ath Math Students + Habitat for Humanity build homes By www.ams.org Published On :: Tue, 24 Dec 2019 00:00:00 EST Students in a math class at Columbine High School in Colorado used geometry to work with Habitat for Humanity to build homes for those in need. See the video segment at "Students Build Houses For Families In Need...In Math Class," by Shaun Boyd, CBS4 Denver TV, December 23, 2019. Full Article
ath Mathematics from arts? By www.ams.orghttps Published On :: Fri, 27 Dec 2019 00:00:00 EST Full Article
ath Quanta hosts a new podcast series on mathematics By www.ams.org Published On :: Tue, 21 Jan 2020 00:00:00 EST "[W]hen the editors at Quanta Magazine invited me to host a podcast for them, I jumped at the chance...Through this podcast, I've been learning about the inner lives of some of the most intriguing mathematicians and scientists working today. [I]n every case, I wanted to know what makes them tick. I wanted to know why they do what they do, what they’ve discovered, and why it matters to them and to the world." Read "Why I'm Hosting The Joy of x Podcast," by Steven Strogatz, Quanta Magazine, January 14, 2020. Full Article
ath Mathematician Emily Riehl earns President's Frontier Award By www.ams.org Published On :: Tue, 21 Jan 2020 00:00:00 EST Emily Riehl, Johns Hopkins University, received the university's $250,000 President's Frontier Award, whose purpose is to nurture individuals at Johns Hopkins University who are breaking new ground and poised to become leaders in their field. Riehl studies category theory and says that "I just thought the proofs were the most beautiful of any of the other areas I've encountered. ... It was sort of love at first sight and I am lucky to be able to do what I love." The award is considered a "$250,000 investment in doing more of what she loves." Also see and hear this coverage: "Johns Hopkins Mathematician from B-N [Bloomington-Normal, IL] Breaks Barriers and Wins Research Grant, by Jolie Sherman, WGLT, February 27, 2020. Full Article
ath 2020 Mathematical Art Exhibition Awards By www.ams.org Published On :: Thu, 23 Jan 2020 00:00:00 EST The 2020 Mathematical Art Exhibition Awards were made at the Joint Mathematics Meetings last week "for aesthetically pleasing works that combine mathematics and art." The chosen works were selected from the exhibition of juried works in various media by over 90 mathematicians and artists from around the world. "Suspended Helical Stair," by Mark Donohue (California College of the Arts, San Francisco, CA), was awarded Best textile, sculpture, or other medium. "A unique cable system to suspend a stair was developed in collaboration with a leading structural engineer. The suspended cables form a double helicoid nested within an ascending spiral hyperboloid to create the necessary points of support for the gravity loads and lateral bracing for the seismic loads. Each concrete stair tread was designed as an independent element that is strung together with the stairs above and below it to form a single spiral stair when the steel cables that run through them are post tensioned. The entire stair tread and suspension cable system can be understood as a play of ruled surfaces with each part related to the other through their shared geometric lineage." The work is string and plywood,45 x 23 x 23 cm, 2018. 2018 "A Unit Domino," by Douglas McKenna (Mathemaesthetics, Inc., Boulder, CO), was awarded Best photograph, painting, or print. "This piece is based upon an artist-discovered "half-domino" space-filling curve. The drawing comprises some half-million connected line segments, arranged in two perfectly recursive levels of double-spiral pairs, slowly changing color, in a single, over-one-mile-long self-avoiding path from lower left to lower right (the lower right square that sticks out is an integral part of its self-negative structure). The limiting curve covers a self-similar gasket tile with an infinitely long, almost-everywhere linear border. With an upside-down copy of itself, two such gaskets of unit area exactly cover a 1x2 domino, without overlap. The artist's app/eBook "Hilbert Curves" for iPad/iPhone explains how he discovered these beautiful constructions." The work is a glicée print,106 x 66 cm, 2015. "Computational Wings," by David Bachman (Pitzer College, Claremont, CA), received Honorable Mention. "The body of this dragonfly is taken from a photograph, while the wings were computationally generated. A variety of algorithms were used to create them. First, a set of points were randomly populated across each wing and moved by a circle packing algorithm, where the radius of each circle was inversely proportional to the distance from the body. Next, those points were used to create a Voronoi diagram. Main veins were located by a shortest walk algorithm through the edges of this diagram, and those veins were given a variable thickness according to the distance travelled as you traverse them outward from the body." The work is laser etched acrylic, 23 x 35 x 3 cm, 2019. (Click on the thumbnails to see larger versions of the images.) The Mathematical Art Exhibition Award "for aesthetically pleasing works that combine mathematics and art" was established in 2008 through an endowment provided to the American Mathematical Society by an anonymous donor who wishes to acknowledge those whose works demonstrate the beauty and elegance of mathematics expressed in a visual art form. The awards are $400 for Best photograph, painting, or print; $400 for Best textile, sculpture, or other medium; and $200 for Honorable Mention. The Mathematical Art Exhibition of juried works in various media is held at the annual Joint Mathematics Meetings of the American Mathematical Society (AMS) and Mathematical Association of America (MAA). a gallery of works in the 2020 exhibition will be on AMS Mathematical Imagery. Find out more about the Mathematical Art Exhibition Award and see past recipients. [% ams_include('pao-contact') %] *** The American Mathematical Society is dedicated to advancing research and connecting the diverse global mathematical community through our publications, meetings and conferences, MathSciNet, professional services, advocacy, and awareness programs. Full Article
ath 2020 AMS Math Poetry Contest winners By www.ams.org Published On :: Mon, 27 Jan 2020 00:00:00 EST Congratulations to the 2020 AMS Math Poetry Contest Winners in the middle school, high school, and college categories: Sabrina Little, Mackintosh Academy, Boulder, for "Outlier;" Austen Mazenko, Cherry Creek High School, for "The Number Won; and Chenyu Lin, Colorado Christian University, for "x2 + y2 = 1(ife)." The poems were read during Mathemati-Con at the 2020 Joint Mathematics Meetings in Denver, CO. Read the poems and learn about the contest and Math and Poetry. (Photo: (left to right) Austen Mazenko, Sabrina Little, poetry contest judge Gizem Karaali, and Chenyu Lin. Full Article
ath Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers [Microbiology] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall–associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis. On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin. Full Article
ath A peroxisome deficiency-induced reductive cytosol state up-regulates the brain-derived neurotrophic factor pathway [Metabolism] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 The peroxisome is a subcellular organelle that functions in essential metabolic pathways, including biosynthesis of plasmalogens, fatty acid β-oxidation of very-long-chain fatty acids, and degradation of hydrogen peroxide. Peroxisome biogenesis disorders (PBDs) manifest as severe dysfunction in multiple organs, including the central nervous system (CNS), but the pathogenic mechanisms in PBDs are largely unknown. Because CNS integrity is coordinately established and maintained by neural cell interactions, we here investigated whether cell-cell communication is impaired and responsible for the neurological defects associated with PBDs. Results from a noncontact co-culture system consisting of primary hippocampal neurons with glial cells revealed that a peroxisome-deficient astrocytic cell line secretes increased levels of brain-derived neurotrophic factor (BDNF), resulting in axonal branching of the neurons. Of note, the BDNF expression in astrocytes was not affected by defects in plasmalogen biosynthesis and peroxisomal fatty acid β-oxidation in the astrocytes. Instead, we found that cytosolic reductive states caused by a mislocalized catalase in the peroxisome-deficient cells induce the elevation in BDNF secretion. Our results suggest that peroxisome deficiency dysregulates neuronal axogenesis by causing a cytosolic reductive state in astrocytes. We conclude that astrocytic peroxisomes regulate BDNF expression and thereby support neuronal integrity and function. Full Article
ath Cross-regulation between LUBAC and caspase-1 modulates cell death and inflammation [Signal Transduction] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 The linear ubiquitin assembly complex (LUBAC) is an essential component of the innate and adaptive immune system. Modification of cellular substrates with linear polyubiquitin chains is a key regulatory step in signal transduction that impacts cell death and inflammatory signaling downstream of various innate immunity receptors. Loss-of-function mutations in the LUBAC components HOIP and HOIL-1 yield a systemic autoinflammatory disease in humans, whereas their genetic ablation is embryonically lethal in mice. Deficiency of the LUBAC adaptor protein Sharpin results in a multi-organ inflammatory disease in mice characterized by chronic proliferative dermatitis (cpdm), which is propagated by TNFR1-induced and RIPK1-mediated keratinocyte cell death. We have previously shown that caspase-1 and -11 promoted the dermatitis pathology of cpdm mice and mediated cell death in the skin. Here, we describe a reciprocal regulation of caspase-1 and LUBAC activities in keratinocytes. We show that LUBAC interacted with caspase-1 via HOIP and modified its CARD domain with linear polyubiquitin and that depletion of HOIP or Sharpin resulted in heightened caspase-1 activation and cell death in response to inflammasome activation, unlike what is observed in macrophages. Reciprocally, caspase-1, as well as caspase-8, regulated LUBAC activity by proteolytically processing HOIP at Asp-348 and Asp-387 during the execution of cell death. HOIP processing impeded substrate ubiquitination in the NF-κB pathway and resulted in enhanced apoptosis. These results highlight a regulatory mechanism underlying efficient apoptosis in keratinocytes and provide further evidence of a cross-talk between inflammatory and cell death pathways. Full Article
ath Structural insight into the recognition of pathogen-derived phosphoglycolipids by C-type lectin receptor DCAR [Protein Structure and Folding] By www.jbc.org Published On :: 2020-04-24T06:08:45-07:00 The C-type lectin receptors (CLRs) form a family of pattern recognition receptors that recognize numerous pathogens, such as bacteria and fungi, and trigger innate immune responses. The extracellular carbohydrate-recognition domain (CRD) of CLRs forms a globular structure that can coordinate a Ca2+ ion, allowing receptor interactions with sugar-containing ligands. Although well-conserved, the CRD fold can also display differences that directly affect the specificity of the receptors for their ligands. Here, we report crystal structures at 1.8–2.3 Å resolutions of the CRD of murine dendritic cell-immunoactivating receptor (DCAR, or Clec4b1), the CLR that binds phosphoglycolipids such as acylated phosphatidyl-myo-inositol mannosides (AcPIMs) of mycobacteria. Using mutagenesis analysis, we identified critical residues, Ala136 and Gln198, on the surface surrounding the ligand-binding site of DCAR, as well as an atypical Ca2+-binding motif (Glu-Pro-Ser/EPS168–170). By chemically synthesizing a water-soluble ligand analog, inositol-monophosphate dimannose (IPM2), we confirmed the direct interaction of DCAR with the polar moiety of AcPIMs by biolayer interferometry and co-crystallization approaches. We also observed a hydrophobic groove extending from the ligand-binding site that is in a suitable position to interact with the lipid portion of whole AcPIMs. These results suggest that the hydroxyl group-binding ability and hydrophobic groove of DCAR mediate its specific binding to pathogen-derived phosphoglycolipids such as mycobacterial AcPIMs. Full Article
ath Biophysical characterization of SARAH domain-mediated multimerization of Hippo pathway complexes in Drosophila [Signal Transduction] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Hippo pathway signaling limits cell growth and proliferation and maintains the stem-cell niche. These cellular events result from the coordinated activity of a core kinase cassette that is regulated, in part, by interactions involving Hippo, Salvador, and dRassF. These interactions are mediated by a conserved coiled-coil domain, termed SARAH, in each of these proteins. SARAH domain–mediated homodimerization of Hippo kinase leads to autophosphorylation and activation. Paradoxically, SARAH domain–mediated heterodimerization between Hippo and Salvador enhances Hippo kinase activity in cells, whereas complex formation with dRassF inhibits it. To better understand the mechanism by which each complex distinctly modulates Hippo kinase and pathway activity, here we biophysically characterized the entire suite of SARAH domain–mediated complexes. We purified the three SARAH domains from Drosophila melanogaster and performed an unbiased pulldown assay to identify all possible interactions, revealing that isolated SARAH domains are sufficient to recapitulate the cellular assemblies and that Hippo is a universal binding partner. Additionally, we found that the Salvador SARAH domain homodimerizes and demonstrate that this interaction is conserved in Salvador's mammalian homolog. Using native MS, we show that each of these complexes is dimeric in solution. We also measured the stability of each SARAH domain complex, finding that despite similarities at both the sequence and structural levels, SARAH domain complexes differ in stability. The identity, stoichiometry, and stability of these interactions characterized here comprehensively reveal the nature of SARAH domain–mediated complex formation and provide mechanistic insights into how SARAH domain–mediated interactions influence Hippo pathway activity. Full Article
ath International study shows Hong Kong students' good performance in reading, mathematical and scientific literacy By www.info.gov.hk Published On :: Tue, 03 Dec 2019 16:32:13 Full Article
ath Comparing opioid-related deaths among cancer survivors, general population By www.eurekalert.org Published On :: Thu, 07 May 2020 00:00:00 EDT (JAMA Network) Death certificate data were used to compare the rate of opioid-related deaths in the US among cancer survivors with that of the general population from 2006 through 2016. Whether opioid-associated deaths in cancer survivors, who are often prescribed opioids for cancer-related pain, are rising at the same rate as in the general population is unknown. Full Article
ath 2020 April Monthly Weather Summary By www.hko.gov.hk Published On :: Monthly weather summary in Hong Kong Full Article I
ath Online Video Course, Public Course, Weather Observation By www.hko.gov.hk Published On :: The "Online Video Course on Weather Observation" will explain concisely the basic weather observation methods and techniques, such... Full Article I
ath Vitamin D linked to low virus death rate -- Study By www.eurekalert.org Published On :: Thu, 07 May 2020 00:00:00 EDT (Anglia Ruskin University) A new study has found an association between low average levels of vitamin D and high numbers of COVID-19 cases and mortality rates across 20 European countries. Full Article
ath A new way to accurately estimate COVID-19 death toll By www.eurekalert.org Published On :: Thu, 30 Apr 2020 00:00:00 EDT (Rutgers University) A Rutgers engineer has created a mathematical model that accurately estimates the death toll linked to the COVID-19 pandemic in the United States and could be used around the world. Full Article
ath NASA CubeSat mission to gather vital space weather data By www.eurekalert.org Published On :: Thu, 07 May 2020 00:00:00 EDT (NASA/Goddard Space Flight Center) NASA has selected a new pathfinding CubeSat mission to gather data not collected since the agency flew the Dynamics Explorer in the early 1980s. Full Article
ath New technique delivers complete DNA sequences of chromosomes inherited from mother and father By www.eurekalert.org Published On :: Wed, 06 May 2020 00:00:00 EDT (University of Adelaide) An international team of scientists led by the University of Adelaide's Davies Research Centre has shown that it is possible to disentangle the DNA sequences of the chromosomes inherited from the mother and the father, to create true diploid genomes from a single individual. Full Article
ath Glycemic Control and Hemoglobinopathy: When A1C May Not Be Reliable By spectrum.diabetesjournals.org Published On :: 2008-01-01 Arlene SmaldoneJan 1, 2008; 21:46-49Evidence-Based Clinical Decision Making Full Article
ath Integrative Metabolic Pathway Analysis Reveals Novel Therapeutic Targets in Osteoarthritis By feedproxy.google.com Published On :: 2020-04-01 Beatriz RochaApr 1, 2020; 19:574-588Research Full Article
ath Characterization of signaling pathways associated with pancreatic {beta}-cell adaptive flexibility in compensation of obesity-linked diabetes in db/db mice By feedproxy.google.com Published On :: 2020-04-07 Taewook KangApr 7, 2020; 0:RA119.001882v1-mcp.RA119.001882Research Full Article
ath Mathematical light shines blindly on us By blogs.ams.org Published On :: Mon, 09 Dec 2019 18:57:58 +0000 By William Yslas Vélez Professor Emeritus University of Arizona “When I go to a Mexican restaurant I would gladly pay the musicians to stop playing.” John (not his real name) did not like the noise level. This statement came up … Continue reading → Full Article Changing Graduate Programs General Uncategorized
ath A mathematician’s mission statement By blogs.ams.org Published On :: Thu, 23 Apr 2020 18:58:29 +0000 By Pamela E. Harris and Julianne Vega Companies and organizations are driven by their mission statements. These mission statements provide a concrete summary of what they value and what they work to achieve. Take for example the following mission statements: … Continue reading → Full Article career advancement General Uncategorized
ath Local Pathways Towards De-escalation of Libya's Conflict By feedproxy.google.com Published On :: Wed, 22 Jan 2020 10:20:01 +0000 Invitation Only Research Event 28 January 2020 - 3:00pm to 4:30pm Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Usama Otman Essed, Libya Center for Strategic & Future StudiesChair: Tim Eaton, Middle East and North Africa Programme, Chatham House A shaky truce remains broadly in place among rival Libyan forces fighting for control of Tripoli. However, a durable ceasefire to bring an end to the current bout of conflict, which was initiated by Khalifa Haftar’s Libyan Arab Armed Forces’ (LAAF) offensive on the capital in April 2019, has not been reached. In recent weeks attention has focused on talks hosted in Moscow and Berlin, with the former aimed at agreeing a ceasefire and the latter seeking to reach agreement among international actors to bring an end to external military support for Libyan warring actors, and to craft a way forward for future intra-Libyan talks. Yet, there has been little emphasis on Libyan actors – beyond Haftar and prime minister Fayez al-Serraj – in this process. This roundtable will bring together experts and policymakers to discuss means of de-escalating the conflict and seeking a lasting resolution through the development of interconnected intra-Libyan social and security negotiation tracks. Mr Usama Otman Essed of the Libya Center for Strategic and Future Studies (LCSFS) will present his research group’s ideas on these issues and discuss their ongoing efforts to promote dialogue among social and security actors.Attendance at this event is by invitation only. Event attributes Chatham House Rule Department/project Middle East and North Africa Programme Reni Zhelyazkova Programme Coordinator, Middle East and North Africa Programme +44 (0)20 7314 3624 Email Full Article
Reni Zhelyazkova Programme Coordinator, Middle East and North Africa Programme +44 (0)20 7314 3624 Email
ath Children 'born of war': a role for fathers? By feedproxy.google.com Published On :: Wed, 04 Mar 2020 13:28:47 +0000 4 March 2020 , Volume 96, Number 2 Camile Oliviera, Erin Baines Read Online In this article, we examine exceptional circumstances in which men who father children born as the result of conflict-related sexual violence assume full or partial responsibility for their child's well-being. Children ‘born of war’ are increasingly recognized as a particular victim group in relevant international policy frameworks. Their social status falls somewhere between the victimization of their mother and perpetration of their father. Given the circumstances of their birth, they often experience social rejection and loss of identity with a long-term impact on their well-being. Previous scholarship has primarily documented the challenges faced by their mothers as caregivers and as victims of wartime sexual violence. A discussion on fathers to children ‘born of war’ is absent, attributable not only to their perpetrator status, but also to the assumption that their identity is unknown or that a relationship between father and child is undesired. The article demonstrates this is not always the case. Based on research in northern Uganda between 2016 and 2019 which included interviews and focus group discussions with former male combatants in the rebel group the Lord's Resistance Army, we explore how some fathers seek to maintain a relationship with children born as the result of ‘forced marriage’ and assume partial or full responsibility for their well-being and care. Full Article
ath Combined EGFR and ROCK Inhibition in Triple-negative Breast Cancer Leads to Cell Death Via Impaired Autophagic Flux [Research] By feedproxy.google.com Published On :: 2020-02-01T00:05:30-08:00 Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with very limited therapeutic options. We have recently shown that the combined inhibition of EGFR and ROCK in TNBC cells results in cell death, however, the underlying mechanisms remain unclear. To investigate this, here we applied a mass spectrometry-based proteomic approach to identify proteins altered on single and combination treatments. Our proteomic data revealed autophagy as the major molecular mechanism implicated in the cells' response to combinatorial treatment. We here show that EGFR inhibition by gefitinib treatment alone induces autophagy, a cellular recycling process that acts as a cytoprotective response for TNBC cells. However, combined inhibition of EGFR and ROCK leads to autophagy blockade and accumulation of autophagic vacuoles. Our data show impaired autophagosome clearance as a likely cause of antitumor activity. We propose that the inhibition of the autophagic flux on combinatorial treatment is attributed to the major cytoskeletal changes induced on ROCK inhibition, given the essential role the cytoskeleton plays throughout the various steps of the autophagy process. Full Article
ath Discovery of Species-unique Peptide Biomarkers of Bacterial Pathogens by Tandem Mass Spectrometry-based Proteotyping [Research] By feedproxy.google.com Published On :: 2020-03-01T00:05:26-08:00 Mass spectrometry (MS) and proteomics offer comprehensive characterization and identification of microorganisms and discovery of protein biomarkers that are applicable for diagnostics of infectious diseases. The use of biomarkers for diagnostics is widely applied in the clinic and the use of peptide biomarkers is increasingly being investigated for applications in the clinical laboratory. Respiratory-tract infections are a predominant cause for medical treatment, although, clinical assessments and standard clinical laboratory protocols are time-consuming and often inadequate for reliable diagnoses. Novel methods, preferably applied directly to clinical samples, excluding cultivation steps, are needed to improve diagnostics of infectious diseases, provide adequate treatment and reduce the use of antibiotics and associated development of antibiotic resistance. This study applied nano-liquid chromatography (LC) coupled with tandem MS, with a bioinformatics pipeline and an in-house database of curated high-quality reference genome sequences to identify species-unique peptides as potential biomarkers for four bacterial pathogens commonly found in respiratory tract infections (RTIs): Staphylococcus aureus; Moraxella catarrhalis; Haemophilus influenzae and Streptococcus pneumoniae. The species-unique peptides were initially identified in pure cultures of bacterial reference strains, reflecting the genomic variation in the four species and, furthermore, in clinical respiratory tract samples, without prior cultivation, elucidating proteins expressed in clinical conditions of infection. For each of the four bacterial pathogens, the peptide biomarker candidates most predominantly found in clinical samples, are presented. Data are available via ProteomeXchange with identifier PXD014522. As proof-of-principle, the most promising species-unique peptides were applied in targeted tandem MS-analyses of clinical samples and their relevance for identifications of the pathogens, i.e. proteotyping, was validated, thus demonstrating their potential as peptide biomarker candidates for diagnostics of infectious diseases. Full Article
ath Integrative Metabolic Pathway Analysis Reveals Novel Therapeutic Targets in Osteoarthritis [Research] By feedproxy.google.com Published On :: 2020-04-01T00:05:32-07:00 In osteoarthritis (OA), impairment of cartilage regeneration can be related to a defective chondrogenic differentiation of mesenchymal stromal cells (MSCs). Therefore, understanding the proteomic- and metabolomic-associated molecular events during the chondrogenesis of MSCs could provide alternative targets for therapeutic intervention. Here, a SILAC-based proteomic analysis identified 43 proteins related with metabolic pathways whose abundance was significantly altered during the chondrogenesis of OA human bone marrow MSCs (hBMSCs). Then, the level and distribution of metabolites was analyzed in these cells and healthy controls by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), leading to the recognition of characteristic metabolomic profiles at the early stages of differentiation. Finally, integrative pathway analysis showed that UDP-glucuronic acid synthesis and amino sugar metabolism were downregulated in OA hBMSCs during chondrogenesis compared with healthy cells. Alterations in these metabolic pathways may disturb the production of hyaluronic acid (HA) and other relevant cartilage extracellular matrix (ECM) components. This work provides a novel integrative insight into the molecular alterations of osteoarthritic MSCs and potential therapeutic targets for OA drug development through the enhancement of chondrogenesis. Full Article
ath Correction: Diversity in the Protein N-Glycosylation Pathways Within the Campylobacter Genus. [Additions and Corrections] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 Full Article
ath A peroxisome deficiency-induced reductive cytosol state up-regulates the brain-derived neurotrophic factor pathway [Metabolism] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 The peroxisome is a subcellular organelle that functions in essential metabolic pathways, including biosynthesis of plasmalogens, fatty acid β-oxidation of very-long-chain fatty acids, and degradation of hydrogen peroxide. Peroxisome biogenesis disorders (PBDs) manifest as severe dysfunction in multiple organs, including the central nervous system (CNS), but the pathogenic mechanisms in PBDs are largely unknown. Because CNS integrity is coordinately established and maintained by neural cell interactions, we here investigated whether cell-cell communication is impaired and responsible for the neurological defects associated with PBDs. Results from a noncontact co-culture system consisting of primary hippocampal neurons with glial cells revealed that a peroxisome-deficient astrocytic cell line secretes increased levels of brain-derived neurotrophic factor (BDNF), resulting in axonal branching of the neurons. Of note, the BDNF expression in astrocytes was not affected by defects in plasmalogen biosynthesis and peroxisomal fatty acid β-oxidation in the astrocytes. Instead, we found that cytosolic reductive states caused by a mislocalized catalase in the peroxisome-deficient cells induce the elevation in BDNF secretion. Our results suggest that peroxisome deficiency dysregulates neuronal axogenesis by causing a cytosolic reductive state in astrocytes. We conclude that astrocytic peroxisomes regulate BDNF expression and thereby support neuronal integrity and function. Full Article
ath Targeting the polyamine pathway—“a means” to overcome chemoresistance in triple-negative breast cancer [Cell Biology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Triple-negative breast cancer (TNBC) is characterized by its aggressive biology, early metastatic spread, and poor survival outcomes. TNBC lacks expression of the targetable receptors found in other breast cancer subtypes, mandating use of cytotoxic chemotherapy. However, resistance to chemotherapy is a significant problem, encountered in about two-thirds of TNBC patients, and new strategies are needed to mitigate resistance. In this issue of the Journal of Biological Chemistry, Geck et al. report that TNBC cells are highly sensitive to inhibition of the de novo polyamine synthesis pathway and that inhibition of this pathway sensitizes cells to TNBC-relevant chemotherapy, uncovering new opportunities for addressing chemoresistance. Full Article
ath Pro sport and big data: coaches may be more in favour than athletes By www.smh.com.au Published On :: Mon, 14 Dec 2015 13:00:00 GMT Professional sport is still working out how to tackle big data and understand how technology can assist elite athletes, according to top-level sports sports officials in the United States. Full Article
ath The big business of hackathons By www.smh.com.au Published On :: Sun, 03 Jan 2016 22:29:07 GMT Hackathons have turned into million-dollar businesses of their own, as corporates scramble for the attention of the industry's best developer talent. Full Article
ath Branching out after death: where next for the 'Internet of Things'? By www.smh.com.au Published On :: Wed, 30 Mar 2016 07:53:02 GMT It turns out that even death needs the internet. Full Article
ath Myeloid-specific deficiency of pregnane X receptor decreases atherosclerosis in LDL receptor-deficient mice By feedproxy.google.com Published On :: 2020-05-01 Yipeng SuiMay 1, 2020; 61:696-706Research Articles Full Article
ath LDL subclass lipidomics in atherogenic dyslipidemia:Effect of statin therapy on bioactive lipids and dense LDL By feedproxy.google.com Published On :: 2020-04-15 M John ChapmanApr 15, 2020; 0:jlr.P119000543v1-jlr.P119000543Patient-Oriented and Epidemiological Research Full Article
ath Episode 16 - The internet of the Apple iBoards (IoAi) Pebble, death of Hoverboards and Twitter By play.acast.com Published On :: Fri, 27 May 2016 10:50:50 GMT This week host Matt Egan is joined by producer Chris to talk about the recent batch of new Pebble devices and the smartwatch market. Staff writer at PC Advisor Lewis Painter joins in to talk about the death of the hoverboard (13:00). Finally, regular podder David Price comes on to talk about Appl...oh Twitter, specifically changes to the character limit and the sad loss of the @ (24:00). See acast.com/privacy for privacy and opt-out information. Full Article
ath WITHDRAWN: The Fundamental And Pathological Importance Of Oxysterol Binding Protein And Its Related Proteins [Thematic Reviews] By feedproxy.google.com Published On :: 2018-10-15T08:42:37-07:00 This article has been withdrawn by the authors as part of this review overlapped with the contents of Pietrangelo A and Ridgway ND. 2018. Cellular and Molecular Life Sciences. 75; 3079-98. Full Article
ath LDL subclass lipidomics in atherogenic dyslipidemia:Effect of statin therapy on bioactive lipids and dense LDL [Patient-Oriented and Epidemiological Research] By feedproxy.google.com Published On :: 2020-04-15T11:30:30-07:00 Atherogenic LDL particles are physicochemically and metabolically heterogeneous. Can bioactive lipid cargo differentiate LDL subclasses, and thus potential atherogenicity? What is the effect of statin treatment? Obese, hypertriglyceridemic, hypercholesterolemic males (n=12; Lp(a) <10 mg/dL) received pitavastatin calcium (4mg/day) for 180 days in a single-phase, unblinded study. The lipidomic profiles (23 lipid classes) of five LDL subclasses fractionated from baseline and post-statin plasmas were determined by LC-MS. At baseline and on statin treatment, very small dense LDL (LDL5) was preferentially enriched (up to 3-fold) in specific lysophospholipids (lysophosphatidylcholine (LPC); lysophosphatidylinositol (LPI); lyso-platelet activating factor (LPC(O)); 9,0.2 and 0.14 mol/mol apoB respectively; all p<0.001 versus LDL1-4), suggesting elevated inflammatory potential per particle. In contrast, lysophosphatidylethanolamine was uniformly distributed among LDL subclasses. Statin treatment markedly reduced absolute plasma concentrations of all LDL subclasses (up to 33.5%), including LPC, LPI and LPC(O) contents (up to -52%), consistent with reduction in cardiovascular risk. Despite such reductions, lipotoxic ceramide load per particle in LDL1-5 (1.5 - 3 mol/mol apoB; 3 - 7 mmol/mol phosphatidylcholine) was either conserved or elevated. Bioactive lipids may constitute biomarkers for the cardiometabolic risk associated with specific LDL subclasses in atherogenic dyslipidemia at baseline, and with residual risk on statin therapy. Full Article
ath The Proteomics of Networks and Pathways: A Movie is Worth a Thousand Pictures [Editorial] By feedproxy.google.com Published On :: 2014-09-24T12:35:15-07:00 none Full Article
ath Characterization of signaling pathways associated with pancreatic {beta}-cell adaptive flexibility in compensation of obesity-linked diabetes in db/db mice [Research] By feedproxy.google.com Published On :: 2020-04-07T14:34:38-07:00 The onset of obesity-linked type 2 diabetes (T2D) is marked by an eventual failure in pancreatic β-cell function and mass that is no longer able to compensate for the inherent insulin resistance and increased metabolic load intrinsic to obesity. However, in a commonly used model of T2D, the db/db mouse, β-cells have an inbuilt adaptive flexibility enabling them to effectively adjust insulin production rates relative to the metabolic demand. Pancreatic β-cells from these animals have markedly reduced intracellular insulin stores, yet high rates of (pro)insulin secretion, together with a substantial increase in proinsulin biosynthesis highlighted by expanded rough endoplasmic reticulum and Golgi apparatus. However, when the metabolic overload and/or hyperglycemia is normalized, β-cells from db/db mice quickly restore their insulin stores and normalize secretory function. This demonstrates the β-cell’s adaptive flexibility and indicates that therapeutic approaches applied to encourage β-cell rest are capable of restoring endogenous β-cell function. However, mechanisms that regulate β-cell adaptive flexibility are essentially unknown. To gain deeper mechanistic insight into the molecular events underlying β-cell adaptive flexibility in db/db β-cells, we conducted a combined proteomic and post-translational modification specific proteomic (PTMomics) approach on islets from db/db mice and wild-type controls (WT) with or without prior exposure to normal glucose levels. We identified differential modifications of proteins involved in redox homeostasis, protein refolding, K48-linked deubiquitination, mRNA/protein export, focal adhesion, ERK1/2 signaling, and renin-angiotensin-aldosterone signaling, as well as sialyltransferase activity, associated with β-cell adaptive flexibility. These proteins are all related to proinsulin biosynthesis and processing, maturation of insulin secretory granules, and vesicular trafficking—core pathways involved in the adaptation of insulin production to meet metabolic demand. Collectively, this study outlines a novel and comprehensive global PTMome signaling map that highlights important molecular mechanisms related to the adaptive flexibility of β-cell function, providing improved insight into disease pathogenesis of T2D. Full Article
ath Worming our way toward multiple evolutionary origins of convergent sterol pathways [Commentary] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 Full Article
ath ANGPTL3, PCSK9, and statin therapy drive remarkable reductions in hyperlipidemia and atherosclerosis in a mouse model [Commentary] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Full Article
ath Myeloid-specific deficiency of pregnane X receptor decreases atherosclerosis in LDL receptor-deficient mice [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 The pregnane X receptor (PXR) is a nuclear receptor that can be activated by numerous drugs and xenobiotic chemicals. PXR thereby functions as a xenobiotic sensor to coordinately regulate host responses to xenobiotics by transcriptionally regulating many genes involved in xenobiotic metabolism. We have previously reported that PXR has pro-atherogenic effects in animal models, but how PXR contributes to atherosclerosis development in different tissues or cell types remains elusive. In this study, we generated an LDL receptor-deficient mouse model with myeloid-specific PXR deficiency (PXRMyeLDLR–/–) to elucidate the role of macrophage PXR signaling in atherogenesis. The myeloid PXR deficiency did not affect metabolic phenotypes and plasma lipid profiles, but PXRMyeLDLR–/– mice had significantly decreased atherosclerosis at both aortic root and brachiocephalic arteries compared with control littermates. Interestingly, the PXR deletion did not affect macrophage adhesion and migration properties, but reduced lipid accumulation and foam cell formation in the macrophages. PXR deficiency also led to decreased expression of the scavenger receptor CD36 and impaired lipid uptake in macrophages of the PXRMyeLDLR–/– mice. Further, RNA-Seq analysis indicated that treatment with a prototypical PXR ligand affects the expression of many atherosclerosis-related genes in macrophages in vitro. These findings reveal a pivotal role of myeloid PXR signaling in atherosclerosis development and suggest that PXR may be a potential therapeutic target in atherosclerosis management. Full Article
ath Hematopoiesis is regulated by cholesterol efflux pathways and lipid rafts: connections with cardiovascular diseases [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Lipid rafts are highly ordered regions of the plasma membrane that are enriched in cholesterol and sphingolipids and play important roles in many cells. In hematopoietic stem and progenitor cells (HSPCs), lipid rafts house receptors critical for normal hematopoiesis. Lipid rafts also can bind and sequester kinases that induce negative feedback pathways to limit proliferative cytokine receptor cycling back to the cell membrane. Modulation of lipid rafts occurs through an array of mechanisms, with optimal cholesterol efflux one of the major regulators. As such, cholesterol homeostasis also regulates hematopoiesis. Increased lipid raft content, which occurs in response to changes in cholesterol efflux in the membrane, can result in prolonged receptor occupancy in the cell membrane and enhanced signaling. In addition, certain diseases, like diabetes, may contribute to lipid raft formation and affect cholesterol retention in rafts. In this review, we explore the role of lipid raft-related mechanisms in hematopoiesis and CVD (specifically, atherosclerosis) and discuss how defective cholesterol efflux pathways in HSPCs contribute to expansion of lipid rafts, thereby promoting myelopoiesis and thrombopoiesis. We also discuss the utility of cholesterol acceptors in contributing to lipid raft regulation and disruption, and highlight the potential to manipulate these pathways for therapeutic gain in CVD as well as other disorders with aberrant hematopoiesis. Full Article
ath Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy. Full Article
ath Lipid rafts and pathogens: the art of deception and exploitation [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Lipid rafts, solid regions of the plasma membrane enriched in cholesterol and glycosphingolipids, are essential parts of a cell. Functionally, lipid rafts present a platform that facilitates interaction of cells with the outside world. However, the unique properties of lipid rafts required to fulfill this function at the same time make them susceptible to exploitation by pathogens. Many steps of pathogen interaction with host cells, and sometimes all steps within the entire lifecycle of various pathogens, rely on host lipid rafts. Such steps as binding of pathogens to the host cells, invasion of intracellular parasites into the cell, the intracellular dwelling of parasites, microbial assembly and exit from the host cell, and microbe transfer from one cell to another all involve lipid rafts. Interaction also includes modification of lipid rafts in host cells, inflicted by pathogens from both inside and outside the cell, through contact or remotely, to advance pathogen replication, to utilize cellular resources, and/or to mitigate immune response. Here, we provide a systematic overview of how and why pathogens interact with and exploit host lipid rafts, as well as the consequences of this interaction for the host, locally and systemically, and for the microbe. We also raise the possibility of modulation of lipid rafts as a therapeutic approach against a variety of infectious agents. Full Article
ath Autoimmune complications of immunotherapy: pathophysiology and management By feeds.bmj.com Published On :: Monday, April 6, 2020 - 10:45 Full Article
ath A Peripheral Blood DNA Methylation Signature of Hepatic Fat Reveals a Potential Causal Pathway for Nonalcoholic Fatty Liver Disease By diabetes.diabetesjournals.org Published On :: 2019-04-01T13:15:12-07:00 Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D). We aimed to identify the peripheral blood DNA methylation signature of hepatic fat. We conducted epigenome-wide association studies of hepatic fat in 3,400 European ancestry (EA) participants and in 401 Hispanic ancestry and 724 African ancestry participants from four population-based cohort studies. Hepatic fat was measured using computed tomography or ultrasound imaging and DNA methylation was assessed at >400,000 cytosine-guanine dinucleotides (CpGs) in whole blood or CD14+ monocytes using a commercial array. We identified 22 CpGs associated with hepatic fat in EA participants at a false discovery rate <0.05 (corresponding P = 6.9 x 10–6) with replication at Bonferroni-corrected P < 8.6 x 10–4. Mendelian randomization analyses supported the association of hypomethylation of cg08309687 (LINC00649) with NAFLD (P = 2.5 x 10–4). Hypomethylation of the same CpG was also associated with risk for new-onset T2D (P = 0.005). Our study demonstrates that a peripheral blood–derived DNA methylation signature is robustly associated with hepatic fat accumulation. The hepatic fat–associated CpGs may represent attractive biomarkers for T2D. Future studies are warranted to explore mechanisms and to examine DNA methylation signatures of NAFLD across racial/ethnic groups. Full Article