of All India Institute of Medical Sciences, Delhi (AIIMS-D), Dr Randeep Guleria on Saturday said that late hospitalization of Covid-19 patients due to fear of stigma and higher prevalence of co-morbid conditions like diabetes, hypertension, heart and kidney disease were key reasons behind the high number of Civid-19 deaths in Gujarat.




ali

Mohali: 18-month-old defeats Covid-19

Of the total three patients discharged on Saturday, a 18-month-old child was also discharged after defeating Covid-19.The total patients discharged in the city stands at 24.




ali

Improved calibration of area detectors using multiple placements

Calibration of area detectors from powder diffraction standards is widely used at synchrotron beamlines. From a single diffraction image, it is not possible to determine both the sample-to-detector distance and the wavelength, but, with images taken from multiple positions along the beam direction and where the relative displacement is known, the sample-to-detector distance and wavelength can both be determined with good precision. An example calibration using the GSAS-II software package is presented.







ali

Chirality in Biological Nanospaces: Reactions in Active Sites. By Nilashis Nandi. Pp. 209. CRC Press, 2011. Price £79.99. ISBN 9781439840023.




ali

Visualization Bench for the screening of crystallization assays and the automation of in situ experiments




ali

Solution structure and assembly of β-amylase 2 from Arabidopsis thaliana

Solution structure of β-amylase 2 from Arabidopsis thaliana shows the role of the conserved N-terminus in enzyme tetramer formation.




ali

Scaling diffraction data in the DIALS software package: algorithms and new approaches for multi-crystal scaling

A new scaling program is presented with new features to support multi-sweep workflows and analysis within the DIALS software package.




ali

Structure of Thermococcus litoralis Δ1-pyrroline-2-carboxylate reductase in complex with NADH and L-proline

The paper reports the structure of a Δ1-pyrroline-2-carboxylate reductase from the archaeon Thermococcus litoralis, a key enzyme involved in the second step of trans-4-Hydroxy-L-proline metabolism, conserved in archaea, bacteria and humans.




ali

Redetermination of the crystal structure of BaTeO3(H2O), including the localization of the hydrogen atoms

The redetermination of the crystal structure of barium oxidotellurate(IV) monohydrate allowed the localization of the hydrogen atoms that were not determined in the previous study [Nielsen, Hazell & Rasmussen (1971). Acta Chem. Scand. 25, 3037–3042], thus making an unambiguous assignment of the hydrogen-bonding scheme possible. The crystal structure shows a layered arrangement parallel to (001), consisting of edge-sharing [BaO6(H2O)] polyhedra and flanked by isolated [TeO3] trigonal pyramids on the top and bottom. O—H⋯O hydrogen bonds of medium strength link adjacent layers along [001].




ali

5-Nitro-2,3-bis­(thio­phen-2-yl)quinoxaline

The title compound, C16H9N3O2S2, was synthesized via a condensation reaction in refluxing acetic acid. The dihedral angles between the mean plane of the quinoxaline unit and the thienyl rings are 35.16 (5)° and 24.94 (3)°.




ali

6-Nitro-2,3-bis­(thio­phen-2-yl)quinoxaline

The title compound, C16H9N3O2S2, was synthesized via a condensation reaction in refluxing acetic acid. One thienyl ring is nearly coplanar with the quinoxaline unit [dihedral angle = 3.29 (9)°], the other makes an angle of 83.96 (4)°.




ali

2,3-Di­ethyl­benzo[g]quinoxaline

The title compound, C16H16N2, was synthesized by dispersing 3,4-hexa­nedione in a methanol–water solution containing the acid catalyst NH4HF2, then adding 1,2-di­aminona­phthalene. The fused-ring system of the title compound is close to planar (r.m.s. deviation = 0.028 Å); one of the pendant methyl C atoms lies close to the ring plane [deviation = 0.071 (2) Å; N—C—C—C = −0.27 (18)°] whereas the other is significantly displaced [–1.7136 (18) Å; 91.64 (16)°]. The mol­ecules pack in space group Ioverline{4} in a distinctive criss-cross motif supported by numerous aromatic π–π stacking inter­actions [shortest centroid–centroid separation = 3.5805 (6) Å].




ali

Crystal structure and Hirshfeld surface analysis of 2,5-di­bromo­terephthalic acid ethyl­ene glycol monosolvate

The title compound, C8H4Br2O4·C2H6O2, crystallizes with one-half of a 2,5-di­bromo­terephthalic acid (H2Br2tp) mol­ecule and one-half of an ethyl­ene glycol (EG) mol­ecule in the the asymmetric unit. The whole mol­ecules are generated by application of inversion symmetry. The H2Br2tp mol­ecule is not planar, with the di­bromo­benzene ring system inclined by a dihedral angle of 18.62 (3)° to the carb­oxy­lic group. In the crystal, the H2Br2tp and EG mol­ecules are linked into sheets propagating parallel to (overline{1}01) through O—H⋯O hydrogen bonds, thereby forming R44 (12) and R44 (28) graph-set motifs. Br⋯O and weak π–π stacking inter­actions are also observed. Hirshfeld surface analysis was used to confirm the existence of these inter­actions.




ali

Synthesis and redetermination of the crystal structure of salicyl­aldehyde N(4)-morpholino­thio­semi­carbazone

The structure of the title compound (systematic name: N-{[(2-hy­droxy­phen­yl)methyl­idene]amino}­morpholine-4-carbo­thio­amide), C12H15N3O2S, was prev­iously determined (Koo et al., 1977) using multiple-film equi-inclination Weissenberg data, but has been redetermined with higher precision to explore its conformation and the hydrogen-bonding patterns and supra­molecular inter­actions. The mol­ecular structure shows intra­molecular O—H⋯N and C—H⋯S inter­actions. The configuration of the C=N bond is E. The mol­ecule is slightly twisted about the central N—N bond. The best planes through the phenyl ring and the morpholino ring make an angle of 43.44 (17)°. In the crystal, the mol­ecules are connected into chains by N—H⋯O and C—H⋯O hydrogen bonds, which combine to generate sheets lying parallel to (002). The most prominent contribution to the surface contacts are H⋯H contacts (51.6%), as concluded from a Hirshfeld surface analysis.




ali

The crystal structures and Hirshfeld surface analysis of 6-(naphthalen-1-yl)-6a-nitro-6,6a,6b,7,9,11a-hexa­hydro­spiro­[chromeno[3',4':3,4]pyrrolo­[1,2-c]thia­zole-11,11'-indeno­[1,2-b]quinoxaline] and 6'-(naphthalen-1-yl)-6a

The title compounds, 6-(naphthalen-1-yl)-6a-nitro-6,6a,6 b,7,9,11a-hexa­hydro­spiro­[chromeno[3',4':3,4]pyrrolo­[1,2-c]thia­zole-11,11'-indeno­[1,2-b]quinoxaline], C37H26N4O3S, (I), and 6'-(naphthalen-1-yl)-6a'-nitro-6',6a',6b',7',8',9',10',12a'-octa­hydro-2H-spiro­[ace­naphthyl­ene-1,12'-chromeno[3,4-a]indolizin]-2-one, C36H28N2O4, (II), are new spiro derivatives, in which both the pyrrolidine rings adopt twisted conformations. In (I), the five-membered thia­zole ring adopts an envelope conformation, while the eight-membered pyrrolidine-thia­zole ring adopts a boat conformation. An intra­molecular C—H⋯N hydrogen bond occurs, involving a C atom of the pyran ring and an N atom of the pyrazine ring. In (II), the six-membered piperidine ring adopts a chair conformation. An intra­molecular C—H⋯O hydrogen bond occurs, involving a C atom of the pyrrolidine ring and the keto O atom. For both compounds, the crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds. In (I), the C—H⋯O hydrogen bonds link adjacent mol­ecules, forming R22(16) loops propagating along the b-axis direction, while in (II) they form zigzag chains along the b-axis direction. In both compounds, C—H⋯π inter­actions help to consolidate the structure, but no significant π–π inter­actions with centroid–centroid distances of less than 4 Å are observed.




ali

checkCIF validation ALERTS: what they mean and how to respond

Authors of a paper that includes a new crystal-structure determination are expected to not only report the structural results of inter­est and their inter­pretation, but are also expected to archive in computer-readable CIF format the experimental data on which the crystal-structure analysis is based. Additionally, an IUCr/checkCIF validation report will be required for the review of a submitted paper. Such a validation report, automatically created from the deposited CIF file, lists as ALERTS not only potential errors or unusual findings, but also suggestions for improvement along with inter­esting information on the structure at hand. Major ALERTS for issues are expected to have been acted on already before the submission for publication or discussed in the associated paper and/or commented on in the CIF file. In addition, referees, readers and users of the data should be able to make their own judgment and inter­pretation of the underlying experimental data or perform their own calculations with the archived data. All the above is consistent with the FAIR (findable, accessible, inter­operable, and reusable) initiative [Helliwell (2019). Struct. Dyn. 6, 05430]. Validation can also be helpful for less experienced authors in pointing to and avoiding of crystal-structure determination and inter­pretation pitfalls. The IUCr web-based checkCIF server provides such a validation report, based on data uploaded in CIF format. Alternatively, a locally installable checkCIF version is available to be used iteratively during the structure-determination process. ALERTS come mostly as short single-line messages. There is also a short explanation of the ALERTS available through the IUCr web server or with the locally installed PLATON/checkCIF version. This paper provides additional background information on the checkCIF procedure and additional details for a number of ALERTS along with options for how to act on them.




ali

Synthesis and crystal structure of a mixed alkaline-earth powellite, Ca0.84Sr0.16MoO4

A mixed alkaline-earth powellite, Ca0.84Sr0.16MoO4 (calcium strontium molybdate), was synthesized by a flux method and its crystal structure was solved using single-crystal X-ray diffraction (SC-XRD) data. The compound crystallized in the I41/a space group as with a typical CaMoO4 powellite, but with larger unit-cell parameters and unit-cell volume as a result of the partial incorporation of larger Sr cations into the Ca sites within the crystal. The unit cell and volume were well fitted with the trendline calculated from literature values, and the powder X-ray diffraction (P-XRD) pattern of the ground crystal is in good agreement with the calculated pattern from the solved structure.




ali

Crystal structures of {1,1,1-tris­[(salicylaldimino)­meth­yl]ethane}­gallium as both a pyridine solvate and an aceto­nitrile 0.75-solvate and {1,1,1-tris[(salicylaldimino)­meth­yl]ethane}­indium di­chloro­

The sexa­dentate ligand 1,1,1-tris­[(salicyl­idene­amino)­meth­yl]ethane has been reported numerous times in its triply deprotonated form coordinated to transition metals and lanthanides, yet it has been rarely employed with main-group elements, including in substituted forms. Its structures with gallium and indium are reported as solvates, namely, ({[(2,2-bis­{[(2-oxido­benzyl­idene)amino-κ2N,O]meth­yl}prop­yl)imino]­meth­yl}phenololato-κ2N,O)gallium(III) pyridine monosolvate, [Ga(C26H24N3O3)]·C5H5N, the aceto­nitrile 0.75-solvate, [Ga(C26H24N3O3)]·0.75C2H3N, and ({[(2,2-bis­{[(2-oxido­benzyl­idene)amino-κ2N,O]meth­yl}prop­yl)imino]­meth­yl}phenololato-κ2N,O)indium(III) di­chloro­methane monosolvate, [In(C26H24N3O3)]·CH2Cl2. All three metal complexes are pseudo-octa­hedral and each structure contains multiple weak C—H⋯O and/or C—H⋯N inter­molecular hydrogen-bonding inter­actions. The syntheses and additional characterization in the forms of melting points, high-resolution mass spectra, infra-red (IR) spectra, and 1H and 13C NMR spectra are also reported.




ali

Functionalized 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(4-substituted-phen­yl)prop-2-en-1-ones: synthetic pathway, and the structures of six examples

Five examples each of 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-ones and the corresponding 1-(4-azido­phen­yl)-3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-ones have been synthesized in a highly efficient manner, starting from a common source precursor, and structures have been determined for three examples of each type. In each of 3-[5-(2-chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-one, C28H21ClN2O3, (Ib), the isomeric 3-[5-(2-chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn-1-yl­oxy)phen­yl]prop-2-en-1-one, (Ic), and 3-[3-methyl-5-(naphthalen-2-yl­oxy)-1-phenyl-1H-pyrazol-4-yl]-1-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one, C32H24N2O3, (Ie), the mol­ecules are linked into chains of rings, formed by two independent C—H⋯O hydrogen bonds in (Ib) and by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds in each of (Ic) and (Ie). There are no direction-specific inter­molecular inter­actions in the structure of 1-(4-azido­phen­yl)-3-[3-methyl-5-(2-methyl­phen­oxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C26H21N5O2, (IIa). In 1-(4-azido­phen­yl)-3-[5-(2,4-di­chloro­phen­oxy)-3-methyl-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C25H17Cl2N5O2, (IId), the di­chloro­phenyl group is disordered over two sets of atomic sites having occupancies 0.55 (4) and 0.45 (4), and the mol­ecules are linked by a single C—H⋯O hydrogen bond to form cyclic, centrosymmetric R22(20) dimers. Similar dimers are formed in 1-(4-azido­phen­yl)-3-[3-methyl-5-(naphthalen-2-yl­oxy)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one, C29H21N5O2, (IIe), but here the dimers are linked into a chain of rings by two independent C—H..π(arene) hydrogen bonds. Comparisons are made between the mol­ecular conformations within both series of compounds.




ali

SVAT4: a computer program for visualization and analysis of crystal structures

SVAT4 is a computer program for interactive visualization of three-dimensional crystal structures, including chemical bonds and magnetic moments. A wide range of functions, e.g. revealing atomic layers and polyhedral clusters, are available for further structural analysis. Atomic sizes, colors, appearance, view directions and view modes (orthographic or perspective views) are adjustable. Customized work for the visualization and analysis can be saved and then reloaded. SVAT4 provides a template to simplify the process of preparation of a new data file. SVAT4 can generate high-quality images for publication and animations for presentations. The usability of SVAT4 is broadened by a software suite for simulation and analysis of electron diffraction patterns.




ali

Refinement for single-nanoparticle structure determination from low-quality single-shot coherent diffraction data

With the emergence of X-ray free-electron lasers, it is possible to investigate the structure of nanoscale samples by employing coherent diffractive imaging in the X-ray spectral regime. In this work, we developed a refinement method for structure reconstruction applicable to low-quality coherent diffraction data. The method is based on the gradient search method and considers the missing region of a diffraction pattern and the small number of detected photons. We introduced an initial estimate of the structure in the method to improve the convergence. The present method is applied to an experimental diffraction pattern of an Xe cluster obtained in an X-ray scattering experiment at the SPring-8 Angstrom Compact free-electron LAser (SACLA) facility. It is found that the electron density is successfully reconstructed from the diffraction pattern with a large missing region, with a good initial estimate of the structure. The diffraction pattern calculated from the reconstructed electron density reproduced the observed diffraction pattern well, including the characteristic intensity modulation in each ring. Our refinement method enables structure reconstruction from diffraction patterns under difficulties such as missing areas and low diffraction intensity, and it is potentially applicable to the structure determination of samples that have low scattering power.




ali

Extraordinary anisotropic thermal expansion in photosalient crystals

Although a plethora of metal complexes have been characterized, those having multifunctional properties are very rare. This article reports three isotypical complexes, namely [Cu(benzoate)L2], where L = 4-styryl­pyridine (4spy) (1), 2'-fluoro-4-styryl­pyridine (2F-4spy) (2) and 3'-fluoro-4-styryl­pyridine (3F-4spy) (3), which show photosalient behavior (photoinduced crystal mobility) while they undergo [2+2] cyclo­addition. These crystals also exhibit anisotropic thermal expansion when heated from room temperature to 200°C. The overall thermal expansion of the crystals is impressive, with the largest volumetric thermal expansion coefficients for 1, 2 and 3 of 241.8, 233.1 and 285.7 × 10−6 K−1, respectively, values that are comparable to only a handful of other reported materials known to undergo colossal thermal expansion. As a result of the expansion, their single crystals occasionally move by rolling. Altogether, these materials exhibit unusual and hitherto untapped solid-state properties.




ali

Small-angle neutron scattering studies suggest the mechanism of BinAB protein internalization

Small-angle neutron scattering (SANS) is one of the most widely used neutron-based approaches to study the solution structure of biological macromolecular systems. The selective deuterium labelling of different protein components of a complex provides a means to probe conformational changes in multiprotein complexes. The Lysinibacillus sphaericus mosquito-larvicidal BinAB proteins exert toxicity through interaction with the receptor Cqm1 protein; however, the nature of the complex is not known. Rationally engineered deuterated BinB (dBinB) protein from the L. sphaericus ISPC-8 species was synthesized using an Escherichia coli-based protein-expression system in M9 medium in D2O for `contrast-matched' SANS experiments. SANS data were independently analysed by ab initio indirect Fourier transform-based modelling and using crystal structures. These studies confirm the dimeric status of Cqm1 in 100% D2O with a longest intramolecular vector (Dmax) of ∼94 Å and a radius of gyration (Rg) of ∼31 Å. Notably, BinB binds to Cqm1, forming a heterodimeric complex (Dmax of ∼129 Å and Rg of ∼40 Å) and alters its oligomeric status from a dimer to a monomer, as confirmed by matched-out Cqm1–dBinB (Dmax of ∼70 Å and Rg of ∼22 Å). The present study thus provides the first insight into the events involved in the internalization of larvicidal proteins, likely by raft-dependent endocytosis.




ali

The resolution revolution in cryoEM requires high-quality sample preparation: a rapid pipeline to a high-resolution map of yeast fatty acid synthase

Single-particle electron cryo-microscopy (cryoEM) has undergone a `resolution revolution' that makes it possible to characterize megadalton (MDa) complexes at atomic resolution without crystals. To fully exploit the new opportunities in molecular microscopy, new procedures for the cloning, expression and purification of macromolecular complexes need to be explored. Macromolecular assemblies are often unstable, and invasive construct design or inadequate purification conditions and sample-preparation methods can result in disassembly or denaturation. The structure of the 2.6 MDa yeast fatty acid synthase (FAS) has been studied by electron microscopy since the 1960s. Here, a new, streamlined protocol for the rapid production of purified yeast FAS for structure determination by high-resolution cryoEM is reported. Together with a companion protocol for preparing cryoEM specimens on a hydrophilized graphene layer, the new protocol yielded a 3.1 Å resolution map of yeast FAS from 15 000 automatically picked particles within a day. The high map quality enabled a complete atomic model of an intact fungal FAS to be built.




ali

Scanning electron microscopy as a method for sample visualization in protein X-ray crystallography

Developing methods to determine high-resolution structures from micrometre- or even submicrometre-sized protein crystals has become increasingly important in recent years. This applies to both large protein complexes and membrane proteins, where protein production and the subsequent growth of large homogeneous crystals is often challenging, and to samples which yield only micro- or nanocrystals such as amyloid or viral polyhedrin proteins. The versatile macromolecular crystallography microfocus (VMXm) beamline at Diamond Light Source specializes in X-ray diffraction measurements from micro- and nanocrystals. Because of the possibility of measuring data from crystalline samples that approach the resolution limit of visible-light microscopy, the beamline design includes a scanning electron microscope (SEM) to visualize, locate and accurately centre crystals for X-ray diffraction experiments. To ensure that scanning electron microscopy is an appropriate method for sample visualization, tests were carried out to assess the effect of SEM radiation on diffraction quality. Cytoplasmic polyhedrosis virus polyhedrin protein crystals cryocooled on electron-microscopy grids were exposed to SEM radiation before X-ray diffraction data were collected. After processing the data with DIALS, no statistically significant difference in data quality was found between datasets collected from crystals exposed and not exposed to SEM radiation. This study supports the use of an SEM as a tool for the visualization of protein crystals and as an integrated visualization tool on the VMXm beamline.




ali

Visualization of protein crystals by high-energy phase-contrast X-ray imaging

For the extraction of the best possible X-ray diffraction data from macromolecular crystals, accurate positioning of the crystals with respect to the X-ray beam is crucial. In addition, information about the shape and internal defects of crystals allows the optimization of data-collection strategies. Here, it is demonstrated that the X-ray beam available on the macromolecular crystallo­graphy beamline P14 at the high-brilliance synchrotron-radiation source PETRA III at DESY, Hamburg, Germany can be used for high-energy phase-contrast microtomography of protein crystals mounted in an optically opaque lipidic cubic phase matrix. Three-dimensional tomograms have been obtained at X-ray doses that are substantially smaller and on time scales that are substantially shorter than those used for diffraction-scanning approaches that display protein crystals at micrometre resolution. Adding a compound refractive lens as an objective to the imaging setup, two-dimensional imaging at sub-micrometre resolution has been achieved. All experiments were performed on a standard macromolecular crystallography beamline and are compatible with standard diffraction data-collection workflows and apparatus. Phase-contrast X-ray imaging of macromolecular crystals could find wide application at existing and upcoming low-emittance synchrotron-radiation sources.




ali

The flavin mononucleotide cofactor in α-hydroxyacid oxidases exerts its electrophilic/nucleophilic duality in control of the substrate-oxidation level

The Y128F single mutant of p-hydroxymandelate oxidase (Hmo) is capable of oxidizing mandelate to benzoate via a four-electron oxidative decarboxylation reaction. When benzoylformate (the product of the first two-electron oxidation) and hydrogen peroxide (an oxidant) were used as substrates the reaction did not proceed, suggesting that free hydrogen peroxide is not the committed oxidant in the second two-electron oxidation. How the flavin mononucleotide (FMN)-dependent four-electron oxidation reaction takes place remains elusive. Structural and biochemical explorations have shed new light on this issue. 15 high-resolution crystal structures of Hmo and its mutants liganded with or without a substrate reveal that oxidized FMN (FMNox) possesses a previously unknown electrophilic/nucleophilic duality. In the Y128F mutant the active-site perturbation ensemble facilitates the polarization of FMNox to a nucleophilic ylide, which is in a position to act on an α-ketoacid, forming an N5-acyl-FMNred dead-end adduct. In four-electron oxidation, an intramolecular disproportion­ation reaction via an N5-alkanol-FMNred C'α carbanion intermediate may account for the ThDP/PLP/NADPH-independent oxidative decarboxylation reaction. A synthetic 5-deaza-FMNox cofactor in combination with an α-hydroxyamide or α-ketoamide biochemically and structurally supports the proposed mechanism.




ali

ALIXE: a phase-combination tool for fragment-based molecular replacement

Fragment-based molecular replacement exploits the use of very accurate yet incomplete search models. In the case of the ARCIMBOLDO programs, consistent phase sets produced from the placement and refinement of fragments with Phaser can be combined in order to increase their signal before proceeding to the step of density modification and autotracing with SHELXE. The program ALIXE compares multiple phase sets, evaluating mean phase differences to determine their common origin, and subsequently produces sets of combined phases that group consistent solutions. In this work, its use on different scenarios of very partial molecular-replacement solutions and its performance after the development of a much-optimized set of algorithms are described. The program is available both standalone and integrated within the ARCIMBOLDO programs. ALIXE has been analysed to identify its rate-limiting steps while exploring the best parameterization to improve its performance and make this software efficient enough to work on modest hardware. The algorithm has been parallelized and redesigned to meet the typical landscape of solutions. Analysis of pairwise correlation between the phase sets has also been explored to test whether this would provide additional insight. ALIXE can be used to exhaustively analyse all partial solutions produced or to complement those already selected for expansion, and also to reduce the number of redundant solutions, which is particularly relevant to the case of coiled coils, or to combine partial solutions from different programs. In each case parallelization and optimization to provide speedup makes its use amenable to typical hardware found in crystallography. ARCIMBOLDO_BORGES and ARCIMBOLDO_SHREDDER now call on ALIXE by default.