sen

Multisensory Integration and the Society for Neuroscience: Then and Now

Barry E. Stein
Jan 2, 2020; 40:3-11
Viewpoints




sen

The Cognitive Thalamus as a Gateway to Mental Representations

Mathieu Wolff
Jan 2, 2019; 39:3-14
Viewpoints




sen

{Delta}9-Tetrahydrocannabinol and Cannabinol Activate Capsaicin-Sensitive Sensory Nerves via a CB1 and CB2 Cannabinoid Receptor-Independent Mechanism

Peter M. Zygmunt
Jun 1, 2002; 22:4720-4727
Behavioral




sen

The Representation of Semantic Information Across Human Cerebral Cortex During Listening Versus Reading Is Invariant to Stimulus Modality

Fatma Deniz
Sep 25, 2019; 39:7722-7736
BehavioralSystemsCognitive




sen

Astrocytes Modulate Baroreflex Sensitivity at the Level of the Nucleus of the Solitary Tract

Svetlana Mastitskaya
Apr 8, 2020; 40:3052-3062
Systems/Circuits




sen

A framework for mesencephalic dopamine systems based on predictive Hebbian learning

PR Montague
Mar 1, 1996; 16:1936-1947
Articles




sen

Adaptive representation of dynamics during learning of a motor task

R Shadmehr
May 1, 1994; 14:3208-3224
Articles




sen

The neural circuit for touch sensitivity in Caenorhabditis elegans

M Chalfie
Apr 1, 1985; 5:956-964
Articles




sen

Les divergences s'accroissent sur les marchés : Rapport trimestriel de la BRI

French translation of the BIS press release about the BIS Quarterly Review, September 2018




sen

Nuevos baches en la senda de la normalización: Informe Trimestral del BPI

Spanish translation of the BIS press release about the BIS Quarterly Review, December 2018






sen

4 Sales Presentation Innovations That Keep Viewers on the Edge of Their Seats

People have been giving presentations for thousands of years, from Moses with his stone tablets to Elon Musk revealing his grand plans to colonize Mars. While the elements of a great pitchman generally have remained the same over the past 5,000 years -- conviction, charisma, credibility -- today's successful presenters do more than just get in front of an audience and talk.




sen

Architect Robert A.M. Stern: Presence of the Past




sen

Exiting low inflation traps by "consensus": nominal wages and price stability

Exiting low inflation traps by "consensus": nominal wages and price stability - Speech by Luiz A Pereira da Silva and Benoît Mojon, based on the keynote speech at the Eighth High-level Policy Dialogue between the Eurosystem and Latin American Central Banks, Cartagena de Indias, Colombia, 28-29 November 2019.




sen

Cross Recruitment of Domain-Selective Cortical Representations Enables Flexible Semantic Knowledge

Knowledge about objects encompasses not only their prototypical features but also complex, atypical, semantic knowledge (e.g., "Pizza was invented in Naples"). This fMRI study of male and female human participants combines univariate and multivariate analyses to consider the cortical representation of this more complex semantic knowledge. Using the categories of food, people, and places, this study investigates whether access to spatially related geographic semantic knowledge (1) involves the same domain-selective neural representations involved in access to prototypical taste knowledge about food; and (2) elicits activation of neural representations classically linked to places when this geographic knowledge is accessed about food and people. In three experiments using word stimuli, domain-relevant and atypical conceptual access for the categories food, people, and places were assessed. Results uncover two principles of semantic representation: food-selective representations in the left insula continue to be recruited when prototypical taste knowledge is task-irrelevant and under conditions of high cognitive demand; access to geographic knowledge for food and people categories involves the additional recruitment of classically place-selective parahippocampal gyrus, retrosplenial complex, and transverse occipital sulcus. These findings underscore the importance of object category in the representation of a broad range of knowledge, while showing how the cross recruitment of specialized representations may endow the considerable flexibility of our complex semantic knowledge.

SIGNIFICANCE STATEMENT We know not only stereotypical things about objects (an apple is round, graspable, edible) but can also flexibly combine typical and atypical features to form complex concepts (the metaphorical role an apple plays in Judeo-Christian belief). In this fMRI study, we observe that, when atypical geographic knowledge is accessed about food dishes, domain-selective sensorimotor-related cortical representations continue to be recruited, but that regions classically associated with place perception are additionally engaged. This interplay between categorically driven representations, linked to the object being accessed, and the flexible recruitment of semantic stores linked to the content being accessed, provides a potential mechanism for the broad representational repertoire of our semantic system.




sen

Task Errors Drive Memories That Improve Sensorimotor Adaptation

Traditional views of sensorimotor adaptation (i.e., adaptation of movements to perturbed sensory feedback) emphasize the role of automatic, implicit correction of sensory prediction errors. However, latent memories formed during sensorimotor adaptation, manifest as improved relearning (e.g., savings), have recently been attributed to strategic corrections of task errors (failures to achieve task goals). To dissociate contributions of task errors and sensory prediction errors to latent sensorimotor memories, we perturbed target locations to remove or enforce task errors during learning and/or test, with male/female human participants. Adaptation improved after learning in all conditions where participants were permitted to correct task errors, and did not improve whenever we prevented correction of task errors. Thus, previous correction of task errors was both necessary and sufficient to improve adaptation. In contrast, a history of sensory prediction errors was neither sufficient nor obligatory for improved adaptation. Limiting movement preparation time showed that the latent memories driven by learning to correct task errors take at least two forms: a time-consuming but flexible component, and a rapidly expressible, inflexible component. The results provide strong support for the idea that movement corrections driven by a failure to successfully achieve movement goals underpin motor memories that manifest as savings. Such persistent memories are not exclusively mediated by time-consuming strategic processes but also comprise a rapidly expressible but inflexible component. The distinct characteristics of these putative processes suggest dissociable underlying mechanisms, and imply that identification of the neural basis for adaptation and savings will require methods that allow such dissociations.

SIGNIFICANCE STATEMENT Latent motor memories formed during sensorimotor adaptation manifest as improved adaptation when sensorimotor perturbations are reencountered. Conflicting theories suggest that this "savings" is underpinned by different mechanisms, including a memory of successful actions, a memory of errors, or an aiming strategy to correct task errors. Here we show that learning to correct task errors is sufficient to show improved subsequent adaptation with respect to naive performance, even when tested in the absence of task errors. In contrast, a history of sensory prediction errors is neither sufficient nor obligatory for improved adaptation. Finally, we show that latent sensorimotor memories driven by task errors comprise at least two distinct components: a time-consuming, flexible component, and a rapidly expressible, inflexible component.




sen

Astrocytes Modulate Baroreflex Sensitivity at the Level of the Nucleus of the Solitary Tract

Maintenance of cardiorespiratory homeostasis depends on autonomic reflexes controlled by neuronal circuits of the brainstem. The neurophysiology and neuroanatomy of these reflex pathways are well understood, however, the mechanisms and functional significance of autonomic circuit modulation by glial cells remain largely unknown. In the experiments conducted in male laboratory rats we show that astrocytes of the nucleus of the solitary tract (NTS), the brain area that receives and integrates sensory information from the heart and blood vessels, respond to incoming afferent inputs with [Ca2+]i elevations. Astroglial [Ca2+]i responses are triggered by transmitters released by vagal afferents, glutamate acting at AMPA receptors and 5-HT acting at 5-HT2A receptors. In conscious freely behaving animals blockade of Ca2+-dependent vesicular release mechanisms in NTS astrocytes by virally driven expression of a dominant-negative SNARE protein (dnSNARE) increased baroreflex sensitivity by 70% (p < 0.001). This effect of compromised astroglial function was specific to the NTS as expression of dnSNARE in astrocytes of the ventrolateral brainstem had no effect. ATP is considered the principle gliotransmitter and is released by vesicular mechanisms blocked by dnSNARE expression. Consistent with this hypothesis, in anesthetized rats, pharmacological activation of P2Y1 purinoceptors in the NTS decreased baroreflex gain by 40% (p = 0.031), whereas blockade of P2Y1 receptors increased baroreflex gain by 57% (p = 0.018). These results suggest that glutamate and 5-HT, released by NTS afferent terminals, trigger Ca2+-dependent astroglial release of ATP to modulate baroreflex sensitivity via P2Y1 receptors. These data add to the growing body of evidence supporting an active role of astrocytes in brain information processing.

SIGNIFICANCE STATEMENT Cardiorespiratory reflexes maintain autonomic balance and ensure cardiovascular health. Impaired baroreflex may contribute to the development of cardiovascular disease and serves as a robust predictor of cardiovascular and all-cause mortality. The data obtained in this study suggest that astrocytes are integral components of the brainstem mechanisms that process afferent information and modulate baroreflex sensitivity via the release of ATP. Any condition associated with higher levels of "ambient" ATP in the NTS would be expected to decrease baroreflex gain by the mechanism described here. As ATP is the primary signaling molecule of glial cells (astrocytes, microglia), responding to metabolic stress and inflammatory stimuli, our study suggests a plausible mechanism of how the central component of the baroreflex is affected in pathological conditions.




sen

Ultra-high-resolution fMRI of Human Ventral Temporal Cortex Reveals Differential Representation of Categories and Domains

Human ventral temporal cortex (VTC) is critical for visual recognition. It is thought that this ability is supported by large-scale patterns of activity across VTC that contain information about visual categories. However, it is unknown how category representations in VTC are organized at the submillimeter scale and across cortical depths. To fill this gap in knowledge, we measured BOLD responses in medial and lateral VTC to images spanning 10 categories from five domains (written characters, bodies, faces, places, and objects) at an ultra-high spatial resolution of 0.8 mm using 7 Tesla fMRI in both male and female participants. Representations in lateral VTC were organized most strongly at the general level of domains (e.g., places), whereas medial VTC was also organized at the level of specific categories (e.g., corridors and houses within the domain of places). In both lateral and medial VTC, domain-level and category-level structure decreased with cortical depth, and downsampling our data to standard resolution (2.4 mm) did not reverse differences in representations between lateral and medial VTC. The functional diversity of representations across VTC partitions may allow downstream regions to read out information in a flexible manner according to task demands. These results bridge an important gap between electrophysiological recordings in single neurons at the micron scale in nonhuman primates and standard-resolution fMRI in humans by elucidating distributed responses at the submillimeter scale with ultra-high-resolution fMRI in humans.

SIGNIFICANCE STATEMENT Visual recognition is a fundamental ability supported by human ventral temporal cortex (VTC). However, the nature of fine-scale, submillimeter distributed representations in VTC is unknown. Using ultra-high-resolution fMRI of human VTC, we found differential distributed visual representations across lateral and medial VTC. Domain representations (e.g., faces, bodies, places, characters) were most salient in lateral VTC, whereas category representations (e.g., corridors/houses within the domain of places) were equally salient in medial VTC. These results bridge an important gap between electrophysiological recordings in single neurons at a micron scale and fMRI measurements at a millimeter scale.




sen

Neural Evidence for the Prediction of Animacy Features during Language Comprehension: Evidence from MEG and EEG Representational Similarity Analysis

It has been proposed that people can generate probabilistic predictions at multiple levels of representation during language comprehension. We used magnetoencephalography (MEG) and electroencephalography (EEG), in combination with representational similarity analysis, to seek neural evidence for the prediction of animacy features. In two studies, MEG and EEG activity was measured as human participants (both sexes) read three-sentence scenarios. Verbs in the final sentences constrained for either animate or inanimate semantic features of upcoming nouns, and the broader discourse context constrained for either a specific noun or for multiple nouns belonging to the same animacy category. We quantified the similarity between spatial patterns of brain activity following the verbs until just before the presentation of the nouns. The MEG and EEG datasets revealed converging evidence that the similarity between spatial patterns of neural activity following animate-constraining verbs was greater than following inanimate-constraining verbs. This effect could not be explained by lexical-semantic processing of the verbs themselves. We therefore suggest that it reflected the inherent difference in the semantic similarity structure of the predicted animate and inanimate nouns. Moreover, the effect was present regardless of whether a specific word could be predicted, providing strong evidence for the prediction of coarse-grained semantic features that goes beyond the prediction of individual words.

SIGNIFICANCE STATEMENT Language inputs unfold very quickly during real-time communication. By predicting ahead, we can give our brains a "head start," so that language comprehension is faster and more efficient. Although most contexts do not constrain strongly for a specific word, they do allow us to predict some upcoming information. For example, following the context of "they cautioned the...," we can predict that the next word will be animate rather than inanimate (we can caution a person, but not an object). Here, we used EEG and MEG techniques to show that the brain is able to use these contextual constraints to predict the animacy of upcoming words during sentence comprehension, and that these predictions are associated with specific spatial patterns of neural activity.




sen

Neural Circuit Dynamics for Sensory Detection

We consider the question of how sensory networks enable the detection of sensory stimuli in a combinatorial coding space. We are specifically interested in the olfactory system, wherein recent experimental studies have reported the existence of rich, enigmatic response patterns associated with stimulus onset and offset. This study aims to identify the functional relevance of such response patterns (i.e., what benefits does such neural activity provide in the context of detecting stimuli in a natural environment). We study this problem through the lens of normative, optimization-based modeling. Here, we define the notion of a low-dimensional latent representation of stimulus identity, which is generated through action of the sensory network. The objective of our optimization framework is to ensure high-fidelity tracking of a nominal representation in this latent space in an energy-efficient manner. It turns out that the optimal motifs emerging from this framework possess morphologic similarity with prototypical onset and offset responses observed in vivo in locusts (Schistocerca americana) of either sex. Furthermore, this objective can be exactly achieved by a network with reciprocal excitatory–inhibitory competitive dynamics, similar to interactions between projection neurons and local neurons in the early olfactory system of insects. The derived model also makes several predictions regarding maintenance of robust latent representations in the presence of confounding background information and trade-offs between the energy of sensory activity and resultant behavioral measures such as speed and accuracy of stimulus detection.

SIGNIFICANCE STATEMENT A key area of study in olfactory coding involves understanding the transformation from high-dimensional sensory stimulus to low-dimensional decoded representation. Here, we examine not only the dimensionality reduction of this mapping but also its temporal dynamics, with specific focus on stimuli that are temporally continuous. Through optimization-based synthesis, we examine how sensory networks can track representations without prior assumption of discrete trial structure. We show that such tracking can be achieved by canonical network architectures and dynamics, and that the resulting responses resemble observations from neurons in the insect olfactory system. Thus, our results provide hypotheses regarding the functional role of olfactory circuit activity at both single neuronal and population scales.




sen

Treatment with Mesenchymal-Derived Extracellular Vesicles Reduces Injury-Related Pathology in Pyramidal Neurons of Monkey Perilesional Ventral Premotor Cortex

Functional recovery after cortical injury, such as stroke, is associated with neural circuit reorganization, but the underlying mechanisms and efficacy of therapeutic interventions promoting neural plasticity in primates are not well understood. Bone marrow mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), which mediate cell-to-cell inflammatory and trophic signaling, are thought be viable therapeutic targets. We recently showed, in aged female rhesus monkeys, that systemic administration of MSC-EVs enhances recovery of function after injury of the primary motor cortex, likely through enhancing plasticity in perilesional motor and premotor cortices. Here, using in vitro whole-cell patch-clamp recording and intracellular filling in acute slices of ventral premotor cortex (vPMC) from rhesus monkeys (Macaca mulatta) of either sex, we demonstrate that MSC-EVs reduce injury-related physiological and morphologic changes in perilesional layer 3 pyramidal neurons. At 14-16 weeks after injury, vPMC neurons from both vehicle- and EV-treated lesioned monkeys exhibited significant hyperexcitability and predominance of inhibitory synaptic currents, compared with neurons from nonlesioned control brains. However, compared with vehicle-treated monkeys, neurons from EV-treated monkeys showed lower firing rates, greater spike frequency adaptation, and excitatory:inhibitory ratio. Further, EV treatment was associated with greater apical dendritic branching complexity, spine density, and inhibition, indicative of enhanced dendritic plasticity and filtering of signals integrated at the soma. Importantly, the degree of EV-mediated reduction of injury-related pathology in vPMC was significantly correlated with measures of behavioral recovery. These data show that EV treatment dampens injury-related hyperexcitability and restores excitatory:inhibitory balance in vPMC, thereby normalizing activity within cortical networks for motor function.

SIGNIFICANCE STATEMENT Neuronal plasticity can facilitate recovery of function after cortical injury, but the underlying mechanisms and efficacy of therapeutic interventions promoting this plasticity in primates are not well understood. Our recent work has shown that intravenous infusions of mesenchymal-derived extracellular vesicles (EVs) that are involved in cell-to-cell inflammatory and trophic signaling can enhance recovery of motor function after injury in monkey primary motor cortex. This study shows that this EV-mediated enhancement of recovery is associated with amelioration of injury-related hyperexcitability and restoration of excitatory-inhibitory balance in perilesional ventral premotor cortex. These findings demonstrate the efficacy of mesenchymal EVs as a therapeutic to reduce injury-related pathologic changes in the physiology and structure of premotor pyramidal neurons and support recovery of function.




sen

Impairment of Pattern Separation of Ambiguous Scenes by Single Units in the CA3 in the Absence of the Dentate Gyrus

Theoretical models and experimental evidence have suggested that connections from the dentate gyrus (DG) to CA3 play important roles in representing orthogonal information (i.e., pattern separation) in the hippocampus. However, the effects of eliminating the DG on neural firing patterns in the CA3 have rarely been tested in a goal-directed memory task that requires both the DG and CA3. In this study, selective lesions in the DG were made using colchicine in male Long–Evans rats, and single units from the CA3 were recorded as the rats performed visual scene memory tasks. The original scenes used in training were altered during testing by blurring to varying degrees or by using visual masks, resulting in maximal recruitment of the DG–CA3 circuits. Compared with controls, the performance of rats with DG lesions was particularly impaired when blurred scenes were used in the task. In addition, the firing rate modulation associated with visual scenes in these rats was significantly reduced in the single units recorded from the CA3 when ambiguous scenes were presented, largely because DG-deprived CA3 cells did not show stepwise, categorical rate changes across varying degrees of scene ambiguity compared with controls. These findings suggest that the DG plays key roles not only during the acquisition of scene memories but also during retrieval when modified visual scenes are processed in conjunction with the CA3 by making the CA3 network respond orthogonally to ambiguous scenes.

SIGNIFICANCE STATEMENT Despite the behavioral evidence supporting the role of the dentate gyrus in pattern separation in the hippocampus, the underlying neural mechanisms are largely unknown. By recording single units from the CA3 in DG-lesioned rats performing a visual scene memory task, we report that the scene-related modulation of neural firing was significantly reduced in the DG-lesion rats compared with controls, especially when the original scene stimuli were ambiguously altered. Our findings suggest that the dentate gyrus plays an essential role during memory retrieval and performs a critical computation to make categorical rate modulation occur in the CA3 between different scenes, especially when ambiguity is present in the environment.




sen

Carbon Monoxide, a Retrograde Messenger Generated in Postsynaptic Mushroom Body Neurons, Evokes Noncanonical Dopamine Release

Dopaminergic neurons innervate extensive areas of the brain and release dopamine (DA) onto a wide range of target neurons. However, DA release is also precisely regulated. In Drosophila melanogaster brain explant preparations, DA is released specifically onto α3/α'3 compartments of mushroom body (MB) neurons that have been coincidentally activated by cholinergic and glutamatergic inputs. The mechanism for this precise release has been unclear. Here we found that coincidentally activated MB neurons generate carbon monoxide (CO), which functions as a retrograde signal evoking local DA release from presynaptic terminals. CO production depends on activity of heme oxygenase in postsynaptic MB neurons, and CO-evoked DA release requires Ca2+ efflux through ryanodine receptors in DA terminals. CO is only produced in MB areas receiving coincident activation, and removal of CO using scavengers blocks DA release. We propose that DA neurons use two distinct modes of transmission to produce global and local DA signaling.

SIGNIFICANCE STATEMENT Dopamine (DA) is needed for various higher brain functions, including memory formation. However, DA neurons form extensive synaptic connections, while memory formation requires highly specific and localized DA release. Here we identify a mechanism through which DA release from presynaptic terminals is controlled by postsynaptic activity. Postsynaptic neurons activated by cholinergic and glutamatergic inputs generate carbon monoxide, which acts as a retrograde messenger inducing presynaptic DA release. Released DA is required for memory-associated plasticity. Our work identifies a novel mechanism that restricts DA release to the specific postsynaptic sites that require DA during memory formation.




sen

Type I Interferons Act Directly on Nociceptors to Produce Pain Sensitization: Implications for Viral Infection-Induced Pain

One of the first signs of viral infection is body-wide aches and pain. Although this type of pain usually subsides, at the extreme, viral infections can induce painful neuropathies that can last for decades. Neither of these types of pain sensitization is well understood. A key part of the response to viral infection is production of interferons (IFNs), which then activate their specific receptors (IFNRs) resulting in downstream activation of cellular signaling and a variety of physiological responses. We sought to understand how type I IFNs (IFN-α and IFN-β) might act directly on nociceptors in the dorsal root ganglion (DRG) to cause pain sensitization. We demonstrate that type I IFNRs are expressed in small/medium DRG neurons and that their activation produces neuronal hyper-excitability and mechanical pain in mice. Type I IFNs stimulate JAK/STAT signaling in DRG neurons but this does not apparently result in PKR-eIF2α activation that normally induces an anti-viral response by limiting mRNA translation. Rather, type I IFNs stimulate MNK-mediated eIF4E phosphorylation in DRG neurons to promote pain hypersensitivity. Endogenous release of type I IFNs with the double-stranded RNA mimetic poly(I:C) likewise produces pain hypersensitivity that is blunted in mice lacking MNK-eIF4E signaling. Our findings reveal mechanisms through which type I IFNs cause nociceptor sensitization with implications for understanding how viral infections promote pain and can lead to neuropathies.

SIGNIFICANCE STATEMENT It is increasingly understood that pathogens interact with nociceptors to alert organisms to infection as well as to mount early host defenses. Although specific mechanisms have been discovered for diverse bacterial and fungal pathogens, mechanisms engaged by viruses have remained elusive. Here we show that type I interferons, one of the first mediators produced by viral infection, act directly on nociceptors to produce pain sensitization. Type I interferons act via a specific signaling pathway (MNK-eIF4E signaling), which is known to produce nociceptor sensitization in inflammatory and neuropathic pain conditions. Our work reveals a mechanism through which viral infections cause heightened pain sensitivity




sen

Nestin Selectively Facilitates the Phosphorylation of the Lissencephaly-Linked Protein Doublecortin (DCX) by cdk5/p35 to Regulate Growth Cone Morphology and Sema3a Sensitivity in Developing Neurons

Nestin, an intermediate filament protein widely used as a marker of neural progenitors, was recently found to be expressed transiently in developing cortical neurons in culture and in developing mouse cortex. In young cortical cultures, nestin regulates axonal growth cone morphology. In addition, nestin, which is known to bind the neuronal cdk5/p35 kinase, affects responses to axon guidance cues upstream of cdk5, specifically, to Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, and changes in microtubules and actin filaments are well studied. In contrast, the roles of intermediate filament proteins in this process are poorly understood, even in cultured neurons. Here, we investigate the molecular mechanism by which nestin affects growth cone morphology and Sema3a sensitivity. We find that nestin selectively facilitates the phosphorylation of the lissencephaly-linked protein doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected by nestin. We uncover that this substrate selectivity is based on the ability of nestin to interact with DCX, but not with other cdk5 substrates. Nestin thus creates a selective scaffold for DCX with activated cdk5/p35. Last, we use cortical cultures derived from Dcx KO mice to show that the effects of nestin on growth cone morphology and on Sema3a sensitivity are DCX-dependent, thus suggesting a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating the intracellular kinase signaling environment in developing neurons. The sex of animal subjects is unknown.

SIGNIFICANCE STATEMENT Nestin, an intermediate filament protein highly expressed in neural progenitors, was recently identified in developing neurons where it regulates growth cone morphology and responsiveness to the guidance cue Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, but the roles of intermediate filaments in this process are poorly understood. We now report that nestin selectively facilitates phosphorylation of the lissencephaly-linked doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected. This substrate selectivity is based on preferential scaffolding of DCX, cdk5, and p35 by nestin. Additionally, we demonstrate a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating intracellular kinase signaling in developing neurons.




sen

Calcineurin Inhibition Causes {alpha}2{delta}-1-Mediated Tonic Activation of Synaptic NMDA Receptors and Pain Hypersensitivity

Calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, are widely used as standard immunosuppressants in organ transplantation recipients. However, these drugs can cause severe pain in patients, commonly referred to as calcineurin inhibitor-induced pain syndrome (CIPS). Although calcineurin inhibition increases NMDAR activity in the spinal cord, the underlying mechanism remains enigmatic. Using an animal model of CIPS, we found that systemic administration of FK506 in male and female mice significantly increased the amount of α2-1–GluN1 complexes in the spinal cord and the level of α2-1–bound GluN1 proteins in spinal synaptosomes. Treatment with FK506 significantly increased the frequency of mEPSCs and the amplitudes of monosynaptic EPSCs evoked from the dorsal root and puff NMDAR currents in spinal dorsal horn neurons. Inhibiting α2-1 with gabapentin or disrupting the α2-1–NMDAR interaction with α2-1Tat peptide completely reversed the effects of FK506. In α2-1 gene KO mice, treatment with FK506 failed to increase the frequency of NMDAR-mediated mEPSCs and the amplitudes of evoked EPSCs and puff NMDAR currents in spinal dorsal horn neurons. Furthermore, systemic administration of gabapentin or intrathecal injection of α2-1Tat peptide reversed thermal and mechanical hypersensitivity in FK506-treated mice. In addition, genetically deleting GluN1 in dorsal root ganglion neurons or α2-1 genetic KO similarly attenuated FK506-induced thermal and mechanical hypersensitivity. Together, our findings indicate that α2-1–bound NMDARs mediate calcineurin inhibitor-induced tonic activation of presynaptic and postsynaptic NMDARs at the spinal cord level and that presynaptic NMDARs play a prominent role in the development of CIPS.

SIGNIFICANCE STATEMENT Calcineurin inhibitors are immunosuppressants used to prevent rejection of transplanted organs and tissues. However, these drugs can cause severe, unexplained pain. We showed that calcineurin inhibition enhances physical interaction between α2-1 and NMDARs and their synaptic trafficking in the spinal cord. α2-1 is essential for calcineurin inhibitor-induced aberrant activation of presynaptic and postsynaptic NMDARs in the spinal cord. Furthermore, inhibiting α2-1 or disrupting α2-1–NMDAR interaction reduces calcineurin inhibitor-induced pain hypersensitivity. Eliminating NMDARs in primary sensory neurons or α2-1 KO also attenuates calcineurin inhibitor-induced pain hypersensitivity. This new information extends our mechanistic understanding of the role of endogenous calcineurin in regulating synaptic plasticity and nociceptive transmission and suggests new strategies for treating this painful condition.




sen

Water – the most basic resource but also the most essential

Basic facts The world contains an estimated 1 400 million cubic km of water. Only 0.003% of this vast amount, about 45 000 cubic km, are what is called “fresh water resources” - water that theoretically can be used for drinking, hygiene, agriculture and industry. But not all of this water is accessible. For example, seasonal flooding makes water extremely difficult [...]




sen

Aboard the EAF-Nansen

Join us virtually on the Dr Fridtjof Nansen, a marine research vessel, as it embarks on a month-long cruise departing from Cape Town, South Africa, to conduct scientific research in the deep seas of the Southeast Atlantic Fisheries Organization (SEAFO) convention area before arriving at Walvis Bay, Namibia.  Since 1975, FAO and the Norwegian Agency for Development Cooperation have collaborated with [...]




sen

Garcia sentenced to 33 months: Charged with importing drugs into Ketchikan




sen

Assembly OKs ‘salmon cans’: Set of policy issue statements that Boro representative will take to D.C. approved




sen

Insect With ‘Wacky Fashion Sense’ Named After Lady Gaga

It’s not quite a meat dress, but Kaikaia gaga does boast some impressive horn-like appendages




sen

Stores Launch Special Shopping Times for Seniors and Other Groups Vulnerable to COVID-19

But will that keep susceptible populations safe?




sen

Hollywood's 'Golden Age' Saw Massive Dip in Female Film Representation

A new study ties the ousting of women directors, actors, producers and screenwriters to the rise of entertainment studios




sen

Angel Wars: The Messengers




sen

Closing arguments presented at trial of Regina man accused of sexually assaulting 14-year-old

Closing arguments were presented at the trial of Phillip Lionel Levac on Friday at Regina Court of Queen's Bench.



  • News/Canada/Saskatchewan

sen

Lutsen Mountains looks to major expansion, doubling ski area

A large destination resort in Minnesota, just a few hours south of Thunder Bay, Ont., has some big expansion plans.



  • News/Canada/Thunder Bay

sen

Comment on Preetika: The chosen one by Anonymous

<span class="topsy_trackback_comment"><span class="topsy_twitter_username"><span class="topsy_trackback_content"></span></span>




sen

Comment on Fresh trouble for SRK brought by the Shiv Sena men by mandapram_srk

<span class="topsy_trackback_comment"><span class="topsy_twitter_username"><span class="topsy_trackback_content">Fresh trouble for SRK brought by the Shiv Sena men http://bit.ly/i8tocu #IMCRadio.net</span></span>




sen

Keinen vergessen

Buenos Aires, Argentinen :: Die Mannschaft der Logos Hope zeigt mit Jugend mit einer Mission alten Menschen Gottes Liebe




sen

Ein Weg zu den Vergessenen

In einer Kleinstadt im Kaukasus finden Kinder neue Hoffnung.




sen

Art Chosen by Artists: Library of Congress National Exhibition of Prints (1943-77) – a New Research Guide

The following is a guest post by Katherine Blood, Curator of Fine Prints, Prints & Photographs Division. As the Library of Congress marks its 220th year of serving the nation, the publication of a new guide tells two stories: how staff have for decades worked with art professionals to build the collections and how by […]




sen

Easing trade tensions lift sentiment: BIS Quarterly Review

BIS Press Release - Easing trade tensions lift sentiment: BIS Quarterly Review, 8 December 2019




sen

Researchers discover new type of antigen-presenting immune cell

With a discovery that could rewrite the immunology textbooks, an international group of scientists, including the teams of Bart Lambrecht, Martin Guilliams, Hamida Hammad, and Charlotte Scott (all from the VIB-UGent Center for Inflammation Research) identified a new type of antigen-presenting immune cell.




sen

Why Wines From Israel's Negev Desert May Represent the Future of Viticulture

Overcoming scorching heat and little rain, experimental vineyards teach winemakers to cope with climate change




sen

$200 cheques for Manitoba seniors draw mix of praise, criticism

Earlier this week, Manitoba's premier announced $200 cheques for seniors to help pay for increased costs during the COVID-19 pandemic. But some wonder if there is a better way to help those in need.



  • News/Canada/Manitoba

sen

Benjamin E Diokno: The Bangko Sentral ng Pilipina's response to the Covid-19 pandemic

Speech by Mr Benjamin E Diokno, Governor of Bangko Sentral ng Pilipinas (BSP, the central bank of the Philippines), at an investor call with Standard Chartered Bank, Manila, 22 April 2020.




sen

City sending in 'park ambassadors' to inform, not to ticket

"Park ambassadors" will soon be on patrol at some of Ottawa's busiest public green spaces to help confused residents navigate the newly loosened COVID-19 restrictions, Mayor Jim Watson announced Friday.



  • News/Canada/Ottawa

sen

COVID-19 numbers from provincial, First Nations data sharing agreement won't be made public without consent

Manitoba health officials have an agreement with First Nations leaders to track and share COVID-19 data, but the public may never know specifics of what the unique agreement yields.



  • News/Canada/Manitoba

sen

With the goal of better representation in media, this college is launching an Indigenous cinema program

Kiuna College hopes to play an active role in the emergence of the next generation of Indigenous filmmakers and creators.