4

4-Fluoro-2-(phenyl­amino)­benzoic acid

The title compound, C13H10FNO2, was obtained by the reaction of 2-bromo-4-fluoro­benzoic acid with aniline. There are two independent mol­ecules, A and B, in the asymmetric unit, with slight conformational differences: the dihedral angles between the aromatic rings are 55.63 (5) and 52.65 (5)°. Both mol­ecules feature an intra­molecular N—H⋯O hydrogen bond. In the crystal, the mol­ecules are linked by pairwise O—H⋯O hydrogen bonds to form A–B acid–acid dimers and weak C—H⋯F inter­actions further connect the dimers.




4

2-Ferrocenyl-2-[(2-ferrocenylethen­yl)(morpholin-4-yl)meth­yl]-1,3-di­thiol­ane

The mol­ecular structure of 2-ferrocenyl-2-[(2-ferrocenylethen­yl)(morpholin-4-yl)meth­yl]-1,3-di­thiol­ane, [Fe2(C5H5)2(C19H21NOS2)] or C29H31Fe2NOS2, has the ferrocenyl fragments in a trans disposition with respect to the vinyl group. One of the methyl­ene groups is disordered over two sites with occupancies of 0.782 (13):0.218 (13). In the crystal, cyclo­penta­dienyl-C—H⋯O(morpholin­yl) inter­actions feature within helical chains parallel to the c-axis direction. The chains are connected by methyl­ene- and cyclo­penta­dienyl-C—H⋯O(cyclo­penta­dien­yl) inter­actions.




4

4-Fluoro­benzyl (Z)-2-(2-oxoindolin-3-yl­idene)hydrazine-1-carbodi­thio­ate

The title compound, C16H12FN3OS, a fluorinated di­thio­carbazate imine derivative, was synthesized by the one-pot, multi-component condensation reaction of hydrazine hydrate, carbon di­sulfide, 4-fluoro­benzyl chloride and isatin. The compound demonstrates near-planarity across much of the mol­ecule in the solid state and a Z configuration for the azomethine C=N bond. The Z form is further stabilized by the presence of an intra­molecular N—H⋯O hydrogen bond. In the extended structure, mol­ecules are linked into dimers by N—H⋯O hydrogen bonds and further connected into chains along either [2overline{1}0] or [100] by weak C—H⋯S and C—H⋯F hydrogen bonds, which further link into corrugated sheets and in combination form the overall three-dimensional network.




4

13-Nitro­benzo[a][1,4]benzo­thia­zino[3,2-c]phenoxazine

In the title compound, C22H11N3O3S, dihedral angle between the phenyl rings on the periphery of the molecule is 8.05 (18)°. In the crystal, aromatic π–π stacking distance and short C—H⋯O contacts are observed. The maximum absorption occurs at 688 nm.




4

Bis[2,3-bis­(thio­phen-2-yl)pyrido[3,4-b]pyrazine]­silver(I) perchlorate methanol disolvate

The title compound, [Ag(C15H9N3S2)2]ClO4·2CH3OH, is monoclinic. The AgI atom is coordinated by pyrido N atoms and is two-coordinate; however, the AgI atom has nearby O atoms that can be assumed to be weakly bonded – one from the perchlorate anion and one from the methanol solvate molecule. One of the thienyl groups on a 2,3-bis­(thio­phen-2-yl)pyrido[3,4-b]pyrazine is flipped disordered and was refined to occupancies of 68.4 (6) and 31.6 (6)%.




4

mer-Bis(quinoline-2-carboxaldehyde 4-ethyl­thio­semicarbazonato)nickel(II) methanol 0.33-solvate 0.67-hydrate

In the title compound, [Ni(C13H13N4S)2]·0.33CH3OH·0.67H2O, the NiII atom is coordinated by two tridentate quinoline-2-carboxaldehyde 4-ethyl­thio­semi­car­ba­zonate ligands in a distorted octa­hedral shape. At 100 K, the crystal symmetry is monoclinic (space group P21/n). A mixture of water and methanol crystallizes with the title complex, and one of the ethyl groups in the coordinating ligands is disordered over two positions, with an occupancy ratio of 58:42. There is inter­molecular hydrogen bonding between the solvent mol­ecules and the amine and thiol­ate groups in the ligands. No other significant inter­actions are present in the crystal packing.




4

Benzo[a][1,4]benzothia­zino[3,2-c]phenothia­zine

The title compound, C22H12N2S2, crystallizes in space group P21/c with four mol­ecules in the asymmetric unit. The heterocyclic mol­ecule is quasi-planar with a dihedral angle between the phenyl rings on the periphery of the mol­ecule of 1.73 (19)°. Short H⋯S (2.92 Å) and C—H⋯π [2.836 (3) Å] contacts are observed in the crystal with shorted π–π stacking distances of 3.438 (3) Å along the b axis. Surprisingly, and unlike a closely related material, this mol­ecule readily forms large crystals by sublimation and by slow evaporation from di­chloro­methane. The maximum absorbance in the UV-Vis spectrum is at 533 nm. Emission was measured upon excitation at 533 nm with a fluorescence λmax of 658 nm and cutoff of 900 nm.




4

(2E,2'E)-1,1'-([1,1'-Biphen­yl]-4,4'-di­yl)bis­[3-(di­meth­yl­amino)­prop-2-en-1-one]

The title compound, C22H24N2O2, crystallizes in space group P21/n. The mol­ecular structure is almost planar except for a tilt of the phenyl rings. The allyl groups on both ends exhibit the trans-form and the connected N atoms show sp2 character. The mol­ecules are stacked and assembled along the c-axis direction by C—H⋯π inter­actions.




4

(SC,RS)-Bromido­(N-{4-methyl-1-[(4-methyl­phenyl)sul­fan­yl]­pentan-2-yl}-N'-(pyridin-2-yl)imidazol-2-yl­idene)palladium(II) bromide

The mol­ecule of the title NCNHCS pincer N-heterocyclic carbene palladium(II) complex, [PdBr(C21H25N3S)]Br, exhibits a slightly distorted square-planar coordination at the palladium(II) atom, with the five-membered chelate ring nearly planar. The six-membered chelate ring adopts an envelope conformation. Upon chelation, the sulfur atom becomes a stereogenic centre with an RS configuration induced by the chiral carbon of the precursor imidazolium salt. There are intra­molecular C—H⋯Br—Pd hydrogen bonds in the structure. The two inter­stitial Br atoms, as the counter-anion of the structure, are both located on crystallographic twofold axes and are connected to the complex cations via C—H⋯·Br hydrogen bonds.




4

4-(1H-2,3-Dihydro­naphtho­[1,8-de][1,3,2]di­aza­borinin-2-yl)-1-ethylpyridin-1-ium iodide

The title compound, C17H17BN3I, is a type of di­aza­borinane featuring substitution at the 1, 2, and 3 positions of the nitro­gen–boron six-membered heterocycle. The organic mol­ecule has a planar structure, the dihedral angle between the pyridyl ring and the fused ring system being 3.46 (4)°. In the crystal, mol­ecules are stacked in a head-to-tail manner. The iodide ion makes close contacts with three organic mol­ecules and supports the alternating stack.




4

4-(1H-2,3-Dihydronaphtho­[1,8-de][1,3,2]di­aza­borinin-2-yl)-1-ethylpyridin-1-ium iodide monohydrate

The cation of the title hydrated salt, C17H17BN3+·I−·H2O, is a di­aza­borinane featuring substitution at the 1, 2, and 3 positions in the nitro­gen–boron six-membered heterocycle. The cation is approximately planar with a dihedral angle between the pyridyl ring and the di­aza­borinane ring system of 5.40 (5)°. In the crystal, the cations stack along [100] in an alternating head-to-tail manner, while the iodide ion and water mol­ecule form one-dimensional hydrogen-bonded chains beside the cation stack. The cation stacks and I−–water chains are crosslinked by N—H⋯I and N—H⋯O hydrogen bonds.




4

Methyl 2-hy­droxy-4-iodo­benzoate

The structure of the title compound, C8H7IO3, at 90 K has monoclinic (P21/c) symmetry. The extended structure is layered and displays inter­molecular and intra­molecular hydrogen bonding arising from the same OH group.




4

(5-Fluoro-2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidin-1-ido-κN1)(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)zinc(II) perchlorate

In the structure of the title complex, [Zn(C4H2FN2O2)(C10H24N4)]ClO4, the zinc(II) ion forms coordination bonds with the four nitro­gen atoms of cyclam (1,4,8,11-tetra­aza­cyclo­tetra­decane or [14]aneN4) as well as with the nitro­gen atom of a deprotonated 5-fluoro­uracil ion (FU−). Cyclam adopts a trans-I type conformation within this structure. The coordination structure of the zinc(II) ion is a square pyramid with a distorted base plane formed by the four nitro­gen atoms of the cyclam. FU− engages in inter­molecular hydrogen bonding with neighboring FU− mol­ecules and with the cyclam mol­ecule.




4

Tetra­kis(2,4,6-tri­methyl­anilido)tin(IV)

Transamination of Sn(NMe2)4 with H2NMes (Mes is 2,4,6-tri­methyl­phenyl, C9H11) led to the formation of the title compound, [Sn(C9H12N)4] or Sn(NHMes)4, which crystallizes in the tetra­gonal space group Poverline{4}21c, with four formula units per unit cell. The mol­ecular structure consists of a central tin(IV) atom, which is surrounded by four NHMes groups. Sn(NHMes)4 possesses crystallographically imposed overline{4} symmetry. The SnN4 coordination polyhedron is best described as a compressed bis­phenoid.




4

Ilmenite-type Na2(Fe2/3Te4/3)O6

Na2(Fe2/3Te4/3)O6 (Z = 3) or Na3(FeTe2)O9 (Z = 2), tris­odium iron(III) ditellurium(VI) nona­oxide, adopts the ilmenite (FeTiO3, Z = 6) structure type with the Ti site (site symmetry 3.) replaced by Na and the Fe site (site symmetry 3.) replaced by a mixed-occupied (FeIII,TeVI) site in a Fe:Te ratio of 1:2. Whereas the [(Fe,Te)O6] octa­hedron is only slightly distorted, the [NaO6] octa­hedron shows much stronger distortions, as revealed by a larger spread of the bond lengths and some distortion parameters.




4

Poly[[{μ2-5-[(di­methyl­amino)(thioxo)meth­oxy]benzene-1,3-di­carboxyl­ato-κ4O1,O1':O3,O3'}(μ2-4,4'-di­pyridyl­amine-κ2N4:N4')cobalt(II)] di­methyl­formamide hemisolvate monohydrate]

In the crystal structure of the title compound, {[Co(C11H9NSO5)(C10H9N3)]0.5C3H7NO·H2O}n or {[Co(dmtb)(dpa)]·0.5DMF·H2O}n (dmtb2– = 5-[(di­meth­yl­amino)­thioxometh­oxy]-1,3-benzene­dicarboxyl­ate and dpa = 4,4'-di­pyridyl­amine), an assembly of periodic [Co(C11H9NSO5)(C10H9N3)]n layers extending parallel to the bc plane is present. Each layer is constituted by distorted [CoO4N2] octa­hedra, which are connected through the μ2-coordination modes of both dmtb2– and dpa ligands. Occupationally disordered water and di­meth­yl­formamide (DMF) solvent mol­ecules are located in the voids of the network to which they are connected through hydrogen-bonding inter­actions.




4

2-Oxo-2H-chromen-4-yl 3,3-di­methyl­butano­ate

In the crystal of the title compound, C15H16O4, the mol­ecules are connected through C—H⋯O hydrogen bonds, generating [100] chains, which are crosslinked by weak π–π stacking inter­actions.




4

(4-Butyl-1-ethyl-1,2,4-triazol-5-yl­idene)[(1,2,5,6-η)-cyclo­octa-1,5-diene](tri­phenyl­phosphane)iridium(I) tetra­fluorido­borate

The title compound, [Ir(C8H12)(C8H15N3)(C18H15P)]BF4, a new triazole-based N-heterocyclic carbene iridium(I) cationic complex with a tetra­fluorido­borate counter-anion, crystallizes with two cations and two anions in the asymmetric unit of space group Pc. The Ir centers of the cations have distorted square-planar conformations, formed by a bidentate (η2 + η2) cyclo­octa-1,5-diene (COD) ligand, an N-heterocyclic carbene and a tri­phenyl­phosphane ligand with the NHC carbon atom and P atom being cis. In the extended structure, non-classical C–H⋯F hydrogen bonds, one of which is notably short (H⋯F = 2.21 Å), link the cations and anions. The carbon atoms of one of the COD ligands are disordered over adjacent sites in a 0.62:0.38 ratio.




4

Triaceto­nitrile­(1,4,7-trimethyl-1,4,7-tri­aza­cyclonona­ne)cobalt(II) bis­(tetra­phenyl­borate)

The title cobalt(II) complex, [Co(C2H3N)3(C9H21N3)](C24H20B)2 or [(tacn)Co(NCMe)3][BPh4]2, has been characterized by single-crystal X-ray diffraction. It incorporates the well-known macrocyclic tacn (1,4,7-trimethyl-1,4,7-tri­aza­cyclo­nona­ne) ligand, which is coordinated facially to the metal center. The complex crystallizes in space group P21/c with Z = 4. The divalent cobalt ion exhibits a six-coordinate octa­hedral geometry by one tacn and three aceto­nitrile ligands. Two non-coordinating tetra­phenyl­borate (BPh4−) anions are also present.




4

Bis{(S)-(−)-N-[(2-biphen­yl)methyl­idene]-1-(4-meth­oxy­phen­yl)ethyl­amine-κN}di­chlorido­palladium(II)

The PdII complex bis­{(S)-(−)-N-[(biphenyl-2-yl)methyl­idene]1-(4-meth­oxy­phen­yl)ethanamine-κN}di­chlorido­palladium(II), [PdCl2(C22H21NO)2], crystallizes in the monoclinic Sohncke space group P21 with a single mol­ecule in the asymmetric unit. The coordination environment around the palladium is slightly distorted square planar. The N—Pd—Cl bond angles are 91.85 (19), 88.10 (17), 89.96 (18), and 90.0 (2)°, while the Pd—Cl and Pd—N bond lengths are 2.310 (2) and 2.315 (2) Å and 2.015 (2) and 2.022 (6) Å, respectively. The crystal structure features inter­molecular N—H⋯Cl and intramolecular C—H⋯Pd inter­actions, which lead to the formation of a supramolecular framework structure.




4

6-[4-(tert-Butyl­dimethyl­sil­yloxy)phen­yl]-1-oxa­spiro­[2.5]hepta­ne

The title compound, C19H30O2Si, has triclinic (Poverline{1}) symmetry at 100 K. The O atom of the epoxide group has a pseudoaxial orientation and the dihedral angle between the cyclo­hexyl and benzene rings is 85.80 (8)°. The C—O—Si—Ct (t = tert-but­yl) torsion angle is −177.40 (14)°. In the crystal, pairwise C—H⋯O links connect the mol­ecules into inversion dimers featuring R22(8) loops.




4

2-(Pyridin-4-yl)-2,3-di­hydro-1H-naphtho­[1,8-de][1,3,2]di­aza­borinine

The title compound, C15H12BN3, is a type of di­aza­borinane featuring substitution at 1, 2, and 3 positions in the nitro­gen–boron six-membered heterocycle. It is comprised of two almost planar units, the pyridyl ring and the Bdan (dan = 1,8-di­aminona­phtho) group, which subtend a dihedral angle of 24.57 (5)°. In the crystal, the mol­ecules are linked into R44(28) hydrogen-bonding networks around the fourfold inversion axis, giving cyclic tetra­mers. The mol­ecules form columnar stacks along the c axis.




4

Benzene-1,2,4,5-tetrol

The crystal structure of the title compound was determined at 120 K. It crystallizes in the triclinic space group Poverline{1} with four independent mol­ecules in the asymmetric unit. In the crystal, each symmetry-unique mol­ecule forms π–π stacks on itself, giving four unique π–π stacking inter­actions. Inter­molecular hydrogen bonding is observed between each pair of independent mol­ecules, where each hy­droxy group can act as a hydrogen-bond donor and acceptor.




4

[1-(Anthracen-9-ylmeth­yl)-1,4,7,10-tetra­aza­cyclododeca­ne]chlorido­zinc(II) nitrate

In the title salt, [ZnCl(C23H30N4)]NO3, the central ZnII atom of the complex cation is coordinated in a square-pyramidal arrangement by four nitro­gen atoms from cyclen (1,4,7,10-tetra­aza­cyclo­dodeca­ne) in the basal plane and one chlorido ligand in the apical position. The anthracene group attached to cyclen contributes to the crystal packing through inter­molecular T-shaped π inter­actions. Additionally, the nitrate anion participates in inter­molecular N—H⋯O hydrogen bonds with cyclen.




4

Chlorido­[(1,2,5,6-η)-cyclo­octa-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-yl­idene)rhodium(I)

A new neutral triazole-based N-heterocyclic carbene rhodium(I) complex [RhCl(C8H12)(C8H15N3)], has been synthesized and structurally characterized. The complex crystallizes with two mol­ecules in the asymmetric unit. The central rhodium(I) atom has a distorted square-planar coordination environment, formed by a cyclo­octa-1,5-diene (COD) ligand, an N-heterocyclic carbene (NHC) ligand, and a chlorido ligand. The bond lengths are unexceptional. A weak inter­molecular non-standard hydrogen-bonding inter­action exists between the chlorido and NHC ligands.




4

(η6-Benzene)­chlorido­[(S)-2-(4-isopropyl-4,5-di­hydro­oxazol-2-yl)phenolato]ruthenium(II)

The title compound, [Ru(C12H14NO2)Cl(η6-C6H6)], exhibits a half-sandwich tripod stand structure and crystallizes in the ortho­rhom­bic space group P212121. The arene group is η6 π-coordinated to the Ru atom with a centroid-to-metal distance of 1.6590 (5) Å, with the (S)-2-(4-isopropyl-4,5-di­hydro­oxazol-2-yl)phenolate chelate ligand forming a bite angle of 86.88 (19)° through its N and phenolate O atoms. The pseudo-octa­hedral geometry assumed by the complex is completed by a chloride ligand. The coordination of the optically pure bidentate ligand induces metal centered chirality onto the complex with a Flack parameter of −0.056.




4

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-yl­idene)(tri­phenyl­phosphane)rhodium(I) tetra­fluorido­borate

A new, cationic N-heterocyclic carbene RhI complex with a tetra­fluorido­borate counter-anion, [Rh(C8H12)(C8H15N3)(C18H15P)]BF4, has been synthesized and structurally characterized. There are two independent ion pairs in the asymmetric unit. Each complex cation exhibits a distorted square-planar conformation around the RhI atom. Bond lengths and bond angles are as expected for an Rh–NHC complex. There are several close, non-standard C—H⋯F hydrogen-bonding inter­actions between the ions. One of the tetra­fluorido­borate anions shows statistical disorder of the F atoms.




4

4-[(2-Phenyl­eth­yl)amino]­benzoic acid

The title compound, C15H15NO2, crystallizes with two mol­ecules in the asymmetric unit. In the crystal, the two mol­ecules associate to form an acid–acid dimer by pairwise O—H⋯O hydrogen bonds.




4

Redetermined structure of 4-(benz­yloxy)benzoic acid

In the title compound, C14H14O3, the dihedral angle between the aromatic rings is 39.76 (9)°. In the crystal, the mol­ecules associate to form centrosymmetric acid–acid dimers linked by pairwise O—H⋯O hydrogen bonds. The precision of the geometric parameters in the present single-crystal study is about an order of magnitude better than the previous powder diffraction study [Chattopadhyay et al. (2013). CrystEngComm, 15, 1077–1085].




4

μ-Chlorido-bis­{[1-benzyl-3-(2,4,6-tri­methyl­phen­yl)imidazol-2-yl­idene-κC]silver(I)} chloride 1,2-di­chloro­ethane hemisolvate

The title compound, [Ag2(C19H20N2)4]Cl·0.5C2H4Cl2, can be readily generated by treatment of (1-benzyl-3-(2,4,6-tri­methyl­phen­yl)imidazolium chloride with sodium bis­(tri­methyl­sil­yl)amide followed by silver chloride. The mol­ecular structure of the compound was confirmed using NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystal structure of the title compound at 110 K has monoclinic (P21/c) symmetry. The represented silver compound is of inter­est with respect to anti­bacterial properties and the structure displays a series of weak inter­molecular hydrogen-bonding inter­actions with the chloride counter-anion.




4

Bis[2-(isoquinolin-1-yl)phenyl-κ2N,C1](2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline-κ2N,N')iridium(III) hexa­fluorido­phosphate methanol monosolvate

The title compound, [Ir(C15H10N)2(C19H12N4)]PF6·CH3OH, crystallizes in the C2/c space group with one monocationic iridium complex, one hexa­fluorido­phosphate anion, and one methanol solvent mol­ecule of crystallization in the asymmetric unit, all in general positions. The anion and solvent are linked to the iridium complex cation via hydrogen bonding. All bond lengths and angles fall into expected ranges compared to similar compounds.




4

(E)-1-(3,4-Di­meth­oxy­phen­yl)-3-(1,3-diphenyl-1H-pyrazol-4-yl)prop-2-en-1-one

In the title compound, C26H22N2O3, the dihedral angle between the benzene and pyrazole rings of the chalcone unit is 88.3 (1)°. The pyrazole ring has two attached phenyl rings that form dihedral angles with the pyrazole ring of 22.6 (2) and 40.0 (1)°. In the crystal, pairwise C—H⋯O hydrogen bonds generate R22(20) inversion dimers.




4

Redetermined structure of methyl 3-{4,4-di­fluoro-2-[2-(methoxy­car­bon­yl)­ethyl]-1,3,5,7-tetra­methyl-4-bora-3a,4a-di­aza-s-in­da­cen-6-yl}pro­pion­ate

In the title compound, C21H27BF2N2O4, a highly fluorescent boron–dipyrromethene dye, the methyl­propionate moieties have different conformations. In the crystal, weak C—H⋯F and C—H⋯O inter­actions link the mol­ecules. Some optical properties are presented.




4

(1R,2S,4aR,6S,8R,8aS)-1-(3-Hy­droxy­propano­yl)-1,3,6,8-tetra­methyl-1,2,4a,5,6,7,8,8a-octa­hydronaphthalene-2-carb­oxy­lic acid

The mol­ecular structure of C18H28O4, (+)-diplodiatoxin, is described, whereby the absolute configuration of the structure of diplodiatoxin has been confirmed by single-crystal X-ray diffraction. Diplodiatoxin crystallizes in the chiral P43212 space group with one mol­ecule in the asymmetric unit.




4

Ti4Fe2C0.82O0.18

The phase with composition Ti4Fe2C0.82O0.18, tetra­titanium diiron carbide oxide, was unexpectedly synthesized by high-pressure sinter­ing (HPS) of a stoichiometric mixture with nominal composition Ti2Fe. The Ti4Fe2C0.82O0.18 phase crystallizes in the Fdoverline{3}m space group and can be considered as the Ti2Fe structure filled with C and O atoms co-occupying the same octa­hedral void [occupancy ratio 0.82 (7):0.18 (7)]. The Ti4Fe2C0.82O0.18 phase is isotypic with Ti4Ni2C and Ti4Fe2O0.407, and is the first example where C and O atoms co-occupy the same site in filled Ti2Fe structures.




4

Δ-Bis[(S)-2-(4-isopropyl-4,5-di­hydro­oxazol-2-yl)phenolato-κ2N,O1](1,10-phenanthroline-κ2N,N')ruthenium(III) hexa­fluorido­phosphate

The title compound, [Ru(C12H14NO2)2(C12H8N2)]PF6 crystallizes in the tetra­gonal Sohnke space group P41212. The two bidentate chiral salicyloxazoline ligands and the phenanthroline co-ligand coordinate to the central RuIII atom through N,O and N,N atom pairs to form bite angles of 89.76 (15) and 79.0 (2)°, respectively. The octa­hedral coordination of the bidentate ligands leads to a propeller-like shape, which induces metal-centered chirality onto the complex, with a right-handed (Δ) absolute configuration [the Flack parameter value is −0.003 (14)]. Both the complex cation and the disordered PF6− counter-anion are located on twofold rotation axes. Apart from Coulombic forces, the crystal cohesion is ensured by non-classical C—H⋯O and C—H⋯F inter­actions.




4

Di-μ-adipato-κ4O1,O1':O6,O6'-bis­[(2,2'-di­pyridyl­amine-κ2N,N')zinc(II)] trihydrate

The title compound, [Zn2(C6H8O4)2(C10H9N3)2]·3H2O or {Zn2[(C5H4N)2NH]2[μ-(CH2)4(COO)2]2}·3H2O, was separ­ated from the solvothermal reaction of zinc(II) sulfate hepta­hydrate, 2,2'-di­pyridyl­amine and sodium adipate. The dinuclear metal complex has a centrosymmetric structure, with the ZnII atom adopting a highly distorted octa­hedral coordination sphere composed of four oxygen atoms from bridging adipato ligands and two pyridine nitro­gen atoms. In the crystal, the title compound aggregates into a tri-periodic supra­molecular structure through inter­molecular hydrogen-bonding networks of the form O—H⋯O and N—H⋯O.




4

1,4-Di­methyl­piperazine-2,3-dione

In the title compound, C6H10N2O2, the piperazine-2,3-dione ring adopts a half-chair conformation. In the crystal, the mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming (010) sheets.




4

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](1-ethyl-4-iso­butyl-1,2,4-triazol-5-yl­idene)(tri­phenyl­phosphane)iridium(I) tetra­fluorido­borate di­chloro­methane hemisolvate

A new triazole-based N-heterocyclic carbene IrI cationic complex with a tetra­fluorido­borate counter-anion and hemi-solvating di­chloro­methane, [Ir(C8H12)(C8H15N3)(C18H15P)]BF4·0.5CH2Cl2, has been synthesized and structurally characterized. There are two independent ion pairs in the asymmetric unit and one di­chloro­methane solvent mol­ecule per two ion pairs. The cationic complex exhibits a distorted square-planar conformation around the IrI atom, formed by a bidentate cyclo­octa-1,5,diene (COD) ligand, a tri­phenyl­phosphane ligand, and an N-heterocyclic carbene (NHC). There are several close non-standard H⋯F hydrogen-bonding inter­actions that orient the tetra­fluorido­borate anions with respect to the IrI complex mol­ecules. The complex shows promising catalytic activity in transfer hydrogenation reactions. The structure was refined as a non-merohedral twin, and one of the COD mol­ecules is statistically disordered.




4

4-Bromo-N,N'-di­phenyl­benzimidamide N'-oxide

The title compound, C19H15BrN2O, crystallizes with two similar mol­ecules in the asymmetric unit. The extended structure features dimers linked by pairs of N—H⋯O and C—H⋯O hydrogen bonds. The HNCNO moiety of the title compound shows delocalization over the N—C—N part, as evidenced by the similar C—N bond distances.




4

2-Chloro-N-(4-hy­droxy­phen­yl)acetamide

The title compound, C8H8ClNO2, is significantly distorted from planarity, with a twist angle between the planes through the hy­droxy­benzene and acetamide groups being 23.5 (2)°. This conformation is supported by intra­molecular C—H⋯O and N—H⋯Cl contacts. In the crystal, N—H⋯O hydrogen-bonding contacts between acetamide groups and O—H⋯O contacts between hydroxyl groups form tapes propagating parallel to [103].




4

3aH,4H,5H,8H,9H,9aH-Cyclo­octa­[d][1,3]dioxole-2-thione

The thio­nocarbonate of trans-cyclo­octenediol, C9H12O2S, crystallizes with a 9/1 disorder in the position of the R,R and S,S-enanti­omers. As a result of trans-annulation, both rings adopt a twist conformation.




4

meso-5,15-Bis[3-(iso­propyl­idenegalacto­pyran­oxy)phen­yl]-10,20-bis­(4-methyl­phen­yl)porphyrin

The crystal structure of a glycosyl­ated porphyrin (P_Gal2) system, C70H70N4O12, where two iso­propyl­idene protected galactose moieties are attached to the meso position of a substituted tetra­aryl porphyrin is reported. This structure reveals that the parent porphyrin is planar, with the galactose moieties positioned above and below the porphyrin macrocycle. This orientation likely prevents porphyrin–porphyrin H-type aggregation, potentially enhancing its efficiency as a photosensitizer in photodynamic therapy. Notable non-bonding C—H⋯O and C—H⋯π inter­actions among adjacent P_Gal2 systems are observed in this crystal network. Additionally, the tolyl groups of each porphyrin can engage in π–π inter­actions with the delocalized π-systems of neighboring porphyrins.




4

1-Eth­oxy-3-[4-(eth­oxy­carbon­yl)phen­yl]-3-hy­droxy-1-oxopropan-2-aminium chloride

The title compound, C14H20NO5+·Cl−, was prepared as a racemate of R,R- and S,S-enanti­omers by reduction of the corresponding hy­droxy­imino­ketone. In the crystal, layers are formed via hydrogen bridges of four ammonium groups to chloride ions; these lamellae are connected via inter­digitated benzoic ester groups.




4

2-Amino-5-oxo-4-(thio­phen-2-yl)-5,6,7,8-tetra­hydro-4H-chromene-3-carbo­nitrile

The crystal structure of the title compound, C14H12N2O2S, reveals two symmetrically independent mol­ecules within the asymmetric unit. Each mol­ecule contains a chromenone core attached to a 2-thio­phene ring, cyano, and amino groups. The 2-thio­phene ring of one of the two mol­ecules in the asymmetric unit was found to be disordered over two positions, with the major component having a site occupancy factor of 0.837 (2). The 2-thio­phene ring is nearly orthogonal to the fused 4H-pyran ring, with dihedral angles between the two sets of planes being 89.5 (5) and 89.63 (8)°. Inter­molecular hydrogen bonding, involving N—H⋯N and N—H⋯O inter­actions, creates two distinct motifs leading to the formation of a two-dimensional supra­molecular network along the crystallographic ac plane.




4

Tris(4-chloro­phen­yl) phosphate

The title compound, C18H12Cl3O4P, is the symmetric phosphate derived from para-chloro­phenol and phospho­ric acid. Two of the three aromatic moieties adopt syn-orientation towards the P=O bond while the last chloro­phenol ring is pointing away from this bond. In the extended structure, C—H⋯O bonds connect the individual mol­ecules into sheets lying perpendicular to the crystallographic b axis.




4

Structural insights into 1,4-bis­(neopent­yloxy)pillar[5]arene and the pyridine host–guest system

The crystal structure of 1,4-bis­(neopent­yloxy)pillar[5]arene, C95H140N2O10 (TbuP), featuring two encapsulated pyridine mol­ecules, reveals significant host–guest inter­actions. Inter­estingly, the pyridine guests are positioned near the neopent­yloxy substituents instead of the electron-rich aromatic core of the pillar[5]arene. This spatial arrangement suggests a preference for the pyridine mol­ecules to engage with the aliphatic regions of the host. Detailed analysis of the structural characteristics of this host–guest system (TbuP·2Py), as well as its packing pattern within the crystal network, is presented and discussed.




4

Using cocrystals as a tool to study non-crystallizing mol­ecules: crystal structure, Hirshfeld surface analysis and com­putational study of the 1:1 cocrystal of (E)-N-(3,4-di­fluoro­phen­yl)-1-(pyridin-4-yl)methanimine and acetic

Using a 1:1 cocrystal of (E)-N-(3,4-di­fluoro­phen­yl)-1-(pyridin-4-yl)methanimine with acetic acid, C12H8F2N2·C2H4O2, we investigate the influence of F atoms introduced to the aromatic ring on promoting π–π inter­actions. The cocrystal crystallizes in the triclinic space group P1. Through crystallographic analysis and com­putational studies, we reveal the mol­ecular arrangement within this co­crystal, demonstrating the presence of hydrogen bonding between the acetic acid mol­ecule and the pyridyl group, along with π–π inter­actions between the aromatic rings. Our findings highlight the importance of F atoms in promoting π–π inter­actions without necessitating full halogenation of the aromatic ring.




4

3-[(Benzo-1,3-dioxol-5-yl)amino]-4-meth­oxy­cyclo­but-3-ene-1,2-dione: polymorphism and twinning of a precursor to an anti­mycobacterial squaramide

The title compound, 3-[(benzo-1,3-dioxol-5-yl)amino]-4-meth­oxy­cyclo­but-3-ene-1,2-dione, C12H9NO5 (3), is a precursor to an anti­mycobacterial squaramide. Block-shaped crystals of a monoclinic form (3-I, space group P21/c, Z = 8, Z' = 2) and needle-shaped crystals of a triclinic form (3-II, space group P-1, Z = 4, Z' = 2) were found to crystallize concomitantly. In both crystal forms, R22(10) dimers assemble through N—H⋯O=C hydrogen bonds. These dimers are formed from crystallographically unique mol­ecules in 3-I, but exhibit crystallographic Ci symmetry in 3-II. Twinning by pseudomerohedry was encountered in the crystals of 3-II. The conformations of 3 in the solid forms 3-I and 3-II are different from one another but are similar for the unique mol­ecules in each polymorph. Density functional theory (DFT) calculations on the free mol­ecule of 3 indicate that a nearly planar conformation is preferred.




4

Occupational modulation in the (3+1)-dimensional incommensurate structure of (2S,3S)-2-amino-3-hy­droxy-3-methyl-4-phen­oxy­butanoic acid dihydrate

The incommensurately modulated structure of (2S,3S)-2-amino-3-hy­droxy-3-methyl-4-phen­oxy­butanoic acid dihydrate (C11H15NO4·2H2O or I·2H2O) is described in the (3+1)-dimensional superspace group P212121(0β0)000 (β = 0.357). The loss of the three-dimensional periodicity is ascribed to the occupational modulation of one positionally disordered solvent water mol­ecule, where the two positions are related by a small translation [ca 0.666 (9) Å] and ∼168 (5)° rotation about one of its O—H bonds, with an average 0.624 (3):0.376 (3) occupancy ratio. The occupational modulation of this mol­ecule arises due to the com­petition between the different hy­dro­gen-bonding motifs associated with each position. The structure can be very well refined in the average approximation (all satellite reflections disregarded) in the space group P212121, with the water mol­ecule refined as disordered over two positions in a 0.625 (16):0.375 (16) ratio. The refinement in the commensurate threefold supercell approximation in the space group P1121 is also of high quality, with the six corresponding water mol­ecules exhibiting three different occupancy ratios averaging 0.635:0.365.