io

Resin composition for protective layer transfer sheets

The present invention relates to a resin composition for protective layer transfer sheets which includes a polyester resin produced by polycondensing a polyhydric alcohol component containing a hydrogenated bisphenol A in an amount of 30 mol % or more and a polycarboxylic acid component containing a benzenedicarboxylic acid in an amount of 50 mol % or more.




io

Mechanochromic coating composition

A mechanochromic coating composition is disclosed comprising a polymeric network incorporating a plurality of ring-opening mechanophores each bound at two positions thereof within said polymeric network.




io

Indicator, application thereof and related products

There is disclosed an indicator composition, the application thereof to substrates, and related products. The indicator composition comprises an organic solvent soluble polymer and a redox sensitive material which displays different visible properties in the oxidized and reduced forms. The organic solvent soluble polymer can be at least partially sulfonated polystyrene. The indicator composition can be dissolved in organic solvents such as acetone, ethanol and ethyl acetate to form inks which can be used in a variety of printing processes. The indicator composition can be used to detect oxidizing agents, oxygen, water, reducing agents, UV light, temperature and the passage of time.




io

Dye migration preventing decoration pieces made of thermoplastic synthetic resin

A decoration piece has: a design piece made of thermoplastic synthetic resin formed with a design and having an outer profile line; a lower layer; and a dye migration preventing layer arranged between the design piece and the lower layer, said dye migration preventing layer having an outer profile same as that of said design piece, said dye migration preventing layer capable of being adhered to both said design piece and the lower layer, said dye migration preventing layer capable of preventing any migrating of dye. The dye migration preventing layer includes a dye migration preventing film made of ethylene-vinyl alcohol copolymer or polyamide MXD6, or a dye migration preventing film made of polyvinylidene chloride.




io

Heat-sensitive coating compositions based on resorcinyl triazine derivatives

The present invention provides heat-sensitive coating compositions, which comprise a color developer of formula (1) or mixtures thereof wherein R1 can be hydrogen, C1-20-alkyl, C3-8-cycloalkyl, C2-10-alkenyl, aryl or SO3H, and R2 and R3 can be the same or different and can be hydrogen, halogen, C1-20-alkyl, C3-8-cyclo-alkyl, C2-10-alkenyl, aryl, OR6, NR7R8, SR9, SO3H or COOR10 and R4 and R5 can be the same or different, and can be hydrogen, halogen, C1-20-alkyl, C3-8-cyclo-alkyl, C2-10-alkenyl, aryl, OR6, NR7R8 or SR9, R6, R7, R8, R9 and R10 can be the same or different and can be hydrogen, C1-30-alkyl, C3-8-cycloalkyl, C2-10-alkenyl or aryl, wherein C1-20-alkyl can be unsubstituted or substituted with one or more C3-8-cycloalkyl, C2-10-alkenyl, phenyl, halogen, OR11, NR12R13, SR14, SO3H or COOR15, and aryl can be unsubstituted or substituted with one or more halogen, C1-10-alkyl, halogenated C1-10-alkyl, C3-8-cycloalkyl C2-10-alkenyl, phenyl, OR11, NR12R13, SR14, SO3H or COOR15, wherein R11, R12, R13, R14 and R15 can be the same or different and can be hydrogen, C1-10-alkyl, C3-8-cycloalkyl or C2-10-alkenyl, a process for the preparation of these compositions, a process of coating substrates with these compositions, substrates coated with these compositions, a process for preparing marked substrates using these compositions, marked substrates obtainable by the latter process, and certain color developers.




io

Irreversible color changing ink compositions

The disclosure is generally related to an irreversible thermochromic ink composition and, more particularly, to an irreversible thermochromic ink composition comprising a carrier and thermochromic capsules, the thermochromic capsules comprising a shell and a core, the core comprising an eradicable dye capable of becoming substantially colorless and/or of changing color from a first colored state to a second colored state when exposed to an eradicator.




io

Pharmaceutical combination for the treatment and/or chemosensibilization of refractory tumors to anticancer drugs

This invention is related to a pharmaceutical combination that contains a Casein kinase 2 (CK2) peptide inhibitor (termed P15) along with the standard chemotherapeutic drugs used in cancer treatment and which are administered together, separated or sequentially. The chemotherapeutic drugs include cisplatin, taxol, alkaloids from Vinca, 5-fluorouracil, doxorubicin, cyclophosphamide, etoposide, mitomicin C, imatinib, iressa and velcade (vortezomib). The synergism between the P15 peptide and the anticancer drugs achieves an efficient concentration of each cytostatic drug in the combination which is from 10- to 100-fold lower than that for each cytostatic drug alone. The pharmaceutical combination described in this invention exhibits lower toxicity compared to that reported by the anticancer therapeutics and therefore, it represents a crucial advantage for its use in cancer therapy. Furthermore, the sequential administration of this pharmaceutical combination through the pretreatment with the P15 peptide leads to the chemo sensibilization of refractory tumors to the anticancer therapeutics.




io

Direct thermal media and registration sensor system and method for use in a color thermal printer

Provided is a direct thermal media containing a regular repeating pattern of color-forming thermally-imageable stripes printed parallel to the print head element line and a system for using such direct thermal media in color direct thermal printers including an optical registration system optimized for use with this media and an image processing unit that monitors the position of the stripe pattern relative to the print head and synchronizes the start of the printing process. This direct thermal media together with the optical registration system and image processing unit comprise an operative system in that the design of the thermal media, the optical registration system and image processing unit used to control printing are optimized for use with each other. This system may be utilized, for example, in color thermal printers for documents, receipts, tags, tickets or labels.




io

Heat-sensitive color-developing composition and heat-sensitive recording material comprising the composition

A heat-sensitive color-developing composition containing a hydroxyquinoline compound having a methyl group and an acid anhydride compound represented by general formula (1): wherein ring A represents a substituted or unsubstituted aromatic hydrocarbon ring, and n represents an integer of 1 to 3, and a heat-sensitive recording material containing the composition in a recording layer.




io

Irreversible thermochromic ink compositions

An irreversible thermochromic ink composition can include thermochromic pigment capsules dispersed in a carrier. The irreversible thermochromic pigment capsules can include an inner core having a color changing dye, a color activator for activating the color changing dye, and a wax, an outer core surrounding the inner core and comprising a color destroying agent, and a shell surrounding the outer core. Alternatively, the irreversible thermochromic pigment capsules can include an inner core having a color destroying agent and a wax, an outer core surrounding the inner core and comprising a color changing dye and a color activator for activating the color changing dye, and a shell surrounding the outer core. Written marks made with the irreversible thermochromic inks can be rendered a different color or substantially colorless by application of a sufficient amount of heat to melt or substantially liquefy the wax in the irreversible thermochromic pigment capsules.




io

Thermal image receiver elements prepared using aqueous formulations

A thermal image receiver element dry image receiving layer has a Tg of at least 25° C. as the outermost layer. The dry image receiving layer has a dry thickness of at least 0.5 μm and up to and including 5 μm. It comprises a polymer binder matrix that consists essentially of: (1) a water-dispersible acrylic polymer comprising chemically reacted or chemically non-reacted hydroxyl, phospho, phosphonate, sulfo, sulfonate, carboxy, or carboxylate groups, and (2) a water-dispersible polyester that has a Tg of 30° C. or less. The water-dispersible acrylic polymer is present in an amount of at least 55 weight % of the total dry image receiving layer weight and at a dry ratio to the water-dispersible polyester of at least 1:1 to and including 20:1. The thermal image receiver element can be used to prepare thermal dye images after thermal transfer from a thermal donor element.




io

Polysiloxane-modified polyhydroxy polyurethane resin, method for producing same, heat-sensitive recording material using the resin, imitation leather, thermoplastic polyolefin resin skin material, material for weather strip, and weather strip

Disclosed are a polysiloxane-modified polyhydroxy polyurethane resin characterized by being derived from a reaction between a 5-membered cyclic carbonate polysiloxane compound represented by the below-described formula (1) and an amine compound, and its production process; and a resin composition, thermal recording medium, imitation leather, thermoplastic polyolefin resin skin material, weather strip material, and weather strip, all of which make use of the resin. wherein A means




io

Coating for humidity indicator, method for production of the coating, and humidity indicator using the coating

Disclosed is a humidity indicator which contains no heavy metal and has good visibility of a color change that occurs when the humidity is increased. The humidity indicator can be produced by applying an aqueous coating comprising a leuco dye, an acidic compound which is in a solid state at ambient temperature, a deliquescent substance and an aqueous resin emulsion onto a substrate such as a resin film, a nonwoven fabric or a paper, and heating and drying the resulting product.




io

Thermochromic color-memory composition and thermochromic color-memory microcapsule pigment encapsulating the same

The present invention relates to a thermochromic color-memory composition containing: (I) an electron donating coloring organic compound, (II) an electron accepting compound, and (III) an ester compound represented by the following formula (1) as a reaction medium which controls color reaction of the components (I) and (II): (in the formula, X represents any of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a halogen atom, m represents an integer of from 1 to 3, and n represents an integer of from 1 to 20).




io

Hybrid topcoat formulations for paper products

Hybrid topcoat formulations comprising a water soluble polymer and a water dispersible polymer provide improved adhesion to underlying surfaces. Paper products coated with these formulations, such as thermal paper, achieve high stain resistance and improved adhesion of UV cured silicone release layers.




io

Web substrate having activated color regions in deformed regions

The present invention relates to a web substrate comprising an activatable colorant and at least one deformed region. A first activated color region is produced in the web substrate upon exposure to a first external stimulus and a second activated color region is produced within the first activated color region upon exposure to a second external stimulus. The second activated color region coincides with the deformed region.




io

Polymer-bonded perylene dyes and compositions containing same

A method of increasing the solubility and/or dispersibility of a perylene dye in a liquid medium. The method comprises binding the perylene dye to a polymer which is soluble in the liquid medium. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.




io

Process for the production of methane

A process for the production of methane comprising reacting at least part of a feed gas containing carbon monoxide and hydrogen in an internally cooled methanation reactor containing a nickel comprising methanation catalyst to produce a product gas containing methane, cooling the internally cooled methanation reactor with water, wherein the water enters the internally cooled methanation reactor at a temperature in the range from 20-120° C. below its boiling temperature.




io

Integrated biorefinery for production of liquid fuels

A system for the production of conversion products from synthesis gas, the system including a mixing apparatus configured for mixing steam with at least one carbonaceous material to produce a reformer feedstock; a reformer configured to produce, from the reformer feedstock, a reformer product comprising synthesis gas comprising hydrogen and carbon monoxide from the reformer feedstock; a synthesis gas conversion apparatus configured to catalytically convert at least a portion of the synthesis gas in the reformer product into synthesis gas conversion product and to separate from the synthesis gas conversion product a tailgas comprising at least one gas selected from the group consisting of carbon monoxide, carbon dioxide, hydrogen and methane; and one or more recycle lines fluidly connecting the synthesis gas conversion apparatus with the mixing apparatus, the reformer, or both.




io

Method for reducing CO2 in a gaseous stream by conversion to a Syngas for production of energy

A system and method for reducing the CO2 in a gaseous stream between 33% up to and even in excess of 90%, by reducing CO2. A gaseous stream that includes substantial amounts of CO2 is provided to a reaction chamber along with H2O (steam) and a carbon source such as charcoal, coke or other carbonaceous material. Carbon is provided to the chamber at a ratio (C/CO2) of between about 0.100 to 0.850, and between about 0.200 to 0.900 of H2O to the provided CO2. The CO2, H2O and carbon are heated to between about 1500° F. and about 3000° F. at about one atmosphere to produce syngas (i.e. carbon monoxide (CO) and hydrogen (H2)) and reduces the amount of CO2. The Syngas may then be cleaned and provided to a Fischer-Tropsch synthesis reactor or a Bio-catalytic synthesis reactor to produce a fuel, such as Methanol, Ethanol, Diesel and Jet Fuel.




io

Method for optimizing the operation of a hydrocarbon synthesis unit starting from synthesis gas, by controlling the partial pressure of CO

A method is described for optimizing the operation of a reaction section for the synthesis of hydrocarbons from a feed comprising synthesis gas, operated in the presence of a catalyst comprising cobalt, said method comprising the following steps: a) determining the theoretical partial pressure of CO in the reaction section;b) optionally, adjusting the partial pressure of CO determined in step a) to a value of 4 bar or higher;c) determining a new value for the theoretical partial pressure of CO in the reaction section.




io

Biomass gasification gas purification system and method and methanol production system and method

A biomass gasification gas purification system includes a dust collector for removing dust in biomass gasification gas (containing tar components) acquired by gasifying biomass by a biomass gasification furnace, a desulfurizer for removing sulfur oxide components in the dust-removed biomass gasification gas, a pre-reforming reactor for reforming tar components in the desulfurized biomass gasification gas, a steam feed unit for feeding steam to an upstream side of the pre-reforming reactor, and a natural-gas feed unit for feeding natural gas on an upstream side of the desulfurizer.




io

Integrated bioprocessing for fuel production

Systems and methods are provided for enhancing the integration of processes for recovering products from algae-derived biomass. The enhanced process integration allows for increased use of input streams and other reagents that are derived from renewable sources. This increases the overall renewable character of the products extracted from the algae-derived biomass. The process integration can include exchange of input streams or energy between an algae processing system and a system for processing non-algal biomass. One example of improving process integration is using oxygenates that are generated in a renewable manner as a reagent for enhancing the algae processing system.




io

Mixed oxide based catalyst for the conversion of carbon dioxide to syngas and method of preparation and use

The invention relates to a catalyst and process for making syngas mixtures including hydrogen, carbon monoxide and carbon dioxide. The process comprises contacting a gaseous feed mixture containing carbon dioxide and hydrogen with the catalyst, where the catalyst comprises Mn oxide and an auxiliary metal oxide selected from the group consisting of La, Ca, K, W, Cu, Al and mixtures or combinations thereof. The process enables hydrogenation of carbon dioxide into carbon monoxide with high selectivity, and good catalyst stability over time and under variations in processing conditions. The process can be applied separately, but can also be integrated with other processes, both up-stream and/or down-stream including methane reforming or other synthesis processes for making products like alkanes, aldehydes, or alcohols.




io

Preparation of iron/carbon nanocomposite catalysts for Fischer-Tropsch synthesis reaction and related production of liquid hydrocarbons

Iron/carbon (Fe/C) nanocomposite catalysts are prepared for Fischer-Tropsch synthesis reaction. A preparation method includes steps of mixing iron hydrate salts and a mesoporous carbon support to form a mixture, infiltrating the iron hydrate salts into the carbon support through melt infiltration of the mixture near a melting point of the iron hydrate salts, forming iron-carbide particles infiltrated into the carbon support through calcination of the iron hydrate salts infiltrated into the carbon support under a first atmosphere, and vacuum-drying the iron-carbide particles after passivation using ethanol. Using such catalysts, liquid hydrocarbons are produced.




io

Method, system and equipment for gasification-liquefaction disposal of municipal solid waste

A gasification-liquefaction disposal method, system and equipment for MSW are disclosed. The method involves the MSW pretreatment of dehydrating and separating, thus reducing water and inorganic substance content of the waste. Then, the MSW is introduced into a plasma gasifier (23) by a carbon dioxide air-sealed feeding device (13) and gasified therein to obtain hydrogen-rich syngas. The hydrogen-rich syngas is then cooled, deacidified, dedusted and separated to obtain carbon dioxide. Then, the hydrogen-rich syngas is catalyzed to produce methanol product in a methanol synthesis reactor (52). The separated carbon dioxide is sent back to a carbonation reaction chamber (2007) of a gasification system to perform carbonation reaction with calcium oxide, thereby releasing heat to provide assistant heat energy for gasification and avoiding greenhouse gas from being discharged into environment. Exhaust gas is returned to the plasma gasifier (23) for remelting treatment, thus forming a closed-loop circulation production system and realizing the disposal of the MSW with zero discharge and no pollution, thereby avoiding dioxin pollution and converting the MSW to chemical raw materials and fuel needed by mankind. The method, system and equipment are suitable for harmless and recycling disposal of MSW, industrial high polymer waste, composting waste and waste in waste sorting sites.




io

Process for the production of substitute natural gas

In a process for the production of substitute natural gas, a feed gas is provided to a first and/or second and/or subsequent bulk methanator. The feed gas is subjected to methanation in the presence of a suitable catalyst. An at least partially reacted stream from the first bulk methanator is removed and supplied to the second and/or subsequent bulk methanator where it is subjected to further methanation. A product stream from the final bulk methanator is passed to a trim methanator train where it is subjected to further methanation. A recycle stream is removed downstream of the first, second or subsequent bulk methanator, and, in any order, passed through a compressor, subjected to cooling and then supplied to a trim and/or recycle methanator for further methanation before being recycled to the first and/or second and/or subsequent methanator.




io

Method for upgrading hydrocarbon compounds and a hydrocarbon compound distillation separation apparatus

There is provided a method for upgrading hydrocarbon compounds, in which hydrocarbon compounds synthesized in a Fisher-Tropsch synthesis reaction are fractionally distillated, and the fractionally distillated hydrocarbon compounds are hydrotreated to produce liquid fuel products. The method includes fractionally distilling heavy hydrocarbon compounds synthesized in the Fisher-Tropsch synthesis reaction as a liquid into a first middle distillate and a wax fraction, and fractionally distilling light hydrocarbon compounds synthesized in the Fisher-Tropsch synthesis reaction as a gas into a second middle distillate and a light gas fraction.




io

Synthesis gas methanation process and apparatus

In a synthesis gas methanation process, at least one first fraction of synthesis gas to treat is fed, together with steam, to a shift reactor where a shift reaction occurs; the gas flow produced in the shift reactor is then fed to a first methanation reactor where a methanation reaction occurs and then to further second methanation reactors in series, where further methanation reactions, performed with the addition of fresh synthesis gas which has not been subjected to the shift reaction.




io

Production of hydrocarbons

A process for producing hydrocarbons and, optionally, oxygenates of hydrocarbons is provided. A synthesis gas comprises hydrogen, carbon monoxide and N-containing contaminants selected from the group consisting of HCN, NH3, NO, RXNH3-X, R1—CN and heterocyclic compounds containing at least one nitrogen atom as a ring member of a heterocyclic ring of the heterocyclic compound. The N-containing contaminants constitute, in total, at least 100 vppb but less than 1 000 000 vppb of the synthesis gas. The synthesis gas is contacted at an elevated temperature and an elevated pressure, with a particulate supported Fischer-Tropsch synthesis catalyst. The catalyst comprises a catalyst support, Co in catalytically active form supported on the catalyst support, and a dopant selected from the group consisting of platinum (Pt), palladium (Pd), ruthenium (Ru) and/or rhenium (Re). The dopant level is expressed by a formula. Hydrocarbons and, optionally, oxygenates of hydrocarbons are obtained.




io

Apparatus and process for three-phase reaction

A system and process for removing catalyst fines from a gas stream overhead the slurry in a Fischer-Tropsch slurry bubble column reactor. The gas phase at the top of the slurry bubble column reactor containing small amounts of entrained liquid and catalyst particles. The unreacted gases are passed through a demister, which removes larger droplets and catalyst particles. Smaller droplets and catalyst fines are conveyed to a secondary gas cleaner, such as a cyclone, whereby substantially all remaining particles are removed from the gas phase. A particle-containing liquid produced in the secondary gas cleaner can be further subjected to a filtrate cleaning unit to filter out fine catalyst particles and produce a substantially particle-free liquid product stream and a slurry stream of liquid product containing catalyst particles.




io

Conversion of carbon dioxide to methanol using bi-reforming of methane or natural gas

The invention provides for a method of forming methanol by combining a mixture of methane, water and carbon dioxide under reaction conditions sufficient to form a mixture of hydrogen and carbon monoxide. Hydrogen and carbon monoxide are reacted under conditions sufficient to form methanol. The molar ratio of hydrogen to carbon monoxide is at least two moles of hydrogen to one mole of carbon monoxide and the overall molar ratio between methane, water and carbon dioxide is about 3:2:1. Methane, carbon dioxide and water are bi-reformed over a catalyst. The catalyst includes a single metal, a metal oxide, a mixed catalyst of a metal and a metal oxide or a mixed catalyst of at least two metal oxides.




io

Method for producing hydrocarbon oil, fischer-tropsch synthesis reaction device, and hydrocarbon oil production system

The present invention provides a process for producing a hydrocarbon oil by performing a Fischer-Tropsch synthesis reaction using a reactor for a Fischer-Tropsch synthesis including a reaction apparatus having a slurry containing catalyst particles and a gaseous phase located above the slurry to obtain a hydrocarbon oil, wherein the Fischer-Tropsch reaction is performed while controlling a temperature of the slurry so that a difference T2−T1 between the average temperature T1 of the slurry and a temperature T2 at the liquid level of the slurry in contact with the gaseous phase is 5 to 30° C.




io

Carbon-supported catalysts for production of higher alcohols from syngas

Catalyst compositions comprising molybdenum, sulfur and an alkali metal ion supported on a nanofibrous, mesoporous carbon molecular sieve are useful for converting syngas to higher alcohols. The compositions are produced via impregnation and may enhance selectivity to ethanol in particular.




io

Fischer tropsch method for offshore production risers or oil and gas wells

A method and an apparatus is disclosed that uses a gas lift tubing arrangement to produce synthetic hydrocarbon related products. Using the Fischer Tropsch process as an example, the tubing is packed with a suitable catalyst and then hydrogen and carbon monoxide are injected into the top of the tubing in a fashion similar to a gas lift process. As the gases travel past the catalyst, synthetic hydrocarbons are formed and heat is rejected. The synthetic hydrocarbons and water flow out of the bottom of the tubing and travel up the annulus to the surface. In some embodiments, this process is carried out in a producing well or a in producing riser. In a producing well or a producing riser, the production from the well which flows up the annulus cools the synthetic hydrocarbon derived products. In additional and alternate embodiments, this process can be used in non-flowing wells.




io

Fischer tropsch method for offshore production risers for oil and gas wells

A method and an apparatus is disclosed that uses a gas lift tubing arrangement to produce synthetic hydrocarbon related products. Using the Fischer Tropsch process as an example, the tubing is packed with a suitable catalyst and then hydrogen and carbon monoxide are injected into the top of the tubing in a fashion similar to a gas lift process. As the gases travel past the catalyst, synthetic hydrocarbons are formed and heat is rejected. The synthetic hydrocarbons and water flow out of the bottom of the tubing and travel up the annulus to the surface. In some embodiments, this process is carried out in a producing well or a in producing riser. In a producing well or a producing riser, the production from the well which flows up the annulus cools the synthetic hydrocarbon derived products. In additional and alternate embodiments, this process can be used in non-flowing wells.




io

Methanation of a syngas

Systems and methods for producing a synthetic natural gas are provided. A syngas can be separated into a first syngas, a second syngas, and a third syngas. The first syngas can be methanated to produce a first effluent. The first effluent can be mixed with the second syngas to produce a first mixed effluent. The first mixed effluent can be methanated to produce a second effluent. The second mixed effluent can be methanated to produce a third effluent. The third effluent can be cooled to produce a first cooled effluent. The first cooled effluent can be cooled to produce a synthetic natural gas.




io

Hydromethanation of a carbonaceous feedstock

The present invention relates generally to processes for hydromethanating a carbonaceous feedstock in a hydromethanation reactor to a methane product stream and a char by-product, and more specifically to removal of the char by-product from the hydromethanation reactor.




io

System, process and reactor for conducting a synthesis gas conversion reaction

A synthesis gas conversion process and system are disclosed. Fresh syngas from a methane reformer is used as a sweep zone gas feed which is caused to flow across a water permselective membrane in a membrane reactor. The water permselective membrane is adjacent a synthesis gas conversion reaction zone in which synthesis gas is contacted with a catalyst and converted to effluent including water. Water is removed from the reaction zone through the membrane and passes out of the reactor with the sweep zone gas. The water is then removed from the sweep zone gas forming a modified gas feed which is fed to the reaction zone. The modified gas feed has a preferred H2/CO ratio to feed into the reaction zone.




io

Process and plant for the production of methanol with isothermal catalytic beds

A process for the synthesis of methanol, comprising the steps of reforming a hydrocarbon source obtaining a make-up gas feed (101), feeding said make up gas to a synthesis loop (L), converting said make up gas to methanol (108) in a substantially isothermal catalytic environment, wherein said catalytic environment comprises a plurality of isothermal catalytic beds (11, 12, 21) preferably arranged in series, and at least a portion of make-up gas (101) is mixed with recycle gas (112) from the loop (L), obtaining a gaseous mixture of fresh gas and recycle gas, and at least a portion of said gaseous mixture is directed between two consecutive catalytic beds acting as a quench gas. A related plant is also disclosed.




io

Adaptive multiple shooting optimization method for determining optimal spacecraft trajectories

Disclosed herein is a method for determining a trajectory for a transfer of a spacecraft from a starting space body to a target space body with respect to a given central space body, wherein the determined trajectory is optimal with respect to a given space mission requirement to be met by the transfer of the spacecraft. The method comprises providing, according to the Pontryagin maximum principle, a physical-mathematical model relating model quantities and physical quantities representing the transfer of the spacecraft with respect to the given central space body.




io

Cascaded eddy simulation

A fluid flow is simulated by causing a computer to perform operations on data stored in the memory to compute at least one eddy of a fluid flow at a first scale and perform operations to compute at least one eddy of the fluid flow at both the first scale and a second scale. The second scale is a finer scale than the first scale, and the computation of the at least one eddy of the fluid flow at the second scale is constrained by results of the computation of the at least one eddy of the fluid flow at the first scale.




io

Production simulator for simulating a mature hydrocarbon field

A production simulator (2), for simulating a mature hydrocarbon field, providing quantity produced (Qφktb) per phase, per well, per layer (or group of layers) and per time as a function of production parameters (PP), wherein the production simulator (2) matches history data (HD) of the mature hydrocarbon field and verifies a Vapnik condition.




io

Systems and methods for subsurface oil recovery optimization

Systems and methods for subsurface secondary and/or tertiary oil recovery optimization based on either a short term, medium term or long term optimization analysis of selected zones, wells, patterns/clusters and/or fields.




io

Statistical circuit simulation

Method and system are disclosed for statistical circuit simulation. In one embodiment, a computer implemented method for statistical circuit simulation includes providing descriptions of a circuit for simulation, wherein the descriptions include variations of statistical parameters of the circuit, partitioning the circuit into groups of netlists according to variations of statistical parameters of the circuit, simulating the groups of netlists using a plurality of processors in parallel to generate a plurality of output data files, and storing the plurality of output data files in a memory. The method of partitioning the circuit into groups of netlists includes forming the groups of netlists to be simulated in a single instruction multiple data environment, and forming the groups of netlists according to proximity of variations of statistical parameters of the circuit.




io

Method and apparatus for simulating operation in a data processing system

Methods and systems are provided for executing a simulation of an operation in a data processing system. In one implementation, the method includes executing an operation under a first set of conditions, determining a characteristic associated with the execution of the operation under the first set of conditions, and executing a simulation of the operation under a second set of conditions different from the first set of conditions. The simulation of the operation is constrained by the determined characteristic. The method can further include determining a cost/benefit of executing the operation under a set of conditions different from the first set of conditions based at least in part on the simulation.




io

Prioritization of three dimensional dental elements

The present disclosure includes methods, systems, and devices for prioritization of three dimensional dental elements. One method for prioritizing three dimensional dental elements includes receiving a virtual initial dental data set (IDDS) of teeth having spatial information regarding the positions of a number of teeth in the virtual IDDS with respect to each other for presentation of the teeth in a virtual three dimensional space to be viewed on a user interface, setting prioritization values of a number of elements of one or more of the number of teeth, and prioritizing the number of elements to be selected by a user based upon their prioritization values.




io

Computer simulation of fluid flow and acoustic behavior

A computer-implemented method for simulating flow and acoustic interaction of a fluid with a porous medium includes simulating activity of a fluid in a first volume adjoining a second occupied by a porous medium, the activity of the fluid in the first volume being simulated so as to model movement of elements within the first volume and using a first model having a first set of parameters, simulating activity of the fluid in the second volume occupied by the porous medium, the activity in the second volume being simulated so as to model movement of elements within the second volume and using a second model having a second set of parameters and differing from the first model in a way that accounts for flow and acoustic properties of the porous medium, and simulating movement of elements between the first volume and the second volume at an interface between the first volume and the second volume.




io

Macro model of operational amplifier and circuit design simulator using the same

The present invention aims to simulate a response more similar to a actual machine while inhibiting load increase in analog operation. Program configuration of the present invention is a component of a simulation program for circuit design, which is executed by a computer. The computer includes an operation portion, a storage portion, a manipulation portion, and a display portion, so that the computer exerts a function of a circuit design simulator, and as a macro model of an operational amplifier for use in the circuit design simulator, enabling the computer to act by simulating a response of the operational amplifier on the circuit design simulator. The macro model of the operational amplifier includes a control portion (LMT1) for generating output exception in the event of input exception or power supply exception of the operational amplifier.




io

Dynamics simulation

Dynamics simulations are described. Dynamics simulations can include identifying a number of ink related components and a number of printing interactions. Dynamics simulations can also include generating a granular representation of the number of ink related components and calculating a number of Hamaker constants based on the granular representation of the number of ink related components. Dynamics simulations can include performing a dynamics simulation based on the number of Hamaker constants, the granular representation of the number of ink related components, and the number of printing interactions.