fro 'Several people' feel shaking as 4.2 magnitude earthquake strikes 190 miles from Dundee - The Courier By www.thecourier.co.uk Published On :: Wed, 25 Sep 2019 07:00:00 GMT 'Several people' feel shaking as 4.2 magnitude earthquake strikes 190 miles from Dundee The Courier Full Article
fro Researchers Describe Why Earth's Magnetic North Pole Is Straying Away From Canada Towards Siberia - The Digital Wise By thedigitalwise.com Published On :: Sat, 09 May 2020 06:54:00 GMT Researchers Describe Why Earth's Magnetic North Pole Is Straying Away From Canada Towards Siberia The Digital Wise Full Article
fro Scientists Explain Why Earth’s Magnetic North Pole Is Drifting Away From Canada Towards Siberia - Mashable India By in.mashable.com Published On :: Fri, 08 May 2020 13:10:00 GMT Scientists Explain Why Earth’s Magnetic North Pole Is Drifting Away From Canada Towards Siberia Mashable India Full Article
fro British Geological Survey welcomes visit from Rushcliffe MP - Agg-Net By www.agg-net.com Published On :: Thu, 13 Feb 2020 08:00:00 GMT British Geological Survey welcomes visit from Rushcliffe MP Agg-Net Full Article
fro Crystal structure of gluconate 5-dehydrogenase from Lentibacter algarum By scripts.iucr.org Published On :: 2020-04-29 Gluconate 5-dehydrogenase (Ga5DH; EC 1.1.1.69) from Lentibacter algarum (LaGa5DH) was recombinantly expressed in Escherichia coli and purified to homogeneity. The protein was crystallized and the crystal structure was solved at 2.1 Å resolution. The crystal belonged to the monoclinic system, with space group P1 and unit-cell parameters a = 55.42, b = 55.48, c = 79.16 Å, α = 100.51, β = 105.66, γ = 97.99°. The structure revealed LaGaDH to be a tetramer, with each subunit consisting of six α-helices and three antiparallel β-hairpins. LaGa5DH has high structural similarity to other Ga5DH proteins, demonstrating that this enzyme is highly conserved. Full Article text
fro Crystal structure of the nucleoid-associated protein Fis (PA4853) from Pseudomonas aeruginosa By scripts.iucr.org Published On :: 2020-04-29 Factor for inversion stimulation (Fis) is a versatile bacterial nucleoid-associated protein that can directly bind and bend DNA to influence DNA topology. It also plays crucial roles in regulating bacterial virulence factors and in optimizing bacterial adaptation to various environments. Fis from Pseudomonas aeruginosa (PA4853, referred to as PaFis) has recently been found to be required for virulence by regulating the expression of type III secretion system (T3SS) genes. PaFis can specifically bind to the promoter region of exsA, which functions as a T3SS master regulator, to regulate its expression and plays an essential role in transcription elongation from exsB to exsA. Here, the crystal structure of PaFis, which is composed of a four-helix bundle and forms a homodimer, is reported. PaFis shows remarkable structural similarities to the well studied Escherichia coli Fis (EcFis), including an N-terminal flexible loop and a C-terminal helix–turn–helix (HTH) motif. However, the critical residues for Hin-catalyzed DNA inversion in the N-terminal loop of EcFis are not conserved in PaFis and further studies are required to investigate its exact role. A gel-electrophoresis mobility-shift assay showed that PaFis can efficiently bind to the promoter region of exsA. Structure-based mutagenesis revealed that several conserved basic residues in the HTH motif play essential roles in DNA binding. These structural and biochemical studies may help in understanding the role of PaFis in the regulation of T3SS expression and in virulence. Full Article text
fro Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway By scripts.iucr.org Published On :: 2020-04-28 The enzyme 4-hydroxy-tetrahydrodipicolinate synthase (DapA) is involved in the production of lysine and precursor molecules for peptidoglycan synthesis. In a multistep reaction, DapA converts pyruvate and l-aspartate-4-semialdehyde to 4-hydroxy-2,3,4,5-tetrahydrodipicolinic acid. In many organisms, lysine binds allosterically to DapA, causing negative feedback, thus making the enzyme an important regulatory component of the pathway. Here, the 2.1 Å resolution crystal structure of DapA from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV is reported. The enzyme crystallized as a contaminant of a protein preparation from native biomass. Genome analysis reveals that M. fumariolicum SolV utilizes the recently discovered aminotransferase pathway for lysine biosynthesis. Phylogenetic analyses of the genes involved in this pathway shed new light on the distribution of this pathway across the three domains of life. Full Article text
fro Solution structure and assembly of β-amylase 2 from Arabidopsis thaliana By journals.iucr.org Published On :: Solution structure of β-amylase 2 from Arabidopsis thaliana shows the role of the conserved N-terminus in enzyme tetramer formation. Full Article text
fro Sample deposition onto cryo-EM grids: from sprays to jets and back By journals.iucr.org Published On :: Sample preparation within single-particle cryo-electron microscopy can still be a significant bottleneck, with issues in reproducibility, ice quality and sample loss. New approaches have recently been reported that use spraying or pin printing instead of the traditional blotting approach. Here, experience in the use of different nozzle designs and spraying regimes is reported together with their influence on the resulting spray and grid quality. Full Article text
fro Structure of P46, an immunodominant surface protein from Mycoplasma hyopneumoniae: interaction with a monoclonal antibody By journals.iucr.org Published On :: Structures of the immunodominant protein P46 from M. hyopneumoniae has been determined by X-ray crystallography and it is shown that P46 can bind a diversity of oligosaccharides, particularly xylose, which exhibits a very high affinity for this protein. Structures of a monoclonal antibody, both alone and in complex with P46, that was raised against M. hyopnemoniae cells and specifically recognizes P46 are also reported. Full Article text
fro Structural basis of carbohydrate binding in domain C of a type I pullulanase from Paenibacillus barengoltzii By journals.iucr.org Published On :: Full Article text
fro Structure–function study of AKR4C14, an aldo-keto reductase from Thai Jasmine rice (Oryza sativa L. ssp. Indica cv. KDML105) By journals.iucr.org Published On :: Rice AKR in the apo structure reveals the ordered open conformation and its key residues which form the substrate channel wall and determine its substrate preference for straight-chain aldehydes. Full Article text
fro Rubidium tetrafluoridobromate(III): redetermination of the crystal structure from single-crystal X-ray diffraction data By scripts.iucr.org Published On :: 2019-11-29 Single crystals of rubidium tetrafluoridobromate(III), RbBrF4, were grown by melting and recrystallizing RbBrF4 from its melt. This is the first determination of the crystal structure of RbBrF4 using single-crystal X-ray diffraction data. We confirmed that the structure contains square-planar [BrF4]− anions and rubidium cations that are coordinated by F atoms in a square-antiprismatic manner. The compound crystallizes in the KBrF4 structure type. Atomic coordinates and bond lengths and angles were determined with higher precision than in a previous report based on powder X-ray diffraction data [Ivlev et al. (2015). Z. Anorg. Allg. Chem. 641, 2593–2598]. Full Article text
fro Redetermination of the crystal structure of caesium tetrafluoridobromate(III) from single-crystal X-ray diffraction data By scripts.iucr.org Published On :: 2020-01-31 Caesium tetrafluoridobromate(III), CsBrF4, was crystallized in form of small blocks by melting and recrystallization. The crystal structure of CsBrF4 was redetermined from single-crystal X-ray diffraction data. In comparison with a previous study based on powder X-ray diffraction data [Ivlev et al. (2013). Z. Anorg. Allg. Chem. 639, 2846–2850], bond lengths and angles were determined with higher precision, and all atoms were refined with anisotropic displacement parameters. It was confirmed that the structure of CsBrF4 contains two square-planar [BrF4]− anions each with point group symmetry mmm, and a caesium cation (site symmetry mm2) that is coordinated by twelve fluorine atoms, forming an anticuboctahedron. CsBrF4 is isotypic with CsAuF4. Full Article text
fro Some chalcones derived from thiophene-3-carbaldehyde: synthesis and crystal structures By scripts.iucr.org Published On :: 2019-06-04 The synthesis, spectroscopic data and crystal and molecular structures of four 3-(3-phenylprop-1-ene-3-one-1-yl)thiophene derivatives, namely 1-(4-hydroxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C13H10O2S, (1), 1-(4-methoxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C14H12O2S, (2), 1-(4-ethoxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C15H14O2S, (3), and 1-(4-bromophenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C13H9BrOS, (4), are described. The four chalcones have been synthesized by reaction of thiophene-3-carbaldehyde with an acetophenone derivative in an absolute ethanol solution containing potassium hydroxide, and differ in the substituent at the para position of the phenyl ring: –OH for 1, –OCH3 for 2, –OCH2CH3 for 3 and –Br for 4. The thiophene ring in 4 was found to be disordered over two orientations with occupancies 0.702 (4) and 0.298 (4). The configuration about the C=C bond is E. The thiophene and phenyl rings are inclined by 4.73 (12) for 1, 12.36 (11) for 2, 17.44 (11) for 3 and 46.1 (6) and 48.6 (6)° for 4, indicating that the –OH derivative is almost planar and the –Br derivative deviates the most from planarity. However, the substituent has no real influence on the bond distances in the α,β-unsaturated carbonyl moiety. The molecular packing of 1 features chain formation in the a-axis direction by O—H⋯O contacts. In the case of 2 and 3, the packing is characterized by dimer formation through C—H⋯O interactions. In addition, C—H⋯π(thiophene) interactions in 2 and C—H⋯S(thiophene) interactions in 3 contribute to the three-dimensional architecture. The presence of C—H⋯π(thiophene) contacts in the crystal of 4 results in chain formation in the c-axis direction. The Hirshfeld surface analysis shows that for all four derivatives, the highest contribution to surface contacts arises from contacts in which H atoms are involved. Full Article text
fro Crystal structure of 3,14-diethyl-2,13-diaza-6,17-diazoniatricyclo[16.4.0.07,12]docosane dinitrate dihydrate from synchrotron X-ray data By scripts.iucr.org Published On :: 2019-05-31 The crystal structure of title salt, C22H46N42+·2NO3−·2H2O, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at diagonally opposite amine N atoms. The asymmetric unit contains half a centrosymmetric dication, one nitrate anion and one water molecule. The molecular dication, C22H46N42+, together with the nitrate anion and hydrate water molecule are involved in an extensive range of hydrogen bonds. The molecule is stabilized, as is the conformation of the dication, by forming intermolecular N—H⋯O, O—H⋯O, together with intramolecular N—H⋯N hydrogen bonds. Full Article text
fro Absolute structure of (3aS,5S,7aS,7bS,9aR,10R,12aR,12bS)-7b-hydroxy-4,4,7a,9a,12a-pentamethyl-10-[(2'R)-6-methylheptan-2-yl]-2,8,9-trioxooctadecahydrobenzo[d]indeno[4,5-b]azepin-5-yl acetate from 62-year-old By scripts.iucr.org Published On :: 2019-08-23 The structure of the title compound, C32H51NO6, was determined from 62-year-old crystals at room temperature and refined with 100 K data in a monoclinic (C2) space group. This compound with a triterpenoid structure, now confirmed by this study, played an important role in the determination of the structure of lanosterol. The molecules pack in linear O—H⋯O hydrogen-bonded chains along the short axis (b), while parallel chains display weak van der Waals interactions that explain the needle-shaped crystal morphology. The structure exhibits disorder of the flexible methylheptane chain at one end of the main molecule with a small void around it. Crystals of the compounds were resistant to data collection for decades with the available cameras and Mo Kα radiation single-crystal diffractometer in our laboratory until a new instrument with Cu Kα radiation operating at 100 K allowed the structure to be solved and refined. Full Article text
fro Crystal structure of 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane bis(perchlorate) dichloride from synchrotron X-ray data By scripts.iucr.org Published On :: 2020-02-11 The crystal structure of title salt, C14H36N44+·2ClO4−·2Cl−, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at all four amine N atoms. The asymmetric unit contains one half-cation (completed by crystallographic inversion symmetry), one perchlorate anion and one chloride anion. A distortion of the perchlorate anion is due to its involvement in hydrogen-bonding interactions with the cations. The crystal structure is consolidated by intermolecular hydrogen bonds involving the 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane N—H and C—H groups as donor groups, and the O atoms of the perchlorate and chloride anion as acceptor groups, giving rise to a three-dimensional network. Full Article text
fro Crystal structure of a two-dimensional metal–organic framework assembled from lithium(I) and γ-cyclodextrin By scripts.iucr.org Published On :: 2020-02-14 The crystal structure of the polymeric title compound, catena-poly[[[diaqualithium]-μ-γ-cyclodextrin(1−)-[aqualithium]-μ-γ-cyclodextrin(1−)] pentadecahydrate], {[Li2(C48H79O40)2(H2O)3]·15H2O}n, consists of deprotonated γ-cyclodextrin (CD) molecules assembled by lithium ions into metal–organic ribbons that are cross-linked by multiple O—H⋯O hydrogen bonds into sheets extending parallel to (0overline11). Within a ribbon, one Li+ ion is coordinated by one deprotonated hydroxyl group of the first γ-CD torus and by one hydroxyl group of the second γ-CD torus as well as by two water molecules. The other Li+ ion is coordinated by one deprotonated hydroxyl and by one hydroxyl group of the second γ-CD torus, by one hydroxyl group of the first γ-CD torus as well as by one water molecule. The coordination spheres of both Li+ cations are distorted tetrahedral. The packing of the structure constitute channels along the a axis. Parts of the hydroxymethyl groups in cyclodextrin molecules as well as water molecules show two-component disorder. Electron density associated with additional disordered solvent molecules inside the cavities was removed with the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] routine in PLATON. These solvent molecules are not considered in the given chemical formula and other crystal data. Five out of the sixteen hydroxymethyl groups and one water molecule are disordered over two sets of sites. Full Article text
fro A binuclear CuII/CaII thiocyanate complex with a Schiff base ligand derived from o-vanillin and ammonia By scripts.iucr.org Published On :: 2020-02-21 The new heterometallic complex, aqua-1κO-bis(μ2-2-iminomethyl-6-methoxyphenolato-1κ2O1,O6:2κ2O1,N)bis(thiocyanato-1κN)calcium(II)copper(II), [CaCu(C8H8NO2)2(NCS)2(H2O)], has been synthesized using a one-pot reaction of copper powder, calcium oxide, o-vanillin and ammonium thiocyanate in methanol under ambient conditions. The Schiff base ligand (C8H9NO2) is generated in situ from the condensation of o-vanillin and ammonia, which is released from the initial NH4SCN. The title compound consists of a discrete binuclear molecule with a {Cu(μ-O)2Ca} core, in which the Cu⋯Ca distance is 3.4275 (6) Å. The coordination geometries of the four-coordinate copper atom in the [CuN2O2] chromophore and the seven-coordinate calcium atom in the [CaO5N2] chromophore can be described as distorted square planar and pentagonal bipyramidal, respectively. In the crystal, O—H⋯S hydrogen bonds between the coordinating water molecules and thiocyanate groups form a supramolecular chain with a zigzag-shaped calcium skeleton. Full Article text
fro Redetermination of the crystal structure of R5Si4 (R = Pr, Nd) from single-crystal X-ray diffraction data By scripts.iucr.org Published On :: 2020-03-10 The crystal structures of praseodymium silicide (5/4), Pr5Si4, and neodymium silicide (5/4), Nd5Si4, were redetermined using high-quality single-crystal X-ray diffraction data. The previous structure reports of Pr5Si4 were only based on powder X-ray diffraction data [Smith et al. (1967). Acta Cryst. 22 940–943; Yang et al. (2002b). J. Alloys Compd. 339, 189–194; Yang et al., (2003). J. Alloys Compd. 263, 146–153]. On the other hand, the structure of Nd5Si4 has been determined from powder data [neutron; Cadogan et al., (2002). J. Phys. Condens. Matter, 14, 7191–7200] and X-ray [Smith et al. (1967). Acta Cryst. 22 940–943; Yang et al. (2002b). J. Alloys Compd. 339, 189–194; Yang et al., (2003). J. Alloys Compd. 263, 146–153] and single-crystal data with isotropic atomic displacement parameters [Roger et al., (2006). J. Alloys Compd. 415, 73–84]. In addition, the anisotropic atomic displacement parameters for all atomic sites have been determined for the first time. These compounds are confirmed to have the tetragonal Zr5Si4-type structure (space group: P41212), as reported previously (Smith et al., 1967). The structure is built up by distorted body-centered cubes consisting of Pr(Nd) atoms, which are linked to each other by edge-sharing to form a three-dimensional framework. This framework delimits zigzag channels in which the silicon dimers are situated. Full Article text
fro Crystal structure of 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane bis[chloridochromate(VI)] dichloride from synchrotron X-ray data By scripts.iucr.org Published On :: 2020-03-10 The crystal structure of title compound, (C14H36N4)[CrO3Cl]2Cl2, has been determined by synchrotron radiation X-ray crystallography at 220 K. The macrocyclic cation lies across a crystallographic inversion center and hence the asymmetric unit contains one half of the organic cation, one chlorochromate anion and one chloride anion. Both the Cl− anion and chlorochromate Cl atom are involved in hydrogen bonding. In the crystal, hydrogen bonds involving the 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane (TMC) N—H groups and C—H groups as donor groups and three O atoms of the chlorochromate and the chloride anion as acceptor groups link the components, giving rise to a three-dimensional network. Full Article text
fro Crystal structure, Hirshfeld surface and frontier molecular orbital analysis of 10-benzyl-9-(3-ethoxy-4-hydroxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione By scripts.iucr.org Published On :: 2020-03-27 In the fused ring system of the title compound, C32H37NO4, the central dihydropyridine ring adopts a flattened boat conformation, the mean and maximum deviations of the dihydropyridine ring being 0.1429 (2) and 0.2621 (2) Å, respectively. The two cyclohexenone rings adopt envelope conformations with the tetrasubstituted C atoms as flap atoms. The benzene and phenyl rings form dihedral angles of 85.81 (2) and 88.90 (2)°, respectively, with the mean plane of the dihydropyridine ring. In the crystal, molecules are linked via an O—H⋯O hydrogen bond, forming a helical chain along the b-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (65.2%), O⋯H/H⋯O (18.8%) and C⋯H/H⋯C (13.9%) contacts. Quantum chemical calculations for the frontier molecular orbitals were undertake to determine the chemical reactivity of the title compound. Full Article text
fro The crystal structures of Fe-bearing MgCO3 sp2- and sp3-carbonates at 98 GPa from single-crystal X-ray diffraction using synchrotron radiation By scripts.iucr.org Published On :: 2020-04-21 The crystal structure of MgCO3-II has long been discussed in the literature where DFT-based model calculations predict a pressure-induced transition of the carbon atom from the sp2 to the sp3 type of bonding. We have now determined the crystal structure of iron-bearing MgCO3-II based on single-crystal X-ray diffraction measurements using synchrotron radiation. We laser-heated a synthetic (Mg0.85Fe0.15)CO3 single crystal at 2500 K and 98 GPa and observed the formation of a monoclinic phase with composition (Mg2.53Fe0.47)C3O9 in the space group C2/m that contains tetrahedrally coordinated carbon, where CO44− tetrahedra are linked by corner-sharing oxygen atoms to form three-membered C3O96− ring anions. The crystal structure of (Mg0.85Fe0.15)CO3 (magnesium iron carbonate) at 98 GPa and 300 K is reported here as well. In comparison with previous structure-prediction calculations and powder X-ray diffraction data, our structural data provide reliable information from experiments regarding atomic positions, bond lengths, and bond angles. Full Article text
fro Calculation of total scattering from a crystalline structural model based on experimental optics parameters By scripts.iucr.org Published On :: 2020-05-05 Total scattering measurements enable understanding of the structural disorder in crystalline materials by Fourier transformation of the total structure factor, S(Q), where Q is the magnitude of the scattering vector. In this work, the direct calculation of total scattering from a crystalline structural model is proposed. To calculate the total scattering intensity, a suitable Q-broadening function for the diffraction profile is needed because the intensity and the width depend on the optical parameters of the diffraction apparatus, such as the X-ray energy resolution and divergence, and the intrinsic parameters. X-ray total scattering measurements for CeO2 powder were performed at beamline BL04B2 of the SPring-8 synchrotron radiation facility in Japan for comparison with the calculated S(Q) under various optical conditions. The evaluated Q-broadening function was comparable to the full width at half-maximum of the Bragg peaks in the experimental total scattering pattern. The proposed calculation method correctly accounts for parameters with Q dependence such as the atomic form factor and resolution function, enables estimation of the total scattering factor, and facilitates determination of the reduced pair distribution function for both crystalline and amorphous materials. Full Article text
fro Accurate high-resolution single-crystal diffraction data from a Pilatus3 X CdTe detector By scripts.iucr.org Published On :: 2020-04-23 Hybrid photon-counting detectors are widely established at third-generation synchrotron facilities and the specifications of the Pilatus3 X CdTe were quickly recognized as highly promising in charge-density investigations. This is mainly attributable to the detection efficiency in the high-energy X-ray regime, in combination with a dynamic range and noise level that should overcome the perpetual problem of detecting strong and weak data simultaneously. These benefits, however, come at the expense of a persistent problem for high diffracted beam flux, which is particularly problematic in single-crystal diffraction of materials with strong scattering power and sharp diffraction peaks. Here, an in-depth examination of data collected on an inorganic material, FeSb2, and an organic semiconductor, rubrene, revealed systematic differences in strong intensities for different incoming beam fluxes, and the implemented detector intensity corrections were found to be inadequate. Only significant beam attenuation for the collection of strong reflections was able to circumvent this systematic error. All data were collected on a bending-magnet beamline at a third-generation synchrotron radiation facility, so undulator and wiggler beamlines and fourth-generation synchrotrons will be even more prone to this error. On the other hand, the low background now allows for an accurate measurement of very weak intensities, and it is shown that it is possible to extract structure factors of exceptional quality using standard crystallographic software for data processing (SAINT-Plus, SADABS and SORTAV), although special attention has to be paid to the estimation of the background. This study resulted in electron-density models of substantially higher accuracy and precision compared with a previous investigation, thus for the first time fulfilling the promise of photon-counting detectors for very accurate structure factor measurements. Full Article text
fro A comparative anatomy of protein crystals: lessons from the automatic processing of 56 000 samples By scripts.iucr.org Published On :: 2019-07-10 The fully automatic processing of crystals of macromolecules has presented a unique opportunity to gather information on the samples that is not usually recorded. This has proved invaluable in improving sample-location, characterization and data-collection algorithms. After operating for four years, MASSIF-1 has now processed over 56 000 samples, gathering information at each stage, from the volume of the crystal to the unit-cell dimensions, the space group, the quality of the data collected and the reasoning behind the decisions made in data collection. This provides an unprecedented opportunity to analyse these data together, providing a detailed landscape of macromolecular crystals, intimate details of their contents and, importantly, how the two are related. The data show that mosaic spread is unrelated to the size or shape of crystals and demonstrate experimentally that diffraction intensities scale in proportion to crystal volume and molecular weight. It is also shown that crystal volume scales inversely with molecular weight. The results set the scene for the development of X-ray crystallography in a changing environment for structural biology. Full Article text
fro Sulfur-SAD phasing from microcrystals utilizing low-energy X-rays By scripts.iucr.org Published On :: 2019-06-28 Full Article text
fro Crystal structure of the putative cyclase IdmH from the indanomycin nonribosomal peptide synthase/polyketide synthase By scripts.iucr.org Published On :: 2019-10-24 Indanomycin is biosynthesized by a hybrid nonribosomal peptide synthase/polyketide synthase (NRPS/PKS) followed by a number of `tailoring' steps to form the two ring systems that are present in the mature product. It had previously been hypothesized that the indane ring of indanomycin was formed by the action of IdmH using a Diels–Alder reaction. Here, the crystal structure of a selenomethionine-labelled truncated form of IdmH (IdmH-Δ99–107) was solved using single-wavelength anomalous dispersion (SAD) phasing. This truncated variant allows consistent and easy crystallization, but importantly the structure was used as a search model in molecular replacement, allowing the full-length IdmH structure to be determined to 2.7 Å resolution. IdmH is a homodimer, with the individual protomers consisting of an α+β barrel. Each protomer contains a deep hydrophobic pocket which is proposed to constitute the active site of the enzyme. To investigate the reaction catalysed by IdmH, 88% of the backbone NMR resonances were assigned, and using chemical shift perturbation of [15N]-labelled IdmH it was demonstrated that indanomycin binds in the active-site pocket. Finally, combined quantum mechanical/molecular mechanical (QM/MM) modelling of the IdmH reaction shows that the active site of the enzyme provides an appropriate environment to promote indane-ring formation, supporting the assignment of IdmH as the key Diels–Alderase catalysing the final step in the biosynthesis of indanomycin through a similar mechanism to other recently characterized Diels–Alderases involved in polyketide-tailoring reactions. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at https://proteopedia.org/w/Journal:IUCrJ:S2052252519012399. Full Article text
fro Refinement for single-nanoparticle structure determination from low-quality single-shot coherent diffraction data By scripts.iucr.org Published On :: 2020-01-01 With the emergence of X-ray free-electron lasers, it is possible to investigate the structure of nanoscale samples by employing coherent diffractive imaging in the X-ray spectral regime. In this work, we developed a refinement method for structure reconstruction applicable to low-quality coherent diffraction data. The method is based on the gradient search method and considers the missing region of a diffraction pattern and the small number of detected photons. We introduced an initial estimate of the structure in the method to improve the convergence. The present method is applied to an experimental diffraction pattern of an Xe cluster obtained in an X-ray scattering experiment at the SPring-8 Angstrom Compact free-electron LAser (SACLA) facility. It is found that the electron density is successfully reconstructed from the diffraction pattern with a large missing region, with a good initial estimate of the structure. The diffraction pattern calculated from the reconstructed electron density reproduced the observed diffraction pattern well, including the characteristic intensity modulation in each ring. Our refinement method enables structure reconstruction from diffraction patterns under difficulties such as missing areas and low diffraction intensity, and it is potentially applicable to the structure determination of samples that have low scattering power. Full Article text
fro Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1 By scripts.iucr.org Published On :: 2020-02-11 Methods are presented that detect three types of aberrations in single-particle cryo-EM data sets: symmetrical and antisymmetrical optical aberrations and magnification anisotropy. Because these methods only depend on the availability of a preliminary 3D reconstruction from the data, they can be used to correct for these aberrations for any given cryo-EM data set, a posteriori. Using five publicly available data sets, it is shown that considering these aberrations improves the resolution of the 3D reconstruction when these effects are present. The methods are implemented in version 3.1 of the open-source software package RELION. Full Article text
fro Comparing serial X-ray crystallography and microcrystal electron diffraction (MicroED) as methods for routine structure determination from small macromolecular crystals By scripts.iucr.org Published On :: 2020-02-26 Innovative new crystallographic methods are facilitating structural studies from ever smaller crystals of biological macromolecules. In particular, serial X-ray crystallography and microcrystal electron diffraction (MicroED) have emerged as useful methods for obtaining structural information from crystals on the nanometre to micrometre scale. Despite the utility of these methods, their implementation can often be difficult, as they present many challenges that are not encountered in traditional macromolecular crystallography experiments. Here, XFEL serial crystallography experiments and MicroED experiments using batch-grown microcrystals of the enzyme cyclophilin A are described. The results provide a roadmap for researchers hoping to design macromolecular microcrystallography experiments, and they highlight the strengths and weaknesses of the two methods. Specifically, we focus on how the different physical conditions imposed by the sample-preparation and delivery methods required for each type of experiment affect the crystal structure of the enzyme. Full Article text
fro Characterizing crystalline defects in single nanoparticles from angular correlations of single-shot diffracted X-rays By scripts.iucr.org Published On :: 2020-02-19 Characterizing and controlling the uniformity of nanoparticles is crucial for their application in science and technology because crystalline defects in the nanoparticles strongly affect their unique properties. Recently, ultra-short and ultra-bright X-ray pulses provided by X-ray free-electron lasers (XFELs) opened up the possibility of structure determination of nanometre-scale matter with Å spatial resolution. However, it is often difficult to reconstruct the 3D structural information from single-shot X-ray diffraction patterns owing to the random orientation of the particles. This report proposes an analysis approach for characterizing defects in nanoparticles using wide-angle X-ray scattering (WAXS) data from free-flying single nanoparticles. The analysis method is based on the concept of correlated X-ray scattering, in which correlations of scattered X-ray are used to recover detailed structural information. WAXS experiments of xenon nanoparticles, or clusters, were conducted at an XFEL facility in Japan by using the SPring-8 Ångstrom compact free-electron laser (SACLA). Bragg spots in the recorded single-shot X-ray diffraction patterns showed clear angular correlations, which offered significant structural information on the nanoparticles. The experimental angular correlations were reproduced by numerical simulation in which kinematical theory of diffraction was combined with geometric calculations. We also explain the diffuse scattering intensity as being due to the stacking faults in the xenon clusters. Full Article text
fro First synthesis of a unique icosahedral phase from the Khatyrka meteorite by shock-recovery experiment By scripts.iucr.org Published On :: 2020-03-26 Icosahedral quasicrystals (i-phases) in the Al–Cu–Fe system are of great interest because of their perfect quasicrystalline structure and natural occurrences in the Khatyrka meteorite. The natural quasicrystal of composition Al62Cu31Fe7, referred to as i-phase II, is unique because it deviates significantly from the stability field of i-phase and has not been synthesized in a laboratory setting to date. Synthetic i-phases formed in shock-recovery experiments present a novel strategy for exploring the stability of new quasicrystal compositions and prove the impact origin of natural quasicrystals. In this study, an Al–Cu–W graded density impactor (GDI, originally manufactured as a ramp-generating impactor but here used as a target) disk was shocked to sample a full range of Al/Cu starting ratios in an Fe-bearing 304 stainless-steel target chamber. In a strongly deformed region of the recovered sample, reactions between the GDI and the steel produced an assemblage of co-existing Al61.5Cu30.3Fe6.8Cr1.4 i-phase II + stolperite (β, AlCu) + khatyrkite (θ, Al2Cu), an exact match to the natural i-phase II assemblage in the meteorite. In a second experiment, the continuous interface between the GDI and steel formed another more Fe-rich quinary i-phase (Al68.6Fe14.5Cu11.2Cr4Ni1.8), together with stolperite and hollisterite (λ, Al13Fe4), which is the expected assemblage at phase equilibrium. This study is the first laboratory reproduction of i-phase II with its natural assemblage. It suggests that the field of thermodynamically stable icosahedrite (Al63Cu24Fe13) could separate into two disconnected fields under shock pressure above 20 GPa, leading to the co-existence of Fe-rich and Fe-poor i-phases like the case in Khatyrka. In light of this, shock-recovery experiments do indeed offer an efficient method of constraining the impact conditions recorded by quasicrystal-bearing meteorite, and exploring formation conditions and mechanisms leading to quasicrystals. Full Article text
fro Crystal structure of the NS3-like helicase from Alongshan virus By scripts.iucr.org Published On :: 2020-04-10 Alongshan virus (ALSV) is an emerging human pathogen that was identified in China and rapidly spread to the European continent in 2019, raising concerns about public health. ALSV belongs to the distinct Jingmenvirus group within the Flaviviridae family with segmented RNA genomes. While segments 2 and 4 of the ALSV genome encode the VP1–VP3 proteins of unknown origin, segments 1 and 3 encode the NS2b–NS3 and NS5 proteins, which are related to Flavivirus nonstructural proteins, suggesting an evolutionary link between segmented and unsegmented viruses within the Flaviviridae family. Here, the enzymatic activity of the ALSV NS3-like helicase (NS3-Hel) was characterized and its crystal structure was determined to 2.9 Å resolution. ALSV NS3-Hel exhibits an ATPase activity that is comparable to those measured for Flavivirus NS3 helicases. The structure of ALSV NS3-Hel exhibits an overall fold similar to those of Flavivirus NS3 helicases. Despite the limited amino-acid sequence identity between ALSV NS3-Hel and Flavivirus NS3 helicases, structural features at the ATPase active site and the RNA-binding groove remain conserved in ALSV NS3-Hel. These findings provide a structural framework for drug design and suggest the possibility of developing a broad-spectrum antiviral drug against both Flavivirus and Jingmenvirus. Full Article text
fro The active form of quinol-dependent nitric oxide reductase from Neisseria meningitidis is a dimer By scripts.iucr.org Published On :: 2020-03-21 Neisseria meningitidis is carried by nearly a billion humans, causing developmental impairment and over 100 000 deaths a year. A quinol-dependent nitric oxide reductase (qNOR) plays a critical role in the survival of the bacterium in the human host. X-ray crystallographic analyses of qNOR, including that from N. meningitidis (NmqNOR) reported here at 3.15 Å resolution, show monomeric assemblies, despite the more active dimeric sample being used for crystallization. Cryo-electron microscopic analysis of the same chromatographic fraction of NmqNOR, however, revealed a dimeric assembly at 3.06 Å resolution. It is shown that zinc (which is used in crystallization) binding near the dimer-stabilizing TMII region contributes to the disruption of the dimer. A similar destabilization is observed in the monomeric (∼85 kDa) cryo-EM structure of a mutant (Glu494Ala) qNOR from the opportunistic pathogen Alcaligenes (Achromobacter) xylosoxidans, which primarily migrates as a monomer. The monomer–dimer transition of qNORs seen in the cryo-EM and crystallographic structures has wider implications for structural studies of multimeric membrane proteins. X-ray crystallographic and cryo-EM structural analyses have been performed on the same chromatographic fraction of NmqNOR to high resolution. This represents one of the first examples in which the two approaches have been used to reveal a monomeric assembly in crystallo and a dimeric assembly in vitrified cryo-EM grids. A number of factors have been identified that may trigger the destabilization of helices that are necessary to preserve the integrity of the dimer. These include zinc binding near the entry of the putative proton-transfer channel and the preservation of the conformational integrity of the active site. The mutation near the active site results in disruption of the active site, causing an additional destabilization of helices (TMIX and TMX) that flank the proton-transfer channel helices, creating an inert monomeric enzyme. Full Article text
fro A structural study of TatD from Staphylococcus aureus elucidates a putative DNA-binding mode of a Mg2+-dependent nuclease By scripts.iucr.org Published On :: 2020-04-17 TatD has been thoroughly investigated as a DNA-repair enzyme and an apoptotic nuclease, and still-unknown TatD-related DNases are considered to play crucial cellular roles. However, studies of TatD from Gram-positive bacteria have been hindered by an absence of atomic detail and the resulting inability to determine function from structure. In this study, an X-ray crystal structure of SAV0491, which is the TatD enzyme from the Gram-positive bacterium Staphylococcus aureus (SaTatD), is reported at a high resolution of 1.85 Å with a detailed atomic description. Although SaTatD has the common TIM-barrel fold shared by most TatD-related homologs, and PDB entry 2gzx shares 100% sequence identity with SAV0491, the crystal structure of SaTatD revealed a unique binding mode of two phosphates interacting with two Ni2+ ions. Through a functional study, it was verified that SaTatD has Mg2+-dependent nuclease activity as a DNase and an RNase. In addition, structural comparison with TatD homologs and the identification of key residues contributing to the binding mode of Ni2+ ions and phosphates allowed mutational studies to be performed that revealed the catalytic mechanism of SaTatD. Among the key residues composing the active site, the acidic residues Glu92 and Glu202 had a critical impact on catalysis by SaTatD. Furthermore, based on the binding mode of the two phosphates and structural insights, a putative DNA-binding mode of SaTatD was proposed using in silico docking. Overall, these findings may serve as a good basis for understanding the relationship between the structure and function of TatD proteins from Gram-positive bacteria and may provide critical insights into the DNA-binding mode of SaTatD. Full Article text
fro Atomic structures determined from digitally defined nanocrystalline regions By scripts.iucr.org Published On :: 2020-04-10 Nanocrystallography has transformed our ability to interrogate the atomic structures of proteins, peptides, organic molecules and materials. By probing atomic level details in ordered sub-10 nm regions of nanocrystals, scanning nanobeam electron diffraction extends the reach of nanocrystallography and in principle obviates the need for diffraction from large portions of one or more crystals. Scanning nanobeam electron diffraction is now applied to determine atomic structures from digitally defined regions of beam-sensitive peptide nanocrystals. Using a direct electron detector, thousands of sparse diffraction patterns over multiple orientations of a given crystal are recorded. Each pattern is assigned to a specific location on a single nanocrystal with axial, lateral and angular coordinates. This approach yields a collection of patterns that represent a tilt series across an angular wedge of reciprocal space: a scanning nanobeam diffraction tomogram. Using this diffraction tomogram, intensities can be digitally extracted from any desired region of a scan in real or diffraction space, exclusive of all other scanned points. Intensities from multiple regions of a crystal or from multiple crystals can be merged to increase data completeness and mitigate missing wedges. It is demonstrated that merged intensities from digitally defined regions of two crystals of a segment from the OsPYL/RCAR5 protein produce fragment-based ab initio solutions that can be refined to atomic resolution, analogous to structures determined by selected-area electron diffraction. In allowing atomic structures to now be determined from digitally outlined regions of a nanocrystal, scanning nanobeam diffraction tomography breaks new ground in nanocrystallography. Full Article text
fro Structural and functional characterization of CMP-N-acetylneuraminate synthetase from Vibrio cholerae By scripts.iucr.org Published On :: 2019-05-31 Several pathogenic bacteria utilize sialic acid, including host-derived N-acetylneuraminic acid (Neu5Ac), in at least two ways: they use it as a nutrient source and as a host-evasion strategy by coating themselves with Neu5Ac. Given the significant role of sialic acid in pathogenesis and host-gut colonization by various pathogenic bacteria, including Neisseria meningitidis, Haemophilus influenzae, Pasteurella multocida and Vibrio cholerae, several enzymes of the sialic acid catabolic, biosynthetic and incorporation pathways are considered to be potential drug targets. In this work, findings on the structural and functional characterization of CMP-N-acetylneuraminate synthetase (CMAS), a key enzyme in the incorporation pathway, from Vibrio cholerae are reported. CMAS catalyzes the synthesis of CMP-sialic acid by utilizing CTP and sialic acid. Crystal structures of the apo and the CDP-bound forms of the enzyme were determined, which allowed the identification of the metal cofactor Mg2+ in the active site interacting with CDP and the invariant Asp215 residue. While open and closed structural forms of the enzyme from eukaryotic and other bacterial species have already been characterized, a partially closed structure of V. cholerae CMAS (VcCMAS) observed upon CDP binding, representing an intermediate state, is reported here. The kinetic data suggest that VcCMAS is capable of activating the two most common sialic acid derivatives, Neu5Ac and Neu5Gc. Amino-acid sequence and structural comparison of the active site of VcCMAS with those of eukaryotic and other bacterial counterparts reveal a diverse hydrophobic pocket that interacts with the C5 substituents of sialic acid. Analyses of the thermodynamic signatures obtained from the binding of the nucleotide (CTP) and the product (CMP-sialic acid) to VcCMAS provide fundamental information on the energetics of the binding process. Full Article text
fro Combining random microseed matrix screening and the magic triangle for the efficient structure solution of a potential lysin from bacteriophage P68 By scripts.iucr.org Published On :: 2019-07-02 Two commonly encountered bottlenecks in the structure determination of a protein by X-ray crystallography are screening for conditions that give high-quality crystals and, in the case of novel structures, finding derivatization conditions for experimental phasing. In this study, the phasing molecule 5-amino-2,4,6-triiodoisophthalic acid (I3C) was added to a random microseed matrix screen to generate high-quality crystals derivatized with I3C in a single optimization experiment. I3C, often referred to as the magic triangle, contains an aromatic ring scaffold with three bound I atoms. This approach was applied to efficiently phase the structures of hen egg-white lysozyme and the N-terminal domain of the Orf11 protein from Staphylococcus phage P68 (Orf11 NTD) using SAD phasing. The structure of Orf11 NTD suggests that it may play a role as a virion-associated lysin or endolysin. Full Article text
fro Non-merohedral twinning: from minerals to proteins By scripts.iucr.org Published On :: 2019-11-19 In contrast to twinning by merohedry, the reciprocal lattices of the different domains of non-merohedral twins do not overlap exactly. This leads to three kinds of reflections: reflections with no overlap, reflections with an exact overlap and reflections with a partial overlap of a reflection from a second domain. This complicates the unit-cell determination, indexing, data integration and scaling of X-ray diffraction data. However, with hindsight it is possible to detwin the data because there are reflections that are not affected by the twinning. In this article, the successful solution and refinement of one mineral, one organometallic and two protein non-merohedral twins using a common strategy are described. The unit-cell constants and the orientation matrices were determined by the program CELL_NOW. The data were then integrated with SAINT. TWINABS was used for scaling, empirical absorption corrections and the generation of two different data files, one with detwinned data for structure solution and refinement and a second one for (usually more accurate) structure refinement against total integrated intensities. The structures were solved by experimental phasing using SHELXT for the first two structures and SHELXC/D/E for the two protein structures; all models were refined with SHELXL. Full Article text
fro Calcium-ligand variants of the myocilin olfactomedin propeller selected from invertebrate phyla reveal cross-talk with N-terminal blade and surface helices By scripts.iucr.org Published On :: 2019-08-22 Olfactomedins are a family of modular proteins found in multicellular organisms that all contain five-bladed β-propeller olfactomedin (OLF) domains. In support of differential functions for the OLF propeller, the available crystal structures reveal that only some OLF domains harbor an internal calcium-binding site with ligands derived from a triad of residues. For the myocilin OLF domain (myoc-OLF), ablation of the ion-binding site (triad Asp, Asn, Asp) by altering the coordinating residues affects the stability and overall structure, in one case leading to misfolding and glaucoma. Bioinformatics analysis reveals a variety of triads with possible ion-binding characteristics lurking in OLF domains in invertebrate chordates such as Arthropoda (Asp–Glu–Ser), Nematoda (Asp–Asp–His) and Echinodermata (Asp–Glu–Lys). To test ion binding and to extend the observed connection between ion binding and distal structural rearrangements, consensus triads from these phyla were installed in the myoc-OLF. All three protein variants exhibit wild-type-like or better stability, but their calcium-binding properties differ, concomitant with new structural deviations from wild-type myoc-OLF. Taken together, the results indicate that calcium binding is not intrinsically destabilizing to myoc-OLF or required to observe a well ordered side helix, and that ion binding is a differential feature that may underlie the largely elusive biological function of OLF propellers. Full Article text
fro Molecular replacement using structure predictions from databases By scripts.iucr.org Published On :: 2019-11-19 Molecular replacement (MR) is the predominant route to solution of the phase problem in macromolecular crystallography. Where the lack of a suitable homologue precludes conventional MR, one option is to predict the target structure using bioinformatics. Such modelling, in the absence of homologous templates, is called ab initio or de novo modelling. Recently, the accuracy of such models has improved significantly as a result of the availability, in many cases, of residue-contact predictions derived from evolutionary covariance analysis. Covariance-assisted ab initio models representing structurally uncharacterized Pfam families are now available on a large scale in databases, potentially representing a valuable and easily accessible supplement to the PDB as a source of search models. Here, the unconventional MR pipeline AMPLE is employed to explore the value of structure predictions in the GREMLIN and PconsFam databases. It was tested whether these deposited predictions, processed in various ways, could solve the structures of PDB entries that were subsequently deposited. The results were encouraging: nine of 27 GREMLIN cases were solved, covering target lengths of 109–355 residues and a resolution range of 1.4–2.9 Å, and with target–model shared sequence identity as low as 20%. The cluster-and-truncate approach in AMPLE proved to be essential for most successes. For the overall lower quality structure predictions in the PconsFam database, remodelling with Rosetta within the AMPLE pipeline proved to be the best approach, generating ensemble search models from single-structure deposits. Finally, it is shown that the AMPLE-obtained search models deriving from GREMLIN deposits are of sufficiently high quality to be selected by the sequence-independent MR pipeline SIMBAD. Overall, the results help to point the way towards the optimal use of the expanding databases of ab initio structure predictions. Full Article text
fro How far are we from automatic crystal structure solution via molecular-replacement techniques? By scripts.iucr.org Published On :: 2020-01-01 Although the success of molecular-replacement techniques requires the solution of a six-dimensional problem, this is often subdivided into two three-dimensional problems. REMO09 is one of the programs which have adopted this approach. It has been revisited in the light of a new probabilistic approach which is able to directly derive conditional distribution functions without passing through a previous calculation of the joint probability distributions. The conditional distributions take into account various types of prior information: in the rotation step the prior information may concern a non-oriented model molecule alone or together with one or more located model molecules. The formulae thus obtained are used to derive figures of merit for recognizing the correct orientation in the rotation step and the correct location in the translation step. The phases obtained by this new version of REMO09 are used as a starting point for a pipeline which in its first step extends and refines the molecular-replacement phases, and in its second step creates the final electron-density map which is automatically interpreted by CAB, an automatic model-building program for proteins and DNA/RNA structures. Full Article text
fro The use of local structural similarity of distant homologues for crystallographic model building from a molecular-replacement solution By scripts.iucr.org Published On :: 2020-02-28 The performance of automated protein model building usually decreases with resolution, mainly owing to the lower information content of the experimental data. This calls for a more elaborate use of the available structural information about macromolecules. Here, a new method is presented that uses structural homologues to improve the quality of protein models automatically constructed using ARP/wARP. The method uses local structural similarity between deposited models and the model being built, and results in longer main-chain fragments that in turn can be more reliably docked to the protein sequence. The application of the homology-based model extension method to the example of a CFA synthase at 2.7 Å resolution resulted in a more complete model with almost all of the residues correctly built and docked to the sequence. The method was also evaluated on 1493 molecular-replacement solutions at a resolution of 4.0 Å and better that were submitted to the ARP/wARP web service for model building. A significant improvement in the completeness and sequence coverage of the built models has been observed. Full Article text
fro Sample deposition onto cryo-EM grids: from sprays to jets and back By scripts.iucr.org Published On :: 2020-03-25 Despite the great strides made in the field of single-particle cryogenic electron microscopy (cryo-EM) in microscope design, direct electron detectors and new processing suites, the area of sample preparation is still far from ideal. Traditionally, sample preparation involves blotting, which has been used to achieve high resolution, particularly for well behaved samples such as apoferritin. However, this approach is flawed since the blotting process can have adverse effects on some proteins and protein complexes, and the long blot time increases exposure to the damaging air–water interface. To overcome these problems, new blotless approaches have been designed for the direct deposition of the sample on the grid. Here, different methods of producing droplets for sample deposition are compared. Using gas dynamic virtual nozzles, small and high-velocity droplets were deposited on cryo-EM grids, which spread sufficiently for high-resolution cryo-EM imaging. For those wishing to pursue a similar approach, an overview is given of the current use of spray technology for cryo-EM grid preparation and areas for enhancement are pointed out. It is further shown how the broad aspects of sprayer design and operation conditions can be utilized to improve grid quality reproducibly. Full Article text
fro From space group to space groupoid: the partial symmetry of low-temperature E-vanillyl oxime By scripts.iucr.org Published On :: 2019-07-23 The phase transition of E-vanillyl oxime {1-[(E)-(hydroxyimino)methyl]-4-hydroxy-3-methoxybenzene, C8H9NO3} has been analysed by single-crystal and powder X-ray diffraction. The high-temperature (HT) phase (P21/a, Z' = 1) transforms into the low-temperature (LT) phase (threefold superstructure, Poverline{1}, Z' = 6) at ca 190 K. The point operations lost on cooling, {m[010], 2[010]}, are retained as twin operations and constitute the twin law. The screw rotations and glide reflections are retained in the LT phase as partial operations acting on a subset of Euclidean space {b E}^3. The full symmetry of the LT phase, including partial operations, is described by a disconnected space groupoid which is built of three connected components. Full Article text
fro Volt-per-Ångstrom terahertz fields from X-ray free-electron lasers By scripts.iucr.org Published On :: 2020-04-29 The electron linear accelerators driving modern X-ray free-electron lasers can emit intense, tunable, quasi-monochromatic terahertz (THz) transients with peak electric fields of V Å−1 and peak magnetic fields in excess of 10 T when a purpose-built, compact, superconducting THz undulator is implemented. New research avenues such as X-ray movies of THz-driven mode-selective chemistry come into reach by making dual use of the ultra-short GeV electron bunches, possible by a rather minor extension of the infrastructure. Full Article text
fro Shack–Hartmann wavefront sensors based on 2D refractive lens arrays and super-resolution multi-contrast X-ray imaging By scripts.iucr.org Published On :: 2020-04-22 Different approaches of 2D lens arrays as Shack–Hartmann sensors for hard X-rays are compared. For the first time, a combination of Shack–Hartmann sensors for hard X-rays (SHSX) with a super-resolution imaging approach to perform multi-contrast imaging is demonstrated. A diamond lens is employed as a well known test object. The interleaving approach has great potential to overcome the 2D lens array limitation given by the two-photon polymerization lithography. Finally, the radiation damage induced by continuous exposure of an SHSX prototype with a white beam was studied showing a good performance of several hours. The shape modification and influence in the final image quality are presented. Full Article text
fro Development of a scanning soft X-ray spectromicroscope to investigate local electronic structures on surfaces and interfaces of advanced materials under conditions ranging from low vacuum to helium atmosphere By scripts.iucr.org Published On :: 2020-03-18 A scanning soft X-ray spectromicroscope was recently developed based mainly on the photon-in/photon-out measurement scheme for the investigation of local electronic structures on the surfaces and interfaces of advanced materials under conditions ranging from low vacuum to helium atmosphere. The apparatus was installed at the soft X-ray beamline (BL17SU) at SPring-8. The characteristic features of the apparatus are described in detail. The feasibility of this spectromicroscope was demonstrated using soft X-ray undulator radiation. Here, based on these results, element-specific two-dimensional mapping and micro-XAFS (X-ray absorption fine structure) measurements are reported, as well as the observation of magnetic domain structures from using a reference sample of permalloy micro-dot patterns fabricated on a silicon substrate, with modest spatial resolution (e.g. ∼500 nm). Then, the X-ray radiation dose for Nafion® near the fluorine K-edge is discussed as a typical example of material that is not radiation hardened against a focused X-ray beam, for near future experiments. Full Article text