icon Semiconductor device and method of forming interconnect structure for encapsulated die having pre-applied protective layer By www.freepatentsonline.com Published On :: Tue, 02 Feb 2016 08:00:00 EST A semiconductor device has a protective layer formed over an active surface of a semiconductor wafer. The semiconductor die with pre-applied protective layer are moved from the semiconductor wafer and mounted on a carrier. The semiconductor die and contact pads on the carrier are encapsulated. The carrier is removed. A first insulating layer is formed over the pre-applied protective layer and contact pads. Vias are formed in the first insulating layer and pre-applied protective layer to expose interconnect sites on the semiconductor die. An interconnect structure is formed over the first insulating layer in electrical contact with the interconnect sites on the semiconductor die and contact pads. The interconnect structure has a redistribution layer formed on the first insulating layer, a second insulating layer formed on the redistribution layer, and an under bump metallization layer formed over the second dielectric in electrical contact with the redistribution layer. Full Article
icon Semiconductor device and manufacturing method thereof By www.freepatentsonline.com Published On :: Tue, 01 Mar 2016 08:00:00 EST A semiconductor device having favorable electric characteristics and a manufacturing method thereof are provided. A transistor includes an oxide semiconductor layer formed over an insulating layer, a source electrode layer and a drain electrode layer which overlap with part of the oxide semiconductor layer, a gate insulating layer in contact with part of the oxide semiconductor layer, and a gate electrode layer over the gate insulating layer. In the transistor, a buffer layer having n-type conductivity is formed between the source electrode layer and the oxide semiconductor layer and between the drain electrode layer and the oxide semiconductor layer. Thus, parasitic resistance is reduced, resulting in improvement of on-state characteristics of the transistor. Full Article
icon Enhanced patterning uniformity of gate electrodes of a semiconductor device by late gate doping By www.freepatentsonline.com Published On :: Tue, 08 Mar 2016 08:00:00 EST When forming sophisticated semiconductor-based gate electrode structures of transistors, the pre-doping of one type of gate electrode structure may be accomplished after the actual patterning of the electrode material by using an appropriate mask or fill material for covering the active regions and using a lithography mask. In this manner, a high degree of flexibility is provided with respect to selecting an appropriate patterning regime, while at the same time a uniform and superior cross-sectional shape for any type of gate electrode structure is obtained. Full Article
icon Semiconductor device and method for manufacturing semiconductor device By www.freepatentsonline.com Published On :: Tue, 08 Mar 2016 08:00:00 EST A highly reliable semiconductor device is manufactured by giving stable electric characteristics to a transistor in which an oxide semiconductor film is used for a channel. An oxide semiconductor film which can have a first crystal structure by heat treatment and an oxide semiconductor film which can have a second crystal structure by heat treatment are formed so as to be stacked, and then heat treatment is performed; accordingly, crystal growth occurs with the use of an oxide semiconductor film having the second crystal structure as a seed, so that an oxide semiconductor film having the first crystal structure is formed. An oxide semiconductor film formed in this manner is used for an active layer of the transistor. Full Article
icon Manufacturing method of semiconductor film, manufacturing method of semiconductor device, and manufacturing method of photoelectric conversion device By www.freepatentsonline.com Published On :: Tue, 13 Sep 2016 08:00:00 EDT A method for forming an amorphous semiconductor which contains an impurity element and has low resistivity and a method for manufacturing a semiconductor device with excellent electrical characteristics with high yield are provided. In the method for forming an amorphous semiconductor containing an impurity element, which utilizes a plasma CVD method, pulse-modulated discharge inception voltage is applied to electrodes under the pressure and electrode distance with which the minimum discharge inception voltage according to Paschen's Law can be obtained, whereby the amorphous semiconductor which contains an impurity element and has low resistivity is formed. Full Article
icon Semiconductor device including a current mirror circuit By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT In a semiconductor device, where, with respect to a parasitic resistor in a current mirror circuit, a compensation resistor for compensating the parasitic resistor is provided in the current mirror circuit, the current mirror circuit includes at least two thin film transistors. The thin film transistors each have an island-shaped semiconductor film having a channel formation region and source or drain regions, a gate insulating film, a gate electrode, and source or drain electrodes, and the compensation resistor compensates the parasitic resistor of any one of the gate electrode, the source electrode, and the drain electrode. In addition, each compensation resistor has a conductive layer containing the same material as the gate electrode, the source or drain electrodes, or the source or drain regions. Full Article
icon Semiconductor device and method of manufacturing the semiconductor device By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT In a semiconductor device, a first interlayer insulating layer made of an inorganic material and formed on inverse stagger type TFTs, a second interlayer insulating layer made of an organic material and formed on the first interlayer insulating layer, and a pixel electrode formed in contact with the second interlayer insulating layer are disposed on a substrate, and an input terminal portion that is electrically connected to a wiring of another substrate is provided on an end portion of the substrate. The input terminal portion includes a first layer made of the same material as that of the gate electrode and a second layer made of the same material as that of the pixel electrode. With this structure, the number of photomasks used in the photolithography method can be reduced to 5. Full Article
icon Liquid crystal display device, semiconductor device, and electronic appliance By www.freepatentsonline.com Published On :: Tue, 08 Dec 2015 08:00:00 EST The liquid crystal display device includes an island-shaped first semiconductor film 102 which is formed over a base insulating film 101 and in which a source 102d, a channel forming region 102a, and a drain 102b are formed; a first electrode 102c which is formed of a material same as the first semiconductor film 102 to be the source 102d or the drain 102b and formed over the base insulating film 101; a second electrode 108 which is formed over the first electrode 102c and includes a first opening pattern 112; and a liquid crystal 110 which is provided over the second electrode 108. Full Article
icon Liquid crystal display device, semiconductor device, and electronic appliance By www.freepatentsonline.com Published On :: Tue, 15 Dec 2015 08:00:00 EST The liquid crystal display device includes an island-shaped first semiconductor film 102 which is formed over a base insulating film 101 and in which a source 102d, a channel forming region 102a, and a drain 102b are formed; a first electrode 102c which is formed of a material same as the first semiconductor film 102 to be the source 102d or the drain 102b and formed over the base insulating film 101; a second electrode 108 which is formed over the first electrode 102c and includes a first opening pattern 112; and a liquid crystal 110 which is provided over the second electrode 108. Full Article
icon Silicon pen nanolithography By www.freepatentsonline.com Published On :: Tue, 24 Feb 2015 08:00:00 EST Disclosed are methods of lithography using a tip array having a plurality of pens attached to a backing layer, where the tips can comprise a metal, metalloid, and/or semi-conducting material, and the backing layer can comprise an elastomeric polymer. The tip array can be used to perform a lithography process in which the tips are coated with an ink (e.g., a patterning composition) that is deposited onto a substrate upon contact of the tip with the substrate surface. The tips can be easily leveled onto a substrate and the leveling can be monitored optically by a change in light reflection of the backing layer and/or near the vicinity of the tips upon contact of the tip to the substrate surface. Full Article
icon Semiconductor device, light-emitting device, and electronic device By www.freepatentsonline.com Published On :: Tue, 10 Mar 2015 08:00:00 EDT An object is to prevent an operation defect and to reduce an influence of fluctuation in threshold voltage of a field-effect transistor. A field-effect transistor, a switch, and a capacitor are provided. The field-effect transistor includes a first gate and a second gate which overlap with each other with a channel formation region therebetween, and the threshold voltage of the field-effect transistor varies depending on the potential of the second gate. The switch has a function of determining whether electrical connection between one of a source and a drain of the field-effect transistor and the second gate of the field-effect transistor is established. The capacitor has a function of holding a voltage between the second gate of the field-effect transistor and the other of the source and the drain of the field-effect transistor. Full Article
icon Semiconductor reference voltage generating device By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT A reference voltage generating circuit has more than two first wells each having a first impurity concentration and more than two second wells each having a second impurity concentration different from the first impurity concentration. A first group of MOS transistors has more than two MOS transistors formed in respective ones of the first wells. A second group of MOS transistors has More than two MOS transistors formed in respective ones of the second wells. Full Article
icon Control device and method for actuating a semiconductor switch By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT A control device for influencing a flow of energy in a load circuit between an electrical voltage source and an electrical load, having a semiconductor switch including a conductive section which is formed between an input connection and an output connection, can be looped into the load circuit, and has an electrical resistance adjustable by means of an electrical potential which can be applied to a control connection associated with the semiconductor switch, and having a control circuit which is coupled to the control connection and includes a freewheeling means connected in parallel to the load. The control circuit is designed to supply a control current at the control connection which is proportional to a voltage via the freewheeling means. Full Article
icon Semiconductor device having pull-up circuit and pull-down circuit By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT To reduce power supply noises occurring in a control circuit unit for controlling an output buffer. A semiconductor device includes unit buffers for driving a data output terminal, impedance control circuits for controlling the unit buffers, and a control circuit unit for controlling the impedance control circuits. The impedance control circuits and the control circuit unit operate by mutually-different power supplies, the control circuit unit supplies pull-up data and pull-down data in mutually reverse phase to the impedance control circuits, and the impedance control circuits convert the pull-up data and the pull-down data from reverse phase to in-phase and supply the same to the unit buffers. Thereby, a noise is difficult to occur in a power supply VDD used for the control circuit unit. Full Article
icon Semiconductor device and method for driving the same By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT A semiconductor device including an integrator circuit, in which electric discharge from a capacitor can be reduced to shorten time required for charging the capacitor in the case where supply of power supply voltage is stopped and restarted, and a method for driving the semiconductor device are provided. One embodiment has a structure in which a transistor with small off-state current is electrically connected in series to a capacitor in an integrator circuit. Further, in one embodiment of the present invention, a transistor with small off-state current is electrically connected in series to a capacitor in an integrator circuit; the transistor is on in a period during which power supply voltage is supplied; and the transistor is off in a period during which supply of the power supply voltage is stopped. Full Article
icon Semiconductor storage device By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT A semiconductor storage device which stops and resumes the supply of power supply voltage without the necessity of saving and returning a data signal between a volatile storage device and a nonvolatile storage device is provided. In the nonvolatile semiconductor storage device, the volatile storage device and the nonvolatile storage device are provided without separation. Specifically, in the semiconductor storage device, data is held in a data holding portion connected to a transistor including a semiconductor layer containing an oxide semiconductor and a capacitor. The potential of the data held in the data holding portion is controlled by a data potential holding circuit and a data potential control circuit. The data potential holding circuit can output data without leaking electric charge, and the data potential control circuit can control the potential of the data held in the data holding portion without leaking electric charge by capacitive coupling through the capacitor. Full Article
icon Pulse generation circuit and semiconductor device By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT Two gate drivers each comprising a shift register and a demultiplexer including single conductivity type transistors are provided on left and right sides of a pixel portion. Gate lines are alternately connected to the left-side and right-side gate drivers in every M rows. The shift register includes k first unit circuits connected in cascade. The demultiplexer includes k second unit circuits to each of which a signal is input from the first unit circuit and to each of which M gate lines are connected. The second unit circuit selects one or more wirings which output an input signal from the first unit circuit among M gate lines, and outputs the signal from the first unit circuit to the selected wiring(s). Since gate signals can be output from an output of a one-stage shift register to the M gate lines, the width of the shift register can be narrowed. Full Article
icon Semiconductor device and communication interface circuit By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT A semiconductor device prevents recognition failure in mutual recognition between a host and a device compliant with USB Specifications. The semiconductor device includes: an interterminal opening/closing section having a plurality of first conductivity type MOS transistors, the respective sources or drains of which are cascaded, in which the source or drain of a first-stage MOS transistor among the cascaded MOS transistors is used as a first terminal, the source or drain of a final-stage MOS transistor among the cascaded MOS transistors is used as a second terminal, and the respective gates of the cascaded MOS transistors receive a control signal for controlling the opening or short-circuiting between the first and second terminals; and a current bypass section that reduces a current flowing into either one connection node coupling the respective sources or drains of the cascaded MOS transistors. Full Article
icon Power semiconductor device By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT A transistor being one of an IGBT and a MOSFET and arranged near a gate control circuit applies a gate control signal from the gate control circuit to the gate of a transistor arranged far from the gate control circuit. A gate control signal is applied via a resistive element to the transistor arranged near the gate control circuit. Full Article
icon Method and semiconductor apparatus for reducing power when transmitting data between devices in the semiconductor apparatus By www.freepatentsonline.com Published On :: Tue, 30 Jun 2015 08:00:00 EDT A semiconductor apparatus is provided herein for reducing power when transmitting data between a first device and a second device in the semiconductor apparatus. Additional circuitry is added to the semiconductor apparatus to create a communication system that decreases a number of state changes for each signal line of a data bus between the first device and the second device for all communications. The additional circuitry includes a decoder coupled to receive and convert a value from the first device for transmission over the data bus to an encoder that provides a recovered (i.e., re-encoded) version of the value to the second device. One or more multiplexers may also be included in the additional circuitry to support any number of devices. Full Article
icon Thin film semiconductor device and organic light-emitting display apparatus By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT An apparatus and a method of manufacturing a thin film semiconductor device having a thin film transistor with improved electrical properties in organic light-emitting display apparatus are described. Full Article
icon Apparatus for manufacturing single crystal silicon ingot having reusable dual crucible for silicon melting By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT The present disclosure provides an apparatus for manufacturing a single crystal silicon ingot having a dual crucible for silicon melting which can be reused due to a dual crucible structure. The apparatus includes a dual crucible for silicon melting, into which raw silicon is charged, a crucible heater heating the dual crucible to melt the raw silicon into molten silicon, a crucible drive unit controlling rotation and elevation of the dual crucible, and a pull-up drive unit disposed above the dual crucible and pulling up a seed crystal dipped in the molten silicon to produce a silicon ingot. The dual crucible has a container shape open at an upper side thereof, and includes a graphite crucible having an inclined surface connecting an inner bottom and an inner wall, and a quartz crucible inserted into the graphite crucible and receiving the raw silicon charged into the dual crucible. Full Article
icon Image processing apparatus, image processing method, and computer-readable medium for arranging status display to include status icon and status description By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT An image processing apparatus includes a system managing unit configured to manage an apparatus status of apparatus hardware; an acquiring unit configured to acquire application status information of an application from the application and apparatus status information from the system managing unit; an input unit configured to accept a display request for displaying a status monitor screen indicating an overall system status; a screen generating unit configured to receive the display request and generate the status monitor screen based on the application status information and the apparatus status information acquired by the acquiring unit, the status monitor screen including an application status display and an apparatus status display; and a display unit configured to display the status monitor screen generated by the screen generating unit. Full Article
icon Shift register, semiconductor device, display device, and electronic device By www.freepatentsonline.com Published On :: Tue, 06 Oct 2015 08:00:00 EDT The invention provides a semiconductor device and a shift register, in which low noise is caused in a non-selection period and a transistor is not always on. First to fourth transistors are provided. One of a source and a drain of the first transistor is connected to a first wire, the other of the source and the drain thereof is connected to a gate electrode of the second transistor, and a gate electrode thereof is connected to a fifth wire. One of a source and a drain of the second transistor is connected to a third wire and the other of the source and the drain thereof is connected to a sixth wire. One of a source and a drain of the third transistor is connected to a second wire, the other of the source and the drain thereof is connected to the gate electrode of the second transistor, and a gate electrode thereof is connected to a fourth wire. One of a source and a drain of the fourth transistor is connected to the second wire, the other of the source and the drain thereof is connected to the sixth wire, and a gate electrode thereof is connected to the fourth wire. Full Article
icon Three dimensional branchline coupler using through silicon vias and design structures By www.freepatentsonline.com Published On :: Tue, 19 May 2015 08:00:00 EDT A three dimensional (3D) branchline coupler using through silicon vias (TSV), methods of manufacturing the same and design structures are disclosed. The method includes forming a first waveguide structure in a first dielectric material. The method further includes forming a second waveguide structure in a second dielectric material. The method further includes forming through silicon vias through a substrate formed between the first dielectric material and the second dielectric material, which connects the first waveguide structure to the second waveguide structure. Full Article
icon Semiconductor device for battery control and battery pack By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT A semiconductor device for battery control includes a CPU, a first bus coupled to the CPU, a second bus not coupled to the CPU, and a protective function circuit for protecting a battery from stress applied thereto. The semiconductor device also includes a non-volatile memory storing trimming data, a trimming circuit to perform trimming required to allow the protective function circuit to exert a protective function, and a bus control circuit capable of selectively coupling the first bus and the second bus to the non-volatile memory. The semiconductor device further includes a transfer logic circuit which causes, by making the bus control circuit select the second bus, a trimming data transfer path leading from the non-volatile memory to the trimming circuit to be formed and the trimming data stored in the non-volatile memory to be transferred to the trimming circuit without involving the CPU. Full Article
icon Semiconductor device By www.freepatentsonline.com Published On :: Tue, 16 Jun 2015 08:00:00 EDT An object is to provide a semiconductor device using an oxide semiconductor having stable electric characteristics and high reliability. A transistor including the oxide semiconductor film in which a top surface portion of the oxide semiconductor film is provided with a metal oxide film containing a constituent similar to that of the oxide semiconductor film and functioning as a channel protective film is provided. In addition, the oxide semiconductor film used for an active layer of the transistor is an oxide semiconductor film highly purified to be electrically i-type (intrinsic) by heat treatment in which impurities such as hydrogen, moisture, a hydroxyl group, or a hydride are removed from the oxide semiconductor and oxygen which is a major constituent of the oxide semiconductor and is reduced concurrently with a step of removing impurities is supplied. Full Article
icon Semiconductor light-emitting device By www.freepatentsonline.com Published On :: Tue, 30 Jun 2015 08:00:00 EDT A semiconductor light-emitting device includes a lamination of semiconductor layers including a first layer of a first conductivity type, an active layer, and a second layer of a second conductivity type; a transparent conductive film formed on a principal surface of the lamination and having an opening; a pad electrode formed on part the opening; and a wiring electrode connected with the pad electrode, formed on another part of the opening while partially overlapping the transparent conductive film; wherein contact resistance between the transparent conductive film and the lamination is larger than contact resistance between the wiring electrode and the lamination. Field concentration at the wiring electrode upon application of high voltage is mitigated by the overlapping transparent conductive film. Full Article
icon Film for flip chip type semiconductor back surface, dicing tape-integrated film for semiconductor back surface, process for producing semiconductor device, and flip chip type semiconductor device By www.freepatentsonline.com Published On :: Tue, 07 Jul 2015 08:00:00 EDT The present invention relates to a film for flip chip type semiconductor back surface to be formed on a back surface of a semiconductor element flip chip-connected to an adherend, the film for flip chip type semiconductor back surface containing an inorganic filler in an amount within a range of 70% by weight to 95% by weight based on the whole of the film for flip chip type semiconductor back surface. Full Article
icon Semiconductor device and method for manufacturing the same By www.freepatentsonline.com Published On :: Tue, 07 Jul 2015 08:00:00 EDT An object is to manufacture a semiconductor device with high reliability by providing the semiconductor device including an oxide semiconductor with stable electric characteristics. In a transistor including an oxide semiconductor layer, a gallium oxide film is used for a gate insulating layer and made in contact with an oxide semiconductor layer. Further, gallium oxide films are provided so as to sandwich the oxide semiconductor layer, whereby reliability is increased. Furthermore, the gate insulating layer may have a stacked structure of a gallium oxide film and a hafnium oxide film. Full Article
icon Transistor including an oxide semiconductor and display device using the same By www.freepatentsonline.com Published On :: Tue, 14 Jul 2015 08:00:00 EDT The band tail state and defects in the band gap are reduced as much as possible, whereby optical absorption of energy which is in the vicinity of the band gap or less than or equal to the band gap is reduced. In that case, not by merely optimizing conditions of manufacturing an oxide semiconductor film, but by making an oxide semiconductor to be a substantially intrinsic semiconductor or extremely close to an intrinsic semiconductor, defects on which irradiation light acts are reduced and the effect of light irradiation is reduced essentially. That is, even in the case where light with a wavelength of 350 nm is delivered at 1×1013 photons/cm2·sec, a channel region of a transistor is formed using an oxide semiconductor, in which the absolute value of the amount of the variation in the threshold voltage is less than or equal to 0.65 V. Full Article
icon Semiconductor light emitting device By www.freepatentsonline.com Published On :: Tue, 14 Jul 2015 08:00:00 EDT According to one embodiment, a semiconductor light emitting device includes a stacked structure body, a first electrode, a second electrode, and a dielectric body part. The stacked structure body includes a first semiconductor layer, having a first portion and a second portion juxtaposed with the first portion, a light emitting layer provided on the second portion, a second semiconductor layer provided on the light emitting layer. The first electrode includes a contact part provided on the first portion and contacting the first layer. The second electrode includes a first part provided on the second semiconductor layer and contacting the second layer, and a second part electrically connected with the first part and including a portion overlapping with the contact part when viewed from the first layer toward the second layer. The dielectric body part is provided between the contact part and the second part. Full Article
icon Semiconductor device, semiconductor wafer and manufacturing method of semiconductor device By www.freepatentsonline.com Published On :: Tue, 21 Jul 2015 08:00:00 EDT A semiconductor device includes wiring layers formed over a semiconductor wafer, a via-layer between the wiring layers, conductive films in the wiring layers, and a via-plug in the via-layer connecting the conductive films of the wiring layers above and below, a scribe region at an outer periphery of a chip region along an edge of the semiconductor substrate and including a pad region in the vicinity of the edge, the pad region overlapping the conductive films of the plurality of wiring layers in the plan view, the plurality of wiring layers including first second wiring layers, the conductive film of the first wiring layer includes a first conductive pattern formed over an entire surface of said pad region in a plan view, and the conductive film of the second wiring layer includes a second conductive pattern formed in a part of the pad region in a plan view. Full Article
icon Semiconductor device By www.freepatentsonline.com Published On :: Tue, 04 Aug 2015 08:00:00 EDT It is an object to provide a transistor having a new multigate structure in which operating characteristics and reliability are improved. In a transistor having a multigate structure, which includes two gate electrodes electrically connected to each other and a semiconductor layer including two channel regions connected in series formed between a source region and a drain region, and a high concentration impurity region is formed between the two channel regions; the channel length of the channel region adjacent to the source region is longer than the channel length of the channel region adjacent to the drain region. Full Article
icon Defect mitigation structures for semiconductor devices By www.freepatentsonline.com Published On :: Tue, 11 Aug 2015 08:00:00 EDT A method and a semiconductor device for incorporating defect mitigation structures are provided. The semiconductor device comprises a substrate, a defect mitigation structure comprising a combination of layers of doped or undoped group IV alloys and metal or non-metal nitrides disposed over the substrate, and a device active layer disposed over the defect mitigation structure. The defect mitigation structure is fabricated by depositing one or more defect mitigation layers comprising a substrate nucleation layer disposed over the substrate, a substrate intermediate layer disposed over the substrate nucleation layer, a substrate top layer disposed over the substrate intermediate layer, a device nucleation layer disposed over the substrate top layer, a device intermediate layer disposed over the device nucleation layer, and a device top layer disposed over the device intermediate layer. The substrate intermediate layer and the device intermediate layer comprise a distribution in their compositions along a thickness coordinate. Full Article
icon Oxide-based semiconductor non-linear element having gate electrode electrically connected to source or drain electrode By www.freepatentsonline.com Published On :: Tue, 11 Aug 2015 08:00:00 EDT A non-linear element (e.g., a diode) with small reverse saturation current is provided. A non-linear element includes a first electrode provided over a substrate, an oxide semiconductor film provided on and in contact with the first electrode, a second electrode provided on and in contact with the oxide semiconductor film, a gate insulating film covering the first electrode, the oxide semiconductor film, and the second electrode, and a third electrode provided in contact with the gate insulating film and adjacent to a side surface of the oxide semiconductor film with the gate insulating film interposed therebetween or a third electrode provided in contact with the gate insulating film and surrounding the second electrode. The third electrode is connected to the first electrode or the second electrode. Full Article
icon Semiconductor light emitting device By www.freepatentsonline.com Published On :: Tue, 11 Aug 2015 08:00:00 EDT According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, a light emitting unit, a second semiconductor layer, a reflecting electrode, an oxide layer and a nitrogen-containing layer. The first semiconductor layer is of a first conductivity type. The light emitting unit is provided on the first semiconductor layer. The second semiconductor layer is provided on the light emitting unit and is of a second conductivity type. The reflecting electrode is provided on the second semiconductor layer and includes Ag. The oxide layer is provided on the reflecting electrode. The oxide layer is insulative and has a first opening. The nitrogen-containing layer is provided on the oxide layer. The nitrogen-containing layer is insulative and has a second opening communicating with the first opening. Full Article
icon Semiconductor devices with heterojunction barrier regions and methods of fabricating same By www.freepatentsonline.com Published On :: Tue, 25 Aug 2015 08:00:00 EDT An electronic device includes a silicon carbide layer including an n-type drift region therein, a contact forming a junction, such as a Schottky junction, with the drift region, and a p-type junction barrier region on the silicon carbide layer. The p-type junction barrier region includes a p-type polysilicon region forming a P-N heterojunction with the drift region, and the p-type junction barrier region is electrically connected to the contact. Related methods are also disclosed. Full Article
icon Semiconductor device and method for manufacturing the same By www.freepatentsonline.com Published On :: Tue, 25 Aug 2015 08:00:00 EDT An object is to provide a semiconductor device including an oxide semiconductor film, which has stable electrical characteristics and high reliability. A stack of first and second material films is formed by forming the first material film (a film having a hexagonal crystal structure) having a thickness of 1 nm to 10 nm over an insulating surface and forming the second material film having a hexagonal crystal structure (a crystalline oxide semiconductor film) using the first material film as a nucleus. As the first material film, a material film having a wurtzite crystal structure (e.g., gallium nitride or aluminum nitride) or a material film having a corundum crystal structure (α-Al2O3, α-Ga2O3, In2O3, Ti2O3, V2O3, Cr2O3, or α-Fe2O3) is used. Full Article
icon Semiconductor device and method of manufacturing semiconductor device By www.freepatentsonline.com Published On :: Tue, 08 Sep 2015 08:00:00 EDT A semiconductor device, includes a semiconductor substrate, a first interconnect layer formed over the semiconductor substrate, a gate electrode formed in the first interconnect layer, a gate insulating film formed over the gate electrode, a second interconnect layer formed over the gate insulating film, an oxide semiconductor layer formed in the second interconnect layer, and a via formed in the second interconnect layer and connected to the oxide semiconductor layer. The gate electrode, the gate insulating film and the oxide semiconductor layer overlap in a plan view. Full Article
icon Semiconductor devices including a stressor in a recess and methods of forming the same By www.freepatentsonline.com Published On :: Tue, 08 Sep 2015 08:00:00 EDT Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a trench in an active region and the trench may include a notched portion of the active region. The methods may also include forming an embedded stressor in the trench. The embedded stressor may include a lower semiconductor layer and an upper semiconductor layer, which has a width narrower than a width of the lower semiconductor layer. A side of the upper semiconductor layer may not be aligned with a side of the lower semiconductor layer and an uppermost surface of the upper semiconductor layer may be higher than an uppermost surface of the active region. Full Article
icon Semiconductor device and method for manufacturing the same By www.freepatentsonline.com Published On :: Tue, 08 Sep 2015 08:00:00 EDT It is an object to manufacture a highly reliable semiconductor device including a thin film transistor whose electric characteristics are stable. An insulating layer which covers an oxide semiconductor layer of the thin film transistor contains a boron element or an aluminum element. The insulating layer containing a boron element or an aluminum element is formed by a sputtering method using a silicon target or a silicon oxide target containing a boron element or an aluminum element. Alternatively, an insulating layer containing an antimony (Sb) element or a phosphorus (P) element instead of a boron element covers the oxide semiconductor layer of the thin film transistor. Full Article
icon Semiconductor device and manufacturing method thereof By www.freepatentsonline.com Published On :: Tue, 15 Sep 2015 08:00:00 EDT A semiconductor device which includes a thin film transistor having an oxide semiconductor layer and excellent electrical characteristics is provided. Further, a method for manufacturing a semiconductor device in which plural kinds of thin film transistors of different structures are formed over one substrate to form plural kinds of circuits and in which the number of steps is not greatly increased is provided. After a metal thin film is formed over an insulating surface, an oxide semiconductor layer is formed thereover. Then, oxidation treatment such as heat treatment is performed to oxidize the metal thin film partly or entirely. Further, structures of thin film transistors are different between a circuit in which emphasis is placed on the speed of operation, such as a logic circuit, and a matrix circuit. Full Article
icon Semiconductor device and manufacturing method thereof By www.freepatentsonline.com Published On :: Tue, 06 Oct 2015 08:00:00 EDT A semiconductor film having an impurity region to which at least an n-type or p-type impurity is added and a wiring are provided. The wiring includes a diffusion prevention film containing a conductive metal oxide, and a low resistance conductive film over the diffusion prevention film. In a contact portion between the wiring and the semiconductor film, the diffusion prevention film and the impurity region are in contact with each other. The diffusion prevention film is framed in such a manner that a conductive film is exposed to plasma generated from a mixed gas of an oxidizing gas and a halogen-based gas to form an oxide of a metal material contained in the conductive film, the conductive film in which the oxide of the metal material is formed is exposed to an atmosphere containing water to be fluidized, and the fluidized conductive film is solidified. Full Article
icon Semiconductor device By www.freepatentsonline.com Published On :: Tue, 06 Oct 2015 08:00:00 EDT When a semiconductor substrate of a semiconductor device is viewed from above, an isolation region, an IGBT region, and a diode region are all formed adjacent to each other. A deep region that is connected to a body region and an anode region is formed in the isolation region. A drift region is formed extending across the isolation region, the IGBT region, and the diode region, inside the semiconductor substrate. A collector region that extends across the isolation region, the IGBT region and the diode region, and a cathode region positioned in the diode region, are formed in a region exposed on a lower surface of the semiconductor substrate. A boundary between the collector region and the cathode region is in the diode region, in a cross-section that cuts across a boundary between the isolation region and the diode region, and divides the isolation region and the diode region. The collector region formed in the isolation region has a higher dopant impurity concentration than the collector region in the IGBT region. Full Article
icon Select devices including a semiconductive stack having a semiconductive material By www.freepatentsonline.com Published On :: Tue, 24 Nov 2015 08:00:00 EST Methods, devices, and systems are provided for a select device that can include a semiconductive stack of at least one semiconductive material formed on a first electrode, where the semiconductive stack can have a thickness of about 700 angstroms (Å) or less. Each of the at least one semiconductive material can have an associated band gap of about 4 electron volts (eV) or less and a second electrode can be formed on the semiconductive stack. Full Article
icon Driver circuit and semiconductor device By www.freepatentsonline.com Published On :: Tue, 01 Dec 2015 08:00:00 EST The silicon nitride layer 910 formed by plasma CVD using a gas containing a hydrogen compound such as silane (SiH4) and ammonia (NH3) is provided on and in direct contact with the oxide semiconductor layer 905 used for the resistor 354, and the silicon nitride layer 910 is provided over the oxide semiconductor layer 906 used for the thin film transistor 355 with the silicon oxide layer 909 serving as a barrier layer interposed therebetween. Therefore, a higher concentration of hydrogen is introduced into the oxide semiconductor layer 905 than into the oxide semiconductor layer 906. As a result, the resistance of the oxide semiconductor layer 905 used for the resistor 354 is made lower than that of the oxide semiconductor layer 906 used for the thin film transistor 355. Full Article
icon Semiconductor device and method for manufacturing the same By www.freepatentsonline.com Published On :: Tue, 08 Dec 2015 08:00:00 EST To provide a semiconductor device which has transistor characteristics with little variation and includes an oxide semiconductor. The semiconductor device includes an insulating film over a conductive film and an oxide semiconductor film over the insulating film. The oxide semiconductor film includes a first oxide semiconductor layer, a second oxide semiconductor layer over the first oxide semiconductor layer, and a third oxide semiconductor layer over the second oxide semiconductor layer. The energy level of a bottom of a conduction band of the second oxide semiconductor layer is lower than those of the first and third oxide semiconductor layers. An end portion of the second oxide semiconductor layer is positioned on an inner side than an end portion of the first oxide semiconductor layer. Full Article
icon Oxide semiconductor film and semiconductor device By www.freepatentsonline.com Published On :: Tue, 15 Dec 2015 08:00:00 EST It is an object to provide a highly reliable semiconductor device with good electrical characteristics and a display device including the semiconductor device as a switching element. In a transistor including an oxide semiconductor layer, a needle crystal group provided on at least one surface side of the oxide semiconductor layer grows in a c-axis direction perpendicular to the surface and includes an a-b plane parallel to the surface, and a portion except for the needle crystal group is an amorphous region or a region in which amorphousness and microcrystals are mixed. Accordingly, a highly reliable semiconductor device with good electrical characteristics can be formed. Full Article
icon Semiconductor device and display device By www.freepatentsonline.com Published On :: Tue, 12 Jan 2016 08:00:00 EST A semiconductor device including a circuit which does not easily deteriorate is provided. The semiconductor device includes a first transistor, a second transistor, a first switch, a second switch, and a third switch. A first terminal of the first transistor is connected to a first wiring. A second terminal of the first transistor is connected to a second wiring. A gate and a first terminal of the second transistor are connected to the first wiring. A second terminal of the second transistor is connected to a gate of the first transistor. The first switch is connected between the second wiring and a third wiring. The second switch is connected between the second wiring and the third wiring. The third switch is connected between the gate of the first transistor and the third wiring. Full Article