io

Locking articulation mechanism

A surgical device including a handle assembly, an elongated body extending from the handle assembly, and an articulation mechanism connected to the handle assembly and configured to selectively articulate and lock an articulable tool assembly in one or more positions is provided. The articulation mechanism includes a main shaft member mounted for rotation and connected to an articulation linkage, a locking member configured to be received about the shaft portion of the main shaft member, the locking member defining a plurality of notches, an articulation handle fixedly secured to shaft portion of the main shaft member and configured for rotation relative to the locking member, and a lug member operatively mounted on the articulation handle and including a locking tab configured to be selectively received within a notch of the plurality of notches formed in the locking member.




io

Fastening instrument for deploying a fastener system comprising a retention matrix

A surgical stapling instrument can comprise, one, a handle comprising an actuator and, two, an end effector comprising a proximal end, a distal end, and a longitudinal axis extending between the proximal end and the distal end. The end effector can further comprise a first jaw configured to support staples comprising staple legs and, in addition, a second jaw supporting a matrix element opposite the staples, wherein one of the jaws is movable toward the other in order to engage the matrix element with the staple legs. The stapling instrument can further comprise a cam operably coupled with the actuator, wherein the cam is movable along the longitudinal axis to deform the staple legs.




io

Feeder belt actuation mechanism for true multi-fire surgical stapler

One example of a surgical apparatus may include a feeder belt, a plurality of staples frangibly connected to the feeder belt, and at least one pull tab extending laterally from the feeder belt. An example of a surgical method of treating tissue within the body of a patient may include providing at least one feeder belt and staples frangibly connected thereto, and at least one wedge movable relative to the feeder belt; moving at least one wedge in a first direction to contact and thereby form and shear at least one staple from at least one feeder belt; and moving at least one wedge in a second direction to engage and advance the feeder belt.




io

Devices and methods for endoluminal plication

Devices and methods are provided for forming and securing a tissue plication. More particularly, the devices and methods of the present invention can be used to create multiple tissue folds on an anterior and posterior wall of a stomach cavity to reduce the volume thereof. In one aspect, a method of acquiring and fixating tissue is disclosed that includes inserting a surgical device having first and second jaws and a tissue acquisition member into a body lumen, positioning the device in a first position in which the jaws extend substantially parallel to a tissue surface, drawing tissue through the jaws by moving the tissue acquisition member away from the jaws, and driving at least one fastener through the tissue disposed between the jaws.




io

Tin-containing organolithium compounds and preparation thereof

The present invention relates to a tin-containing organolithium compound which can be used as anionic polymerization initiators, represented by the following formula (1): R4−xSn(Ya—Zm—Yb—Li)x (1)Wherein R, Z and Y are defined as in the specification; x represents a value of 1 or 2; m represents a value of 0 or 1; a represents a value of 0 to 6, b represents a value of 0 to 6, a+b is from 0 to 6, provided that m=1 when x=1. The tin-containing organolithium compounds according to the present invention can be used as initiators to initiate the polymerization of conjugated dienes and/or monovinyl aromatic hydrocarbons, thereby synthesizing various linear, star or telechelic polymers. The present invention also relates to a method for preparing the tin-containing organolithium compounds according to the present invention.




io

Liquid composition and ink set, and image-forming process and apparatus using the same

Disclosed herein is a colorless or pale-colored liquid composition comprising a cationic substance, wherein the liquid composition contains in combination a cationic substance and a nonionic polymeric substance.




io

Process for the purification of organometallic compounds or heteroatomic organic compounds with hydrogenated getter alloys

A process for the purification of organometallic compounds or heteroatomic organic compounds from oxygen, water and from the compounds deriving from the reaction of water and oxygen with the organometallic or heteroatomic compounds whose purification is sought, comprising the operation of contacting the organometallic or heteroatomic compound to be purified in the liquid state or in form of vapor, pure or in a carrier gas, with a hydrogenated getter alloy, and optionally also with one or more gas sorber materials selected among palladium on porous supports and a mixture of iron and manganese supported on zeolites.




io

Chemically-modified peptides, compositions, and methods of production and use

Compositions and methods for inhibiting and controlling the growth of microbes are disclosed. The composition comprises at least one chemically-modified peptide with antimicrobial activity and at least one carrier. The method comprises of administering an amount, effective for the prevention, inhibition and termination of microbial growth for industrial, pharmaceutical, household and personal care use.




io

Shaped body made of fiber-reinforced composites having a segmented covering layer, its production and its use

The present invention relates to shaped bodies made of fiber-reinforced ceramic composites and comprising a core zone and at least one covering layer which has a coefficient of thermal expansion which is higher than that of the core zone. The covering layer is an SiC-rich covering layer and is divided into segments which are separated from the adjacent segments by gaps or bridging zones of a material which is different from the material of the segments. The invention also relates to a process for producing such shaped bodies by infiltration of an intermediate body with molten silicon and their use for friction disks, in vehicle construction or as protective plates.




io

Fiber-reinforced material composed, at least in a surface region, of a metal/ceramic composite, molding composed of the fiber-reinforced material and method of producing the fiber-reinforced material

A method is provided for producing a fiber-reinforced material which is composed, at least in a region of a surface layer, of a ceramic composite and has carbon-containing fibers reaction-bonded to a matrix containing the elements Si and C. In particular a method of producing fiber-reinforced silicon carbide is provided in which a structure of a matrix contains cracks and/or pores, at least at ambient temperature, because of a high thermal expansion coefficient compared with that of the fibers. Metals are selectively electrodeposited in the open pores and cracks of the matrix and, in particular, in a region of the electrically conductive reinforcing fibers. As a result, the open pores and cracks are filled and, in addition, metallic top layers are optionally formed that are firmly keyed to the ceramic composite and that may serve as an interlayer for glass top layers or ceramic top layers. A fiber-reinforced composite material, as well as moldings, in particular brake discs, brake linings or clutch plates, composed of such a composite material, are also provided.




io

Liquid precursors for formation of materials containing alkali metals

Volatile liquid precursors are provided for use in the formation of alkali metal-containing materials. The compound includes an alkali metal and an amide ligand and is a liquid at a temperature of less than about 70° C.




io

Process for the preparation of alkyllithium compounds

A process for preparing alkyllithium compounds by reacting a sodium-lithium alloy with alkyl halides at temperatures of about 50 to 125° C.




io

Functionally graded friction material

A functionally graded friction material 18 having improved wear resistance and thermal conductivity with fibers 10 and heat conducting elements 12 disposed in an arrangement that conducts heat away from a first surface 20 to a second surface 22. Preferably, the heat conducting elements 12 are copper, copper alloy, filaments, threads, or wire situated substantially perpendicular to the engaging surface and extending to the non-engaging surface 22.




io

Method for the production of alkyl lithium compounds by using reduced pressure

Disclosed is a method for producing Alkyllithium compounds by reacting metallic lithium with an Alkyl halide in a solvent. The reaction is performed at a reduced pressure at the boiling point of the solvent.




io

Metallocenes containing ligands of 2-substituted indenyl derivatives, process for their preparation, and their use as catalysts

The novel metallocenes of the formula I in which, preferably, M1 is Zr or Hf, R1 and R2 are alkyl or halogen, R3 and R4 are hydrogen, R5 and R6 are alkyl or haloalkyl, —(CR8R9)m—R7—(CR8R9)n— is a single- or multi-membered chain in which R7 may also be a (substituted) hetero atom, m+n is zero or 1, and R10 is hydrogen, form, together with aluminoxanes as cocatalysts, a very effective catalyst system for the preparation of polyolefins of high stereospecificity and high melting point.




io

Alkylborazine compound and production method for the same

In the process of synthesizing alkylborazine compound represented by the chemical formula 2, by a reaction of a halogenated borazine compound represented by the chemical formula 1 with a Grignard reagent, thus synthesized alkylborazine compound is washed with water, or subjected to sublimation purification or distillation purification at least three times, and/or subjected to distillation purification at least twice. In the formulas, R1 independently represents alkyl group; R2 independently represents alkyl group; and X represents halogen atom.




io

Mixing method for friction material with a pre-mix in a single mixer

An improved method of producing a friction material for use in the production of brake pads. A first mixing step blends binder, fiber, and filler materials together in a mixer to create a pre-mix, with one of the materials doubling as a wetting agent promoting the homogeneity of the mixture. A second non-asbestos material is added to the pre-mix in the same mixer, and the two are mixed together to produce the final friction material.




io

Method for the production of alkyl lithium compounds by means of spraying of lithium metal

A method for the production of alkyl lithium compounds is disclosed, in which metallic lithium is reacted with an alkyl halide in a solvent, whereby the metallic lithium is introduced in the form of lithium particles, generated by spraying molten lithium into an inert atmosphere or into a vacuum.




io

Preparation of functionalized anionic polymerization initiators

A process for preparing a functionalized polymerization initiator, the process comprising combining a functionalized styryl compound and an organolithium compound.




io

Method for the production of Grignard compounds

The invention relates to a method for producing Grignard compounds, according to which magnesium is reacted in a suitable fluid reaction medium in a protective atmosphere with hologen-substituted organic compounds by means of microwave radiation.




io

Process for exchanging functional groups by halogen-metal exchange reaction

A method by which a halogen atom of a halogen compound can be efficiently replaced with an electrophilic group. Also provided are: a reagent for converting a functional group through a halogen-metal exchange reaction, characterized by comprising either a mixture of a magnesium compound represented by the formula R1—Mg—X (I) (wherein R1 represents a halogen atom or an optionally substituted hydrocarbon residue; and X1 represents a halogen atom) and an organolithium compound represented by the formula R2—Li (II)(wherein R2 represents an optionally substituted hydrocarbon residue) or a product of the reaction of the magnesium compound with the organolithium compound; and a process for producing with the reagent a compound in which a halogen atom of a halogen compound has been replaced with an electrophilic group.




io

Process for the selective deprotonation and functionalization of 1-fluoro-2-substituted-3-chlorobenzenes

1-Fluoro-2-substituted-3-chlorobenzenes are selectively deprotonated and functionalized in the position adjacent to the fluoro substituent.




io

Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate, and tantalate dielectric films

Barium, strontium, tantalum and lanthanum precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of titanate thin films. The precursors have the formula M(Cp)2, wherein M is strontium, barium, tantalum or lanthanum, and Cp is cyclopentadienyl, of the formula (I), wherein each of R1-R5 is the same as or different from one another, with each being independently selected from among hydrogen, C1-C12 alkyl, C1-C12 amino, C6-C10 aryl, C1-C12 alkoxy, C3-C6 alkylsilyl, C2-C12 alkenyl, R1R2R3NNR3, wherein R1, R2 and R3 may be the same as or different from one another and each is independently selected from hydrogen and C1-C6 alkyl, and pendant ligands including functional group(s) providing further coordination to the metal center M. The precursors of the above formula are useful to achieve uniform coating of high dielectric constant materials in the manufacture of flash memory and other microelectronic devices.




io

Supported metal alkyl compound and its preparation

Pulverulent solid which consists essentially of at least one metal alkyl compound bound chemically and/or physically to a finely divided, porous, mechanically stable and chemically inert support, has a proportion by weight of metal alkyl compound of at least 5% by weight, based on the support, and has an angle of repose, determined in accordance with ISO 4324, of up to 48°. The solid allows trouble-free metering as active component into a reactor.




io

Dicarbanionic initiator, a process for the preparation and use thereof

The present invention provides a novel dicarbanionic initiator of formula (I). The present process further provides a process for the preparation of dicarbanionic initiator of formula (I) comprising reacting 1-bromo-4-(4'-bromophenoxy)-2-pentadecyl benzene of formula (II) with alkyllithium compound for an effecting halogen-lithium exchange reaction of 1-bromo-4-(4'-bromophenoxy)-2-pentadecyl benzene with sec-butyllithium in the presence of a non polar solvent, at a temperature in the range of 0 to 25° C. and its use as an initiator for the synthesis of telechelic polydienes and polystyrenes and SBS or SIS triblock copolymers.




io

Method for preparing diorganomagnesium-containing synthesis means

A diorganomagnesium-containing synthesis means, a method for its preparation and its use.




io

Process for the preparation of pure aryllithium compounds and their use

A process is described for preparing aryllithium compounds by reaction of metallic lithium in an ether-containing solvent with an aryl halide, wherein prior to or at the beginning of the reaction a catalyst is added, the catalyst containing a halogen-free, polynuclear aromatic (aryl catalyst) or consisting of such a compound.




io

Halide reduction in dihydrocarbylmagnesium mixtures

This invention provides a process for reducing the amount of soluble halide in a solution comprising a liquid organic medium, at least one viscosity reducing agent, at least one dihydrocarbylmagnesium compound, and an initial amount of soluble halide. The process comprises mixing at least one alkali metal with the solution at a mole ratio of alkali metal to magnesium of less than about 1:2.5, thereby forming precipitated soluble halides. Also provided by this invention is a process for reducing the amount of soluble halide in a slurry comprising a liquid organic medium, at least one viscosity reducing agent, at least one dihydrocarbylmagnesium compound, solids from the formation of said dihydrocarbylmagnesium compound, and an initial amount of soluble halide. This process comprises mixing at least one alkali metal with the slurry at a mole ratio of alkali metal to magnesium of less than about 1:1.25, thereby forming precipitated soluble halides.




io

Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate, and tantalate dielectric films

Barium, strontium, tantalum and lanthanum precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of titanate thin films. The precursors have the formula M(Cp)2, wherein M is strontium, barium, tantalum or lanthanum, and Cp is cyclopentadienyl, of the formula wherein each of R1-R5 is the same as or different from one another, with each being independently selected from among hydrogen, C1-C12 alkyl, C1-C12 amino, C6-C10 aryl, C1-C12 alkoxy, C3-C6 alkylsilyl, C2-C12 alkenyl, R1R2R3NNR3, wherein R1, R2 and R3 may be the same as or different from one another and each is independently selected from hydrogen and C1-C6 alkyl, and pendant ligands including functional group(s) providing further coordination to the metal center M. The precursors of the above formula are useful to achieve uniform coating of high dielectric constant materials in the manufacture of flash memory and other microelectronic devices.




io

Process for preparing organic alkali metal compound and organic transition metal compound

[Problem] To provide a preparation process by which an organic alkali metal compound is obtained in a high yield and a process for preparing an organic transition metal compound using the organic alkali metal compound. [Means to solve the problem] A process for preparing an organic alkali metal compound, which is characterized by adding a compound represented by the following formula (2) in the reaction of an active proton-containing compound represented by the following formula (1) with an alkali metal compound. RHp (1) In the formula (1), R is a hydrocarbon group or an amino group and may contain a halogen atom, a silicon atom, an oxygen atom or a nitrogen atom, H is an active proton, and p is the number of hydrogen atoms abstracted in the reaction with the alkali metal compound. In the formula (2), Ra to Rc are each an atom or a group selected from a hydrogen atom, a hydrocarbon group, a heteroatom-containing group and a silicon-containing group and may be the same as or different from each other, and the neighboring substituents may be bonded to each other to form a ring.




io

Strontium precursor for use in chemical vapor deposition, atomic layer deposition and rapid vapor deposition

A method of depositing a crystalline strontium titanate film on a substrate is provided, comprising carrying out an atomic layer deposition (ALD) process with strontium and titanium precursors, wherein the strontium precursor is bis(n-propyltetramethylcyclopentadienyl)strontium.




io

Antistatic ionomer composition and articles therewith

Disclosed are ionomer compositions neutralized by a combination of cesium and potassium that have antistatic properties. Also disclosed are articles, including laminates and monolayer or multilayer structures comprising such compositions to which neither powders nor dusts easily adhere electrostatically.




io

Redox-curing type composition

The present invention provides a redox-curing type composition that penetrates into a wet body, particularly into a tooth structure (dentin), is cured in an accelerated manner by the moisture contained in the wet body, thereby exhibits a higher bond strength than those of conventional redox-curing type compositions, and has satisfactory storage stability. The present invention is a redox-curing type composition including a polymerizable monomer (a) having an acidic group, a polymerizable monomer (b) having no acidic group, a powdery inorganic peroxide (c) with an average particle diameter of 0.01 to 50 μm, an amine-based reducing agent (d), and a polymerization accelerator (e). The amine-based reducing agent (d) includes an aromatic amine (d−1) and an aliphatic amine (d−2), and a weight ratio (d−1):(d−2) therebetween is 5:1 to 1:50.




io

Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate, and tantalate dielectric films

Barium, strontium, tantalum and lanthanum precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of titanate thin films. The precursors have the formula M(Cp)2, wherein M is strontium, barium, tantalum or lanthanum, and Cp is cyclopentadienyl, of the formula wherein each of R1-R5 is the same as or different from one another, with each being independently selected from among hydrogen, C1-C12 alkyl, C1-C12 amino, C6-C10 aryl, C1-C12 alkoxy, C3-C6 alkylsilyl, C2-C12 alkenyl, R1R2R3NNR3, wherein R1, R2 and R3 may be the same as or different from one another and each is independently selected from hydrogen and C1-C6 alkyl, and pendant ligands including functional group(s) providing further coordination to the metal center M. The precursors of the above formula are useful to achieve uniform coating of high dielectric constant materials in the manufacture of flash memory and other microelectronic devices.




io

Organometallic compound purification and apparatus

A method of purifying crude organometallic compounds using a stripping column and a gas stream is provided. This method removes relatively more volatile impurities as compared to the organometallic compound.




io

Production of nitrogen compounds from a methane conversion process

Methods and systems are provided for converting methane in a feed stream to acetylene. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to nitrogen based hydrocarbon compounds such as pyridines. The method includes the reaction of acetylene with ammonia and controlling the ratio of acetylene to ammonia to generate the desired nitrogen based hydrocarbon compound.




io

Motor lamination notching apparatus and method with selectively positionable punches

A notching apparatus for notching both an outer lamination and an inner lamination from a single lamination blank at s single station using a single press device includes a multi-piece die assembly provides multiple outer slot punches, multiple inner slot punches, and a separator punch. The outer slot punch portion, inner slot punch portion, and separator punch portion of the multi-piece die assembly are all selectively positionable in respective punching positions and non-punching positions to facilitate a controlled notching operation.




io

Punch with punch elements in adjustable positions

A punch includes a base, a plurality of punch pins, a lever and a plank. The base includes a lower member defining a plurality of holes and an upper member defining a plurality of holes corresponding to the holes defined in the lower member. Each of the punch pins is for insertion through one of the holes defined in the upper member and one of the holes defined in the lower member. The lever is pivotally mounted on the base. The plank defines a plurality of holes. The plank is movably attached to the lever between several positions in each of which it pushes a different set of the punch pins when the lever is operated.




io

In-line automated perforation method using selective multi-hole punch

A method for creating multiple punch holes during a finishing process of paper sheets and other sheet materials. A highlight of the present invention is the ability to select between at least two configurations of punch holes automatically, without manual adjustment, and “on-the-fly” without interruption of the sheet or paper flow. The perforation method utilizes two rotatable punches set at different angles such that when one intersects the sheet path, the other clears the sheet path. The speed of rotation is controlled such that the non-selected punch intersects the sheet path in a space between pitches.




io

Quick-extraction punch-holder adapter for converting punching machines from a single-punch to a multiple-punch configuration

A punching machine comprising at least one punching head including a support body having a first end delimiting a peripheral shoulder, a second end, and at least two parallel seats being angularly spaced from one another and extending through said support body from said first end to said second end; a punching tool holder slibably mounted in at least one of said seats; a multiplicity of removable resilient means angularly spaced from one another, each having a first end resting on said peripheral shoulder and a second end facing away from said peripheral shoulder; an annular cap member arranged in front and spaced from said peripheral shoulder and designed to abut against said second end of said resilient means; a rotor member mounted for rotation on said annular cap member and having an inner face thereof facing towards said punching tool holder; a sliding member projecting from said inner face and arranged to slide onto said punching tool holder when said rotor member rotates; and driving means designed to stepwise drive said rotor member, whereby locating said sliding member onto a pre-selected punching tool holder.




io

D/A conversion circuit and semiconductor device

A D/A conversion circuit with a small area is provided. In the D/A conversion circuit, according to a digital signal transmitted from address lines of an address decoder, one of four gradation voltage lines is selected. A circuit including two N-channel TFTs is connected in series to a circuit including two P-channel TFT, and a circuit including the circuits connected in series to each other is connected in parallel to each of the gradation voltage lines. Further, an arrangement of the circuit including the two N-channel TFTs and the circuit including the two P-channel TFTs is reversed for every gradation voltage line. By this, the crossings of wiring lines in the D/A conversion circuit becomes small and the area can be made small.




io

Tool selection method for machine tool, control device, and numerically controlled lathe

A tool selection method, for a machine tool, comprising the steps of identifying the maximum tip distance (D2) of a currently selected tool (141), a next designated tool (142) and an intermediate tool (143) disposed therebetween; moving a tool rest (10) in the +(plus)X-axis direction after a machining by the currently selected tool (141) is completed until the tip of the currently selected tool (141) is spaced from a workpiece (W) along the X-axis by a distance provided by adding a clearance distance (E) to a difference between the maximum tip distance (D2) and the tip distance (D3) of the currently selected tool (141); moving the tool rest (10) in the +(plus)Y-axis direction until the tip of the next designated tool (142) is aligned with the rotation center axis (12a) of the workpiece (W) in the X-axis direction; and moving the tool rest (10) in the −(minus)X-axis direction.




io

Fabrication method of multi-domain vertical alignment pixel structure

A fabrication method of a multi-domain vertical alignment pixel structure includes providing a substrate, forming a gate on the substrate, and forming an insulating layer on the substrate. A channel layer and a semiconductor layer are formed on the insulating layer. A source, a drain, and a capacitor-coupling electrode are formed. A passivation layer is formed to cover the source, the drain, a part of the channel layer, and a part of the semiconductor layer. A via hole is formed in the passivation layer to expose the drain, and a trench is formed in the passivation layer and the insulating layer. A lateral etched groove on the sidewall of the trench is formed to expose the side edge of the semiconductor layer. A first pixel electrode and a second pixel electrode are formed on the passivation layer at both sides of the trench, respectively.




io

Multi-well sample plate cover penetration system

An apparatus for penetrating a cover over a multi-well sample plate containing at least one individual sample well includes a cutting head, a cutter extending from the cutting head, and a robot. The cutting head is connected to the robot wherein the robot moves the cutting head and cutter so that the cutter penetrates the cover over the multi-well sample plate providing access to the individual sample well. When the cutting head is moved downward the foil is pierced by the cutter that splits, opens, and folds the foil inward toward the well. The well is then open for sample aspiration but has been protected from cross contamination.




io

Tool selection method for machine tool, control device, and numerically controlled lathe

A tool selection method, for a machine tool, comprising the steps of identifying the maximum tip distance (D2) of a currently selected tool (141), a next designated tool (142) and an intermediate tool (143) disposed therebetween; moving a tool rest (10) in the +(plus)X-axis direction after a machining by the currently selected tool (141) is completed until the tip of the currently selected tool (141) is spaced from a workpiece (W) along the X-axis by a distance provided by adding a clearance distance (E) to a difference between the maximum tip distance (D2) and the tip distance (D3) of the currently selected tool (141); moving the tool rest (10) in the +(plus)Y-axis direction until the tip of the next designated tool (142) is aligned with the rotation center axis (12a) of the workpiece (W) in the X-axis direction; and moving the tool rest (10) in the −(minus)X-axis direction.




io

Drug-transfer device, drug-delivery system incorporating the same, methods of fabricating the same, and methods of enabling administration of a drug

Devices capable of deterring or preventing bulk extraction of drugs from, for example, drug-delivery systems are exemplarily disclosed. In one embodiment, such a device may include a package releasably retaining a drug and an agent. The agent is configured to suppress a physiological effect of the drug when the agent contacts the drug or is coadministered with the drug. The cell package is configured such that an amount of the drug is selectively releasable with respect to the agent when the package is operably proximate to an encoded key. The package, however, may be configured to impose a relatively high likelihood that either the drug will not be accessed or the drug will be contaminated by the agent if access to the contents of the package is sought without the use of an encoded key.




io

Drug-transfer device, drug-delivery system incorporating the same, methods of fabricating the same, and methods of enabling administration of a drug

A method of enabling administration of a drug includes determining, within a drug-transfer device including cells, a location of at least one cell and generating information identifying the determined location. A user may be provided with the drug-transfer device. The drug is retained within the at least one cell when the user is provided with the drug-transfer device. The method also includes encoding a key with the information and providing the user with the key before, after or when the user is provided with the drug-transfer device. Drug retained within the at least one cell is selectively releasable when the key is operably proximate to the drug-transfer device and is encoded with the information. The key can be encoded with the information before and/or after being provided to the user. In some embodiments, the key is encoded based on instructions transmitted over a network.




io

Verification of a portable consumer device in an offline environment

A portable consumer device includes a base, and a computer readable medium on the base. The computer readable medium comprises code for an issuer verification value and a supplemental verification value. The issuer verification value is used by an issuer to verify that the portable consumer device is authentic in an on-line transaction and the supplemental verification value is used to verify that the portable consumer device is authentic in an off-line transaction.




io

Multi-dimensional print cutting head

An apparatus and article for cutting print media associated with a printing process. A media cutting logic-controlled head is incorporated into printing hardware. The cutting head is provided with a plurality of cutting devices that may be implemented in the form of cutting pins. Control logic is provided to individually control an extension or actuation of each of the cutting devices. Multiple cutting devices may be simultaneously extended and retracted or activated and deactivated, to cut the media at multiple locations. The cutting head can be integrated with any of existing printers transforming a printer into a media cutting device capable of cutting two-dimensional complex shapes at the full line speed without requiring change in speed or reversal of the media at any point.




io

Verification of a portable consumer device in an offline environment

A portable consumer device includes a base, and a computer readable medium on the base. The computer readable medium comprises code for an issuer verification value and a supplemental verification value. The issuer verification value is used by an issuer to verify that the portable consumer device is authentic in an on-line transaction and the supplemental verification value is used to verify that the portable consumer device is authentic in an off-line transaction.