Amarinder offers free land to Central govt for Rs 550 crore Virology centre in Punjab
Punjab CM urges Centre to reconsider decision on full wages to workers amid lockdown
33,000 people enrolled at de-addiction centres in Punjab during lockdown: State Health Minister
BRO constructs permanent bridge on Ravi connecting Kasowal enclave in Punjab to rest of country
Raise tricolour on May 1 to protest against Centre's discrimination: Punjab Cong asks people
Tamil Nadu to introduce online application for RTI
Contributions for COVID-19 relief pour in
Contributions continued to pour in for COVID-19 relief in Tamil Nadu. The Ola Group announced a contribution of ₹50 lakh to the Tamil Nadu Chief Minis
Ban on entry of unregistered Keralites through Talapady
COVID-19 | Madurai colleges, hostels turn isolation centres
This has been done to tackle any explosion of COVID-19 cases, says Collector T. G. Vinay
Coherent Bragg imaging of 60 nm Au nanoparticles under electrochemical control at the NanoMAX beamline
Nanoparticles are essential electrocatalysts in chemical production, water treatment and energy conversion, but engineering efficient and specific catalysts requires understanding complex structure–reactivity relations. Recent experiments have shown that Bragg coherent diffraction imaging might be a powerful tool in this regard. The technique provides three-dimensional lattice strain fields from which surface reactivity maps can be inferred. However, all experiments published so far have investigated particles an order of magnitude larger than those used in practical applications. Studying smaller particles quickly becomes demanding as the diffracted intensity falls. Here, in situ nanodiffraction data from 60 nm Au nanoparticles under electrochemical control collected at the hard X-ray nanoprobe beamline of MAX IV, NanoMAX, are presented. Two-dimensional image reconstructions of these particles are produced, and it is estimated that NanoMAX, which is now open for general users, has the requisites for three-dimensional imaging of particles of a size relevant for catalytic applications. This represents the first demonstration of coherent X-ray diffraction experiments performed at a diffraction-limited storage ring, and illustrates the importance of these new sources for experiments where coherence properties become crucial.
Contributions of charge-density research to medicinal chemistry
Contributions of experimental and selected theoretical charge-density research to medicinal chemistry are reviewed; combining experimental methods from high-resolution small-molecule and macromolecular crystallography with theory proves to be fruitful.
Location of Cu2+ in CHA zeolite investigated by X-ray diffraction using the Rietveld/maximum entropy method
Rietveld/MEM analysis applied to synchrotron powder X-ray diffraction data of dehydrated CHA zeolites with catalytically active Cu2+ reveals Cu2+ in both the six- and eight-membered rings in the CHA framework, providing the first complete structural model that accounts for all Cu2+. Density functional theory calculations are used to corroborate the experimental structure and to discuss the Cu2+ coordination in terms of the Al distribution in the framework.
West Cornwall hit by 2.2 magnitude earthquake | West Country - ITV News - ITV News
Reports of an earthquake felt in Leicestershire | Central - ITV News - ITV News
Research Centre Finance Administrator job with UNIVERSITY OF LEEDS | 206139 - Times Higher Education (THE)
Research Centre Finance Administrator job with UNIVERSITY OF LEEDS | 206139 Times Higher Education (THE)
Crystallographic snapshots of the EF-hand protein MCFD2 complexed with the intracellular lectin ERGIC-53 involved in glycoprotein transport
The transmembrane intracellular lectin ER–Golgi intermediate compartment protein 53 (ERGIC-53) and the soluble EF-hand multiple coagulation factor deficiency protein 2 (MCFD2) form a complex that functions as a cargo receptor, trafficking various glycoproteins between the endoplasmic reticulum (ER) and the Golgi apparatus. It has been demonstrated that the carbohydrate-recognition domain (CRD) of ERGIC-53 (ERGIC-53CRD) interacts with N-linked glycans on cargo glycoproteins, whereas MCFD2 recognizes polypeptide segments of cargo glycoproteins. Crystal structures of ERGIC-53CRD complexed with MCFD2 and mannosyl oligosaccharides have revealed protein–protein and protein–sugar binding modes. In contrast, the polypeptide-recognition mechanism of MCFD2 remains largely unknown. Here, a 1.60 Å resolution crystal structure of the ERGIC-53CRD–MCFD2 complex is reported, along with three other crystal forms. Comparison of these structures with those previously reported reveal that MCFD2, but not ERGIC-53–CRD, exhibits significant conformational plasticity that may be relevant to its accommodation of various polypeptide ligands.
Intramolecular 1,5-S⋯N σ-hole interaction in (E)-N'-(pyridin-4-ylmethylidene)thiophene-2-carbohydrazide
The title compound, C11H9N3OS, (I), crystallizes in the monoclinic space group P21/n. The molecular conformation is nearly planar and features an intramolecular chalcogen bond between the thiophene S and the imine N atoms. Within the crystal, the strongest interactions between molecules are the N—H⋯O hydrogen bonds, which organize them into inversion dimers. The dimers are linked through short C—H⋯N contacts and are stacked into layers propagating in the (001) plane. The crystal structure features π–π stacking between the pyridine aromatic ring and the azomethine double bond. The calculated energies of pairwise intermolecular interactions within the stacks are considerably larger than those found for the interactions between the layers.
Optimization of crystallization of biological macromolecules using dialysis combined with temperature control
A rational way to find the appropriate conditions to grow crystal samples for bio-crystallography is to determine the crystallization phase diagram, which allows precise control of the parameters affecting the crystal growth process. First, the nucleation is induced at supersaturated conditions close to the solubility boundary between the nucleation and metastable regions. Then, crystal growth is further achieved in the metastable zone – which is the optimal location for slow and ordered crystal expansion – by modulation of specific physical parameters. Recently, a prototype of an integrated apparatus for the rational optimization of crystal growth by mapping and manipulating temperature–precipitant–concentration phase diagrams has been constructed. Here, it is demonstrated that a thorough knowledge of the phase diagram is vital in any crystallization experiment. The relevance of the selection of the starting position and the kinetic pathway undertaken in controlling most of the final properties of the synthesized crystals is shown. The rational crystallization optimization strategies developed and presented here allow tailoring of crystal size and diffraction quality, significantly reducing the time, effort and amount of expensive protein material required for structure determination.
Full reciprocal-space mapping up to 2000 K under controlled atmosphere: the multipurpose QMAX furnace
A furnace that covers the temperature range from room temperature up to 2000 K has been designed, built and implemented on the D2AM beamline at the ESRF. The QMAX furnace is devoted to the full exploration of the reciprocal hemispace located above the sample surface. It is well suited for symmetric and asymmetric 3D reciprocal space mapping. Owing to the hemispherical design of the furnace, 3D grazing-incidence small- and wide-angle scattering and diffraction measurements are possible. Inert and reactive experiments can be performed at atmospheric pressure under controlled gas flux. It is demonstrated that the QMAX furnace allows monitoring of structural phase transitions as well as microstructural evolution at the nanoscale, such as self-organization processes, crystal growth and strain relaxation. A time-resolved in situ oxidation experiment illustrates the capability to probe the high-temperature reactivity of materials.
R3c-type LnNiO3 (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) half-metals with multiple Dirac cones: a potential class of advanced spintronic materials
In the past three years, Dirac half-metals (DHMs) have attracted considerable attention and become a high-profile topic in spintronics becuase of their excellent physical properties such as 100% spin polarization and massless Dirac fermions. Two-dimensional DHMs proposed recently have not yet been experimentally synthesized and thus remain theoretical. As a result, their characteristics cannot be experimentally confirmed. In addition, many theoretically predicted Dirac materials have only a single cone, resulting in a nonlinear electromagnetic response with insufficient intensity and inadequate transport carrier efficiency near the Fermi level. Therefore, after several attempts, we have focused on a novel class of DHMs with multiple Dirac crossings to address the above limitations. In particular, we direct our attention to three-dimensional bulk materials. In this study, the discovery via first principles of an experimentally synthesized DHM LaNiO3 with many Dirac cones and complete spin polarization near the Fermi level is reported. It is also shown that the crystal structures of these materials are strongly correlated with their physical properties. The results indicate that many rhombohedral materials with the general formula LnNiO3 (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) in the space group R3c are potential DHMs with multiple Dirac cones.
Distinguishing contributions of ceramic matrix and binder metal to the plasticity of nanocrystalline cermets
Using the typical WC–Co cemented carbide as an example, the interactions of dislocations within the ceramic matrix and the binder metal, as well as the possible cooperation and competition between the matrix and binder during deformation of the nanocrystalline cermets, were studied by molecular dynamics simulations. It was found that at the same level of strain, the dislocations in Co have more complex configurations in the cermet with higher Co content. With loading, the ratio between mobile and sessile dislocations in Co becomes stable earlier in the high-Co cermet. The strain threshold for the nucleation of dislocations in WC increases with Co content. At the later stage of deformation, the growth rate of WC dislocation density increases more rapidly in the cermet with lower Co content, which exhibits an opposite tendency compared with Co dislocation density. The relative contribution of Co and WC to the plasticity of the cermet varies in the deformation process. With a low Co content, the density of WC dislocations becomes higher than that of Co dislocations at larger strains, indicating that WC may contribute more than Co to the plasticity of the nanocrystalline cermet at the final deformation stage. The findings in the present work will be applicable to a large variety of ceramic–metal composite materials.
Visualization of protein crystals by high-energy phase-contrast X-ray imaging
For the extraction of the best possible X-ray diffraction data from macromolecular crystals, accurate positioning of the crystals with respect to the X-ray beam is crucial. In addition, information about the shape and internal defects of crystals allows the optimization of data-collection strategies. Here, it is demonstrated that the X-ray beam available on the macromolecular crystallography beamline P14 at the high-brilliance synchrotron-radiation source PETRA III at DESY, Hamburg, Germany can be used for high-energy phase-contrast microtomography of protein crystals mounted in an optically opaque lipidic cubic phase matrix. Three-dimensional tomograms have been obtained at X-ray doses that are substantially smaller and on time scales that are substantially shorter than those used for diffraction-scanning approaches that display protein crystals at micrometre resolution. Adding a compound refractive lens as an objective to the imaging setup, two-dimensional imaging at sub-micrometre resolution has been achieved. All experiments were performed on a standard macromolecular crystallography beamline and are compatible with standard diffraction data-collection workflows and apparatus. Phase-contrast X-ray imaging of macromolecular crystals could find wide application at existing and upcoming low-emittance synchrotron-radiation sources.
The flavin mononucleotide cofactor in α-hydroxyacid oxidases exerts its electrophilic/nucleophilic duality in control of the substrate-oxidation level
The Y128F single mutant of p-hydroxymandelate oxidase (Hmo) is capable of oxidizing mandelate to benzoate via a four-electron oxidative decarboxylation reaction. When benzoylformate (the product of the first two-electron oxidation) and hydrogen peroxide (an oxidant) were used as substrates the reaction did not proceed, suggesting that free hydrogen peroxide is not the committed oxidant in the second two-electron oxidation. How the flavin mononucleotide (FMN)-dependent four-electron oxidation reaction takes place remains elusive. Structural and biochemical explorations have shed new light on this issue. 15 high-resolution crystal structures of Hmo and its mutants liganded with or without a substrate reveal that oxidized FMN (FMNox) possesses a previously unknown electrophilic/nucleophilic duality. In the Y128F mutant the active-site perturbation ensemble facilitates the polarization of FMNox to a nucleophilic ylide, which is in a position to act on an α-ketoacid, forming an N5-acyl-FMNred dead-end adduct. In four-electron oxidation, an intramolecular disproportionation reaction via an N5-alkanol-FMNred C'α carbanion intermediate may account for the ThDP/PLP/NADPH-independent oxidative decarboxylation reaction. A synthetic 5-deaza-FMNox cofactor in combination with an α-hydroxyamide or α-ketoamide biochemically and structurally supports the proposed mechanism.
Controlled dehydration, structural flexibility and gadolinium MRI contrast compound binding in the human plasma glycoprotein afamin
Afamin, which is a human blood plasma glycoprotein, a putative multifunctional transporter of hydrophobic molecules and a marker for metabolic syndrome, poses multiple challenges for crystallographic structure determination, both practically and in analysis of the models. Several hundred crystals were analysed, and an unusual variability in cell volume and difficulty in solving the structure despite an ∼34% sequence identity with nonglycosylated human serum albumin indicated that the molecule exhibits variable and context-sensitive packing, despite the simplified glycosylation in insect cell-expressed recombinant afamin. Controlled dehydration of the crystals was able to stabilize the orthorhombic crystal form, reducing the number of molecules in the asymmetric unit from the monoclinic form and changing the conformational state of the protein. An iterative strategy using fully automatic experiments available on MASSIF-1 was used to quickly determine the optimal protocol to achieve the phase transition, which should be readily applicable to many types of sample. The study also highlights the drawback of using a single crystallographic structure model for computational modelling purposes given that the conformational state of the binding sites and the electron density in the binding site, which is likely to result from PEGs, greatly varies between models. This also holds for the analysis of nonspecific low-affinity ligands, where often a variety of fragments with similar uncertainty can be modelled, inviting interpretative bias. As a promiscuous transporter, afamin also seems to bind gadoteridol, a magnetic resonance imaging contrast compound, in at least two sites. One pair of gadoteridol molecules is located near the human albumin Sudlow site, and a second gadoteridol molecule is located at an intermolecular site in proximity to domain IA. The data from the co-crystals support modern metrics of data quality in the context of the information that can be gleaned from data sets that would be abandoned on classical measures.
Shack–Hartmann wavefront sensors based on 2D refractive lens arrays and super-resolution multi-contrast X-ray imaging
Different approaches of 2D lens arrays as Shack–Hartmann sensors for hard X-rays are compared. For the first time, a combination of Shack–Hartmann sensors for hard X-rays (SHSX) with a super-resolution imaging approach to perform multi-contrast imaging is demonstrated. A diamond lens is employed as a well known test object. The interleaving approach has great potential to overcome the 2D lens array limitation given by the two-photon polymerization lithography. Finally, the radiation damage induced by continuous exposure of an SHSX prototype with a white beam was studied showing a good performance of several hours. The shape modification and influence in the final image quality are presented.
Fast continuous measurement of synchrotron powder diffraction synchronized with controlling gas and vapour pressures at beamline BL02B2 of SPring-8
A gas- and vapour-pressure control system synchronized with the continuous data acquisition of millisecond high-resolution powder diffraction measurements was developed to study structural change processes in gas storage and reaction materials such as metal organic framework compounds, zeolite and layered double hydroxide. The apparatus, which can be set up on beamline BL02B2 at SPring-8, mainly comprises a pressure control system of gases and vapour, a gas cell for a capillary sample, and six one-dimensional solid-state (MYTHEN) detectors. The pressure control system can be remotely controlled via developed software connected to a diffraction measurement system and can be operated in the closed gas and vapour line system. By using the temperature-control system on the sample, high-resolution powder diffraction data can be obtained under gas and vapour pressures ranging from 1 Pa to 130 kPa in temperatures ranging from 30 to 1473 K. This system enables one to perform automatic and high-throughput in situ X-ray powder diffraction experiments even at extremely low pressures. Furthermore, this developed system is useful for studying crystal structures during the adsorption/desorption processes, as acquired by millisecond and continuous powder diffraction measurements. The acquisition of diffraction data can be synchronized with the control of the pressure with a high frame rate of up to 100 Hz. In situ and time-resolved powder diffraction measurements are demonstrated for nanoporous Cu coordination polymer in various gas and vapour atmospheres.
Comprehensive characterization of TSV etching performance with phase-contrast X-ray microtomography
A complete method of comprehensive and quantitative evaluation of through-silicon via reliability using a highly sensitive phase-contrast X-ray microtomography was established. Quantitative characterizations include 3D local morphology and overall consistency of statistics.
Hard X-ray phase-contrast-enhanced micro-CT for quantifying interfaces within brittle dense root-filling-restored human teeth
Phase-contrast enhanced micro-computed tomography reveals huge discontinuities at the interfaces between dental fillings and the tooth substrate. Despite the complex micromorphology, gaps in bonding could be visualized and quantified in 3D.
3D grain reconstruction from laboratory diffraction contrast tomography
A method for reconstructing the three-dimensional grain structure from data collected with a recently introduced laboratory-based X-ray diffraction contrast tomography system is presented. Diffraction contrast patterns are recorded in Laue-focusing geometry. The diffraction geometry exposes shape information within recorded diffraction spots. In order to yield the three-dimensional crystallographic microstructure, diffraction spots are extracted and fed into a reconstruction scheme. The scheme successively traverses and refines solution space until a reasonable reconstruction is reached. This unique reconstruction approach produces results efficiently and fast for well suited samples.
A temperature-controlled cold-gas humidifier and its application to protein crystals with the humid-air and glue-coating method
The room-temperature experiment has been revisited for macromolecular crystallography. Despite being limited by radiation damage, such experiments reveal structural differences depending on temperature, and it is expected that they will be able to probe structures that are physiologically alive. For such experiments, the humid-air and glue-coating (HAG) method for humidity-controlled experiments is proposed. The HAG method improves the stability of most crystals in capillary-free experiments and is applicable at both cryogenic and ambient temperatures. To expand the thermal versatility of the HAG method, a new humidifier and a protein-crystal-handling workbench have been developed. The devices provide temperatures down to 4°C and successfully maintain growth at that temperature of bovine cytochrome c oxidase crystals, which are highly sensitive to temperature variation. Hence, the humidifier and protein-crystal-handling workbench have proved useful for temperature-sensitive samples and will help reveal temperature-dependent variations in protein structures.
Reconstructing intragranular strain fields in polycrystalline materials from scanning 3DXRD data
Two methods for reconstructing intragranular strain fields are developed for scanning three-dimensional X-ray diffraction (3DXRD). The methods are compared with a third approach where voxels are reconstructed independently of their neighbours [Hayashi, Setoyama & Seno (2017). Mater. Sci. Forum, 905, 157–164]. The 3D strain field of a tin grain, located within a sample of approximately 70 grains, is analysed and compared across reconstruction methods. Implicit assumptions of sub-problem independence, made in the independent voxel reconstruction method, are demonstrated to introduce bias and reduce reconstruction accuracy. It is verified that the two proposed methods remedy these problems by taking the spatial properties of the inverse problem into account. Improvements in reconstruction quality achieved by the two proposed methods are further supported by reconstructions using synthetic diffraction data.
A temperature-controlled cold-gas humidifier and its application to protein crystals with the humid-air and glue-coating method
A new temperature-controllable humidifier for X-ray diffraction has been developed. It is shown that the humidifier can successfully maintain protein crystal growth at a temperature lower than room temperature.
Microstructure and water distribution in catalysts for polymer electrolyte fuel cells, elucidated by contrast variation small-angle neutron scattering
By using small-angle neutron scattering (SANS) reinforced by scanning electron microscopy, the fine structure of catalysts for polymer electrolyte fuel cells has been investigated. The experimental data resulting from contrast variation with mixed light and heavy water (H2O/D2O) are well described by a core–shell model with fluctuations in concentration between water and Nafion.
Unit-cell response of tetragonal hen egg white lysozyme upon controlled relative humidity variation
The effects of relative humidity on a tetragonal crystal form of hen egg white lysozyme are studied via in situ laboratory X-ray powder diffraction.
Optimization of crystallization of biological macromolecules using dialysis combined with temperature control
This article describes rational strategies for the optimization of crystal growth using precise in situ control of the temperature and chemical composition of the crystallization solution through dialysis, to generate crystals of the specific sizes required for different downstream structure determination approaches.
Full reciprocal-space mapping up to 2000 K under controlled atmosphere: the multipurpose QMAX furnace
This article presents the capability of the QMAX furnace, devoted to reciprocal space mapping through X-ray scattering at high temperature up to 2000 K.
Crystallographic snapshots of the EF-hand protein MCFD2 complexed with the intracellular lectin ERGIC-53 involved in glycoprotein transport
This article reports conformational polymorphisms of the EF-hand protein MCFD2 which is involved in glycoprotein transport..
Introducing the parasitic dinoflagellate: Tintinnophagus acutus
Describing a species is a serious undertaking. In the case of T. acutus, Coats and his collaborators documented its microscopic life cycle, conducted extensive DNA analysis and unearthed scientific papers dating back to 1873—when parasitic dinoflagellates were first noted by German scientist Ernst Haeckel.
The post Introducing the parasitic dinoflagellate: Tintinnophagus acutus appeared first on Smithsonian Insider.
New species of bat named from central coastal Ecuador
A diminutive bat with cinnamon-brown coloring collected in 1979 in Ecuador by mammalogist Don Wilson of the Smithsonian’s National Museum of Natural History represents a new species a recent paper in the journal “Mammalian Biology” has revealed.
The post New species of bat named from central coastal Ecuador appeared first on Smithsonian Insider.