car Structural basis of carbohydrate binding in domain C of a type I pullulanase from Paenibacillus barengoltzii By journals.iucr.org Published On :: Full Article text
car Structure of Thermococcus litoralis Δ1-pyrroline-2-carboxylate reductase in complex with NADH and L-proline By journals.iucr.org Published On :: The paper reports the structure of a Δ1-pyrroline-2-carboxylate reductase from the archaeon Thermococcus litoralis, a key enzyme involved in the second step of trans-4-Hydroxy-L-proline metabolism, conserved in archaea, bacteria and humans. Full Article text
car Polymeric poly[[decaaquabis(μ6-1,8-disulfonato-9H-carbazole-3,6-dicarboxylato)di-μ3-hydroxy-pentazinc] decahydrate] By scripts.iucr.org Published On :: 2019-05-14 The asymmetric unit of the title MOF, [Zn5(C14H5NO10S2)2(OH)2(H2O)10]n comprises three ZnII atoms, one of which is located on a centre of inversion, a tetra-negative carboxylate ligand, one μ3-hydroxide and five water molecules, each of which is coordinated. The ZnII atom, lying on a centre of inversion, is coordinated by trans sulfoxide-O atoms and four water molecules in an octahedral geometry. Another ZnII atom is coordinated by two carboxylate-O atoms, one hydroxy-O, one sulfoxide-O and a water-O atom to define a distorted trigonal–bipyramidal geometry; a close Zn⋯O(carboxylate) interaction derived from an asymmetrically coordinating ligand (Zn—O = 1.95 and 3.07 Å) suggests a 5 + 1 coordination geometry. The third ZnII atom is coordinated in an octahedral fashion by two hydroxy-O atoms, one carboxylate-O, one sulfoxide-O and two water-O atoms, the latter being mutually cis. In all, the carboxylate ligand binds six ZnII ions leading to a three-dimensional architecture. In the crystal, all acidic donors form hydrogen bonds to oxygen acceptors to contribute to the stability of the three-dimensional architecture. Full Article text
car Bis[benzyl 2-(heptan-4-ylidene)hydrazine-1-carboxylate]bis(thiocyanato)cobalt(II) By scripts.iucr.org Published On :: 2019-06-11 The title compound, [Co(NCS)2(C15H22N2O2)2] or C32H44CoN6O4S2, was prepared from cobalt(II) nitrate, benzyl carbazate and ammonium thiocyanate in the presence of 4-heptanone. The compound crystallizes with two centrosymmetric complexes in which the cobalt(II) atoms have a trans-CoO2N4 octahedral coordination geometry. In the crystal, N—H⋯S, C—H⋯S and C—H⋯.π contacts stack the complex molecules along the b-axis direction. Full Article text
car Poly[diaqua[μ4-2-(carboxylatomethoxy)benzoato][μ2-2-(carboxylatomethoxy)benzoato]dicadmium(II)] By scripts.iucr.org Published On :: 2019-07-09 In the title compound, [Cd2(C9H6O5)2(H2O)2]n, the crystallographically distinct CdII cations are coordinated in pentagonal–bipyramidal and octahedral fashions. The 2-(carboxymethoxy)benzoate (cmb) ligands connect the Cd atoms into [Cd2(cmb)2(H2O)2)]n coordination polymer ribbons that are oriented along the a-axis direction. Supramolecular layers are formed parallel to (01overline{1}) by O—H⋯O hydrogen bonding between the ribbons. The supramolecular three-dimensional crystal structure of the title compound is then constructed by π–π stacking interactions with a centroid–centroid distance of 3.622 (2) Å between cmb ligands in adjacent layer motifs. Full Article text
car Ethyl 4-(4-chloro-3-fluorophenyl)-6-methyl-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carboxylate By scripts.iucr.org Published On :: 2019-07-12 In the title compound, C14H14ClFN2O2S, the dihydropyrimidine ring adopts a shallow-boat conformation and subtends a dihedral angle of 81.91 (17)° with the phenyl ring. In the crystal, N—H⋯O, N—H⋯S and C—H⋯F hydrogen bonds and C—H⋯π interactions are found. Full Article text
car N-[(Pyridin-2-yl)methyl]thiophene-2-carboxamide By scripts.iucr.org Published On :: 2019-07-26 In the title compound, C11H10N2OS, the dihedral angle between the thiophene and pyridine rings is 77.79 (8)°. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(10) loops. The dimers are reinforced by pairs of C—H⋯N interactions and C—H⋯O interactions link the dimers into [010] chains. Full Article text
car catena-Poly[[diaquacadmium(II)]-μ2-3-(4-carboxylatophenyl)propionato] By scripts.iucr.org Published On :: 2019-07-19 In the title compound, [Cd(C10H8O4)(H2O)2)]n, the CdII cation is coordinated in a distorted trigonal–prismatic fashion. 3-(4-Carboxyphenyl)propionate (cpp) ligands connect the CdII cations into zigzag [Cd(cpp)(H2O)2)]n coordination polymer chains, which are oriented parallel to [101]. The chains aggregate into supramolecular layers oriented parallel to (10overline{1}) by means of O—H⋯O hydrogen bonding between bound water molecules and ligating cpp carboxylate O atoms. The layers stack in an ABAB pattern along [100] via other O—H⋯O hydrogen-bonding mechanisms also involving the bound water molecules. The crystal studied was an inversion twin. Full Article text
car Poly[[μ4-4-(carboxylatomethyl)benzoato]zinc(II)] By scripts.iucr.org Published On :: 2019-07-19 In the title compound, [Zn(C9H6O4)]n, the ZnII cations are coordinated in a tetrahedral fashion by carboxylate O-atom donors belonging to four 4-(carboxymethyl) benzoate (4-cmb) ligands. Each 4-cmb ligand binds to four ZnII cations in an exotetradentate fashion to create a non-interpenetrated [Zn(4-cmb)]n three-dimensional coordination polymer network with a new non-diamondoid 66 topology. The crystal studied was refined as an inversion twin. Full Article text
car (Pyridine-2,6-dicarboxylato-κ3O,N,O')(2,2':6',2''- terpyridine-κ3N,N',N'')nickel(II) dimethylformamide monosolvate monohydrate By scripts.iucr.org Published On :: 2019-07-26 In the title complex, [Ni(C7H3NO4)(C15H11N3)]·C3H7NO·H2O, the NiII ion is six-coordinated within an octahedral geometry defined by three N atoms of the 2,2':6',2''-terpyridine ligand, and two O atoms and the N atom of the pyridine-2,6-dicarboxylate di-anion. In the crystal, the complex molecules are stacked in columns parallel to the a axis being connected by π–π stacking [closest inter-centroid separation between pyridyl rings = 3.669 (3) Å]. The connections between columns and solvent molecules to sustain a three-dimensional architecture are of the type water-O—H⋯O(carbonyl) and pyridyl-, methyl-C—H⋯O(carbonyl). Full Article text
car 1-(Cycloheptylidene)thiosemicarbazide By scripts.iucr.org Published On :: 2019-08-23 The asymmetric unit of the title compound, C8H15N3S, contains two independent molecules. In both molecules, the seven-membered cycloheptane ring adopts a chair conformation. An intramolecular N—H⋯N hydrogen bond is observed in both molecules, forming S(5) graph-set motifs. In the crystal, the two independent molecules are connected through N—H⋯S hydrogen bonds, forming dimers which are in turn further connected by N—H⋯S hydrogen bonds into chains along [010]. Full Article text
car 3-Bromopyridine-2-carbonitrile By scripts.iucr.org Published On :: 2019-10-03 The title compound, C6H3BrN2, also known as 3-bromopicolinonitrile, was synthesized by cyanation of 2,3-dibromopyridine. In the solid state, short intermolecular Br⋯N contacts are observed. Additionally, the crystal packing is consolidated by π–π stacking interactions with centroid–centroid distances of 3.7893 (9) Å. Full Article text
car Decacarbonyl(μ-ethylidenimino-1κN:2κC)-μ-hydrido-triangulo-triosmium(3 Os–Os) By scripts.iucr.org Published On :: 2019-10-22 The title complex, [Os3(C2H4N)H(CO)10] or [Os3(CO)10(μ-H)(μ-HN=C—CH3-1κN:2κC)], was synthesized in 41.6% yield by reactions between Os3(CO)11(CH3CN) and 2,4,6-trimethylhexahydro-1,3,5-triazine. The central osmium triangle has two OsI atoms bridged by a hydride ligand and a μ-HN= C—CH3-1κN:2κC triazine fragment. Three CO ligands complete the coordination sphere around each OsI atom, while the remaining Os0 atom has four CO ligands. Each Os atom exhibits a pseudo-octahedral coordination environment, discounting the bridging Os—Os bond. Full Article text
car (4-Carboxybenzyl)triphenylphosphonium hexafluoridophosphate tetrahydrofuran monosolvate By scripts.iucr.org Published On :: 2019-11-05 The title compound, C26H22O2P+·PF6−·C4H7O, crystallizes as a cation-anion pair with a single solvent molecule in the asymmetric unit. Hydrogen bonding occurs between the carboxylic acid group on the cation and the oxygen atom of the solvent molecule. Longer hydrogen-bonding interactions are observed between fluorine atoms of the anion and H atoms on the phenyl rings of the cation. Full Article text
car 2-[1-(1,3-Dioxo-1,3-dihydro-2H-inden-2-ylidene)ethyl]hydrazinecarbothioamide By scripts.iucr.org Published On :: 2019-11-12 The title compound, C12H11N3O2S, was synthesized by a condensation reaction of 2-acetylindan-1,3-dione and thiosemicarbazide in ethanol in the presence of glacial acetic acid. The molecule adopts a thioketone form. The dihedral angle between the mean planes of 1H-inden-1,3(2H)-dione and hydrazinecarbothioamide units is 86.32 (7)°. Weak intramolecular N—H⋯O and C—H⋯O hydrogen bonds are observed. In the crystal, molecules are linked via pairs of weak intermolecular N—H⋯O hydrogen bonds, forming inversion dimers. The dimers are further linked into a three-dimensional network through N—H⋯S and N—H⋯O hydrogen bonds, and π–π interactions [centroid–centroid distances = 3.5619 (10)–3.9712 (9) Å]. Full Article text
car Ethyl 5-[(ethoxycarbonyl)oxy]-5,5-diphenylpent-2-ynoate By scripts.iucr.org Published On :: 2019-11-15 The title compound, C22H22O5, crystallizes with two molecules in the asymmetric unit, one of which shows disorder of its ethyl acetate group over two sets of sites in a 0.880 (2):0.120 (2) ratio. The C≡C distances in the two molecules are almost the same [1.1939 (16) and 1.199 (2) Å], but the Csp3—C≡C angles differ somewhat [175.92 (12) and 172.53 (16)°]. In the crystal, several weak C—H⋯O interactions are seen. Full Article text
car (2,2'-Bipyridine-κ2N,N')(pyridine-2,6-dicarboxylato-κ2N,O)palladium(II) monohydrate By scripts.iucr.org Published On :: 2019-12-06 In the title compound, [Pd(C7H3NO4)(C10H8N2)]·H2O, the PdII cation is four-coordinated in a distorted square-planar coordination geometry defined by the two N atoms of the 2,2'-bipyridine ligand, one O atom and one N atom from the pyridine-2,6-dicarboxylate anion. The complex and solvent water molecule are linked by intermolecular hydrogen bonds. In the crystal, the complex molecules are stacked in columns along the a axis. Full Article text
car Diethyl 4-(3-chlorophenyl)-2,6-diphenyl-1,4-dihydropyridine-3,5-dicarboxylate By scripts.iucr.org Published On :: 2019-12-10 In the title compound, C29H26ClNO4, the dihydropyridine ring adopts a shallow boat conformation. The mean plane of the dihydropyridine ring (all atoms) subtends dihedral angles of 66.54 (1), 73.71 (1) and 79.47 (1)° with the two phenyl rings and the chlorophenyl ring, respectively. In the crystal, N—H⋯O hydrogen bonds link the molecules into [001] chains. Full Article text
car 5,5'-(1-Phenylethane-1,1-diyl)bis(1H-pyrrole-2-carboxaldehyde) By scripts.iucr.org Published On :: 2019-12-17 In the title compound, C18H16N2O2, the dihedral angle between the pyrrole rings is 79.47 (9)°, with the N—H groups approximately orthogonal (H—N⋯N—H pseudo torsion angle = −106°). In the crystal, N—H⋯O hydrogen bonds link the molecules into [11overline{1}] chains. A C—H⋯O interaction is also observed. Full Article text
car N'-(2-Hydroxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide monohydrate By scripts.iucr.org Published On :: 2020-01-10 In the title hydrated Schiff base, C13H12N4O3·H2O, the dihedral angle between the aromatic rings is 5.06 (11)° and an intramolecular O—H⋯N hydrogen bond closes an S(6) ring. In the crystal, Ow—H⋯O and Ow—H⋯N (w = water) hydrogen bonds link the components into centrosymmetric tetramers (two Schiff bases and two water molecules). Longer N—H⋯O hydrogen bonds link the tetramers into [010] chains. A weak C—H⋯O hydrogen bond and aromatic π–π stacking between the pyrazine and phenyl rings [centroid–centroid separations = 3.604 (2) and 3.715 (2) Å] are also observed. Full Article text
car Diethyl 4-(1H-imidazol-2-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate By scripts.iucr.org Published On :: 2020-01-17 In the title compound, C16H21N3O4, the 1,4-dihydropyridine ring adopts a flattened boat conformation, with the imidazole substituent in an axial orientation [dihedral angle between ring planes = 82.9 (6)°]. In the crystal structure, pairs of N—H⋯O and N—H⋯N hydrogen bonds with graph-set notation R22(14) connect the molecules into chains running along the c-axis direction. Full Article text
car Dicaesium tetramagnesium pentakis(carbonate) decahydrate, Cs2Mg4(CO3)5·10H2O By scripts.iucr.org Published On :: 2020-02-11 The title carbonate hydrate, Cs2Mg4(CO3)5·10H2O, was crystallized at room temperature out of aqueous solutions containing caesium bicarbonate and magnesium nitrate. Its monoclinic crystal structure (P21/n) consists of double chains of composition 1∞[Mg(H2O)2/1(CO3)3/3], isolated [Mg(H2O)(CO3)2]2– units, two crystallographically distinct Cs+ ions and a free water molecule. The crystal under investigation was twinned by reticular pseudomerohedry. Full Article text
car 4-Amino-6-(piperidin-1-yl)pyrimidine-5-carbonitrile By scripts.iucr.org Published On :: 2020-03-17 In the title compound, C10H13N5, the piperidine ring adopts a chair conformation with the exocyclic N—C bond in an axial orientation, and the dihedral angle between the mean planes of piperidine and pyrimidine rings is 49.57 (11)°. A short intramolecular C—H⋯N contact generates an S(7) ring. In the crystal, N—H⋯N hydrogen bonds link the molecules into (100) sheets and a weak aromatic π-π stacking interaction is observed [centroid–centroid separation = 3.5559 (11) Å] between inversion-related pyrimidine rings. Full Article text
car Crystal structure of tetrakis[μ-3-carboxy-1-(1,2,4-triazol-4-yl)adamantane-κ2N1:N2]tetrafluoridodi-μ2-oxido-dioxidodisilver(I)divanadium(V) tetrahydrate By scripts.iucr.org Published On :: 2019-05-17 The crystal structure of the title molecular complex, [Ag2{VO2F2}2(C13H17N3O2)4]·4H2O, supported by the heterofunctional ligand tr-ad-COOH [1-(1,2,4-triazol-4-yl)-3-carboxyadamantane] is reported. Four 1,2,4-triazole groups of the ligand link two AgI atoms, as well as AgI and VV centres, forming the heterobimetallic coordination cluster {AgI2(VVO2F2)2(tr)4}. VV exists as a vanadium oxofluoride anion and possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N]. A carboxylic acid functional group of the ligand stays in a neutral form and is involved in hydrogen bonding with solvent water molecules and VO2F2− ions of adjacent molecules. The extended hydrogen-bonding network is responsible for the crystal packing in the structure. Full Article text
car Crystal structure of butane-1,4-diyl bis(furan-2-carboxylate) By scripts.iucr.org Published On :: 2019-05-24 The asymmetric unit of the title compound, C14H14O6, a monomeric compound of poly(butylene 2,5-furandicarboxylate), consists of one half-molecule, the whole all-trans molecule being generated by an inversion centre. In the crystal, the molecules are interconnected via C—H⋯O interactions, forming a molecular sheet parallel to (10overline{2}). The molecular sheets are further linked by C—H⋯π interactions. Full Article text
car Crystal structures of butyl 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate and 2-methoxyethyl 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate By scripts.iucr.org Published On :: 2019-05-24 The title benzofuran derivatives 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate (BF1), C19H18N2O6, and 2-methoxyethyl 2-amino-5-hydroxy-4-(4-nitrophenyl)benzofuran-3-carboxylate (BF2), C18H16N2O7, recently attracted attention because of their promising antitumoral activity. BF1 crystallizes in the space group Poverline{1}. BF2 in the space group P21/c. The nitrophenyl group is inclined to benzofuran moiety with a dihedral angle between their mean planes of 69.2 (2)° in BF1 and 60.20 (6)° in BF2. A common feature in the molecular structures of BF1 and BF2 is the intramolecular N—H⋯Ocarbonyl hydrogen bond. In the crystal of BF1, the molecules are linked head-to-tail into a one-dimensional hydrogen-bonding pattern along the a-axis direction. In BF2, pairs of head-to-tail hydrogen-bonded chains of molecules along the b-axis direction are linked by O—H⋯Omethoxy hydrogen bonds. In BF1, the butyl group is disordered over two orientations with occupancies of 0.557 (13) and 0.443 (13). Full Article text
car Zn and Ni complexes of pyridine-2,6-dicarboxylates: crystal field stabilization matters! By scripts.iucr.org Published On :: 2019-05-31 Six reaction products of ZnII and NiII with pyridine-2,6-dicarboxylic acid (H2Lig1), 4-chloropyridine-2,6-dicarboxylic acid (H2Lig2) and 4-hydroxypyridine-2,6-dicarboxylic acid (H2Lig3) are used to pinpoint the structural consequences of crystal field stabilization by an incomplete d shell. The pseudo-octahedral ZnII coordination sphere in bis(6-carboxypicolinato)zinc(II) trihydrate, [Zn(C7H4NO4)2]·3H2O or [Zn(HLig1)2]·3H2O, (1), is significantly less regular than that about NiII in the isostructural compound bis(6-carboxypicolinato)nickel(II) trihydrate, [Ni(C7H4NO4)2]·3H2O or [Ni(HLig1)2]·3H2O, (2). The ZnII complexes poly[(4-chloropyridine-2,6-dicarboxylato)zinc(II)], [Zn(C7H2ClNO4)]n or [Zn(Lig2)]n, (3), and poly[[(4-hydroxypyridine-2,6-dicarboxylato)zinc(II)] monohydrate], {[Zn(C7H3NO5)]·H2O}n or {[Zn(Lig3)]·H2O}n, (4), represent two-dimensional coordination polymers with chelating and bridging pyridine-2,6-dicarboxylate ligands in which the coordination polyhedra about the central cations cannot be associated with any regular shape; their coordination environments range between trigonal–bipyramidal and square-pyramidal geometries. In contrast, the corresponding adducts of the diprotonated ligands to NiII, namely triaqua(4-chloropyridine-2,6-dicarboxylato)nickel(II), [Ni(C7H2ClNO4)(H2O)3] or [NiLig2(OH2)3)], (5), and triaqua(4-hydroxypyridine-2,6-dicarboxylato)nickel(II) 1.7-hydrate, [Ni(C7H3NO5)(H2O)3]·1.7H2O or [NiLig3(OH2)3)]·1.7H2O, (6), feature rather regular octahedral coordination spheres about the transition-metal cations, thus precluding the formation of analogous extended structures. Full Article text
car Crystal structure, DFT study and Hirshfeld surface analysis of ethyl 6-chloro-2-ethoxyquinoline-4-carboxylate By scripts.iucr.org Published On :: 2019-05-31 In the title quinoline derivative, C14H14ClNO3, there is an intramolecular C—H⋯O hydrogen bond forming an S(6) graph-set motif. The molecule is essentially planar with the mean plane of the ethyl acetate group making a dihedral angle of 5.02 (3)° with the ethyl 6-chloro-2-ethoxyquinoline mean plane. In the crystal, offset π–π interactions with a centroid-to-centroid distance of 3.4731 (14) Å link inversion-related molecules into columns along the c-axis direction. Hirshfeld surface analysis indicates that H⋯H contacts make the largest contribution (50.8%) to the Hirshfeld surface. Full Article text
car Some chalcones derived from thiophene-3-carbaldehyde: synthesis and crystal structures By scripts.iucr.org Published On :: 2019-06-04 The synthesis, spectroscopic data and crystal and molecular structures of four 3-(3-phenylprop-1-ene-3-one-1-yl)thiophene derivatives, namely 1-(4-hydroxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C13H10O2S, (1), 1-(4-methoxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C14H12O2S, (2), 1-(4-ethoxyphenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C15H14O2S, (3), and 1-(4-bromophenyl)-3-(thiophen-3-yl)prop-1-en-3-one, C13H9BrOS, (4), are described. The four chalcones have been synthesized by reaction of thiophene-3-carbaldehyde with an acetophenone derivative in an absolute ethanol solution containing potassium hydroxide, and differ in the substituent at the para position of the phenyl ring: –OH for 1, –OCH3 for 2, –OCH2CH3 for 3 and –Br for 4. The thiophene ring in 4 was found to be disordered over two orientations with occupancies 0.702 (4) and 0.298 (4). The configuration about the C=C bond is E. The thiophene and phenyl rings are inclined by 4.73 (12) for 1, 12.36 (11) for 2, 17.44 (11) for 3 and 46.1 (6) and 48.6 (6)° for 4, indicating that the –OH derivative is almost planar and the –Br derivative deviates the most from planarity. However, the substituent has no real influence on the bond distances in the α,β-unsaturated carbonyl moiety. The molecular packing of 1 features chain formation in the a-axis direction by O—H⋯O contacts. In the case of 2 and 3, the packing is characterized by dimer formation through C—H⋯O interactions. In addition, C—H⋯π(thiophene) interactions in 2 and C—H⋯S(thiophene) interactions in 3 contribute to the three-dimensional architecture. The presence of C—H⋯π(thiophene) contacts in the crystal of 4 results in chain formation in the c-axis direction. The Hirshfeld surface analysis shows that for all four derivatives, the highest contribution to surface contacts arises from contacts in which H atoms are involved. Full Article text
car Crystal structure of N,N'-bis[3-(methylsulfanyl)propyl]-1,8:4,5-naphthalenetetracarboxylic diimide By scripts.iucr.org Published On :: 2019-05-31 The title compound, C22H22N2O4S2, was synthesized by the reaction of 1,4,5,8-naphthalenetetracarboxylic dianhydride with 3-(methylsulfanyl)propylamine. The whole molecule is generated by an inversion operation of the asymmetric unit. This molecule has an anti form with the terminal methylthiopropyl groups above and below the aromatic diimide plane, where four intramolecular C—H⋯O and C—H⋯S hydrogen bonds are present and the O⋯H⋯S angle is 100.8°. DFT calculations revealed slight differences between the solid state and gas phase structures. In the crystal, C—H⋯O and C—H⋯S hydrogen bonds link the molecules into chains along the [2overline20] direction. adjacent chains are interconnected by π–π interactions, forming a two-dimensional network parallel to the (001) plane. Each two-dimensional layer is further packed in an ABAB sequence along the c-axis direction. Hirshfeld surface analysis shows that van der Waals interactions make important contributions to the intermolecular contacts. The most important contacts found in the Hirshfeld surface analysis are H⋯H (44.2%), H⋯O/O⋯H (18.2%), H⋯C/C⋯H (14.4%), and H⋯S/S⋯H (10.2%). Full Article text
car Crystal structure and DFT study of benzyl 1-benzyl-2-oxo-1,2-dihydroquinoline-4-carboxylate By scripts.iucr.org Published On :: 2019-06-11 In the title quinoline derivative, C24H19NO3, the two benzyl rings are inclined to the quinoline ring mean plane by 74.09 (8) and 89.43 (7)°, and to each other by 63.97 (10)°. The carboxylate group is twisted from the quinoline ring mean plane by 32.2 (2)°. There is a short intramolecular C—H⋯O contact forming an S(6) ring motif. In the crystal, molecules are linked by bifurcated C—H,H⋯O hydrogen bonds, forming layers parallel to the ac plane. The layers are linked by C—H⋯π interactions, forming a supramolecular three-dimensional structure. Full Article text
car Crystal structures of two bis-carbamoylmethylphosphine oxide (CMPO) compounds By scripts.iucr.org Published On :: 2019-06-14 Two bis-carbamoylmethylphosphine oxide compounds, namely {[(3-{[2-(diphenylphosphinoyl)ethanamido]methyl}benzyl)carbamoyl]methyl}diphenylphosphine oxide, C36H34N2O4P2, (I), and diethyl [({2-[2-(diethoxyphosphinoyl)ethanamido]ethyl}carbamoyl)methyl]phosphonate, C14H30N2O8P2, (II), were synthesized via nucleophilic acyl substitution reactions between an ester and a primary amine. Hydrogen-bonding interactions are present in both crystals, but these interactions are intramolecular in the case of compound (I) and intermolecular in compound (II). Intramolecular π–π stacking interactions are also present in the crystal of compound (I) with a centroid–centroid distance of 3.9479 (12) Å and a dihedral angle of 9.56 (12)°. Intermolecular C—H⋯π interactions [C⋯centroid distance of 3.622 (2) Å, C—H⋯centroid angle of 146°] give rise to supramolecular sheets that lie in the ab plane. Key geometric features for compound (I) involve a nearly planar, trans-amide group with a C—N—C—C torsion angle of 169.12 (17)°, and a torsion angle of −108.39 (15)° between the phosphine oxide phosphorus atom and the amide nitrogen atom. For compound (II), the electron density corresponding to the phosphoryl group was disordered, and was modeled as two parts with a 0.7387 (19):0.2613 (19) occupancy ratio. Compound (II) also boasts a trans-amide group that approaches planarity with a C—N—C—C torsion angle of −176.50 (16)°. The hydrogen bonds in this structure are intermolecular, with a D⋯A distance of 2.883 (2) Å and a D—H⋯A angle of 175.0 (18)° between the amide hydrogen atom and the P=O oxygen atom. These non-covalent interactions create ribbons that run along the b-axis direction. Full Article text
car Crystal structure and Hirshfeld surface analysis of N-(2-chlorophenylcarbamothioyl)-4-fluorobenzamide and N-(4-bromophenylcarbamothioyl)-4-fluorobenzamide By scripts.iucr.org Published On :: 2019-06-21 The title compounds, C14H10ClFN2OS (1) and C14H10BrFN2OS (2), were synthesized by two-step reactions. The dihedral angles between the aromatic rings are 31.99 (3) and 9.17 (5)° for 1 and 2, respectively. Compound 1 features an intramolecular bifurcated N—H⋯(O,Cl) link due to the presence of the ortho-Cl atom on the benzene ring, whereas 2 features an intramolecular N—H⋯O hydrogen bond. In the crystal of 1, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops. The extended structure of 2 features the same motif but an additional weak C—H⋯S interaction links the inversion dimers into [100] double columns. Hirshfeld surface analyses indicate that the most important contributors towards the crystal packing are H⋯H (26.6%), S⋯H/H.·S (13.8%) and Cl⋯H/H⋯Cl (9.5%) contacts for 1 and H⋯H (19.7%), C⋯H/H⋯C (14.8%) and Br⋯H/H⋯Br (12.4%) contacts for 2. Full Article text
car Crystal structure and Hirshfeld surface analysis of diiodido{N'-[(E)-(phenyl)(pyridin-2-yl-κN)methylidene]pyridine-2-carbohydrazide-κ2N',O}cadmium(II) By scripts.iucr.org Published On :: 2019-06-25 In each of the two independent molecules in the asymmetric unit of the title compound, [CdI2(C18H14N4O)], the N,O,N'-tridentate N'-[(E)-(phenyl)(pyridin-2-yl-κN)methylidene]pyridine-2-carbohydrazide ligand and two iodide anions form an I2N2O pentacoordination sphere, with a distorted square-pyramidal geometry, with an I atom in the apical position. Both molecules feature an intramolecular N—H⋯N hydrogen bond. In the crystal, weak aromatic π–π stacking interactions [centroid–centroid separation = 3.830 (2) Å] link the molecules into dimers. Full Article text
car Crystal structure of (E)-N-cyclohexyl-2-(2-hydroxy-3-methylbenzylidene)hydrazine-1-carbothioamide By scripts.iucr.org Published On :: 2019-06-28 The asymmetric unit of the title compound, C15H21N3OS, comprises of two crystallographically independent molecules (A and B). Each molecule consists of a cyclohexane ring and a 2-hydroxy-3-methylbenzylidene ring bridged by a hydrazinecarbothioamine unit. Both molecules exhibit an E configuration with respect to the azomethine C=N bond. There is an intramolecular O—H⋯N hydrogen bond in each molecule forming an S(6) ring motif. The cyclohexane ring in each molecule has a chair conformation. The benzene ring is inclined to the mean plane of the cyclohexane ring by 47.75 (9)° in molecule A and 66.99 (9)° in molecule B. The mean plane of the cyclohexane ring is inclined to the mean plane of the thiourea moiety [N—C(=S)—N] by 55.69 (9) and 58.50 (8)° in molecules A and B, respectively. In the crystal, the A and B molecules are linked by N—H⋯S hydrogen bonds, forming `dimers'. The A molecules are further linked by a C—H⋯π interaction, hence linking the A–B units to form ribbons propagating along the b-axis direction. The conformation of a number of related cyclohexanehydrazinecarbothioamides are compared to that of the title compound. Full Article text
car Multicentered hydrogen bonding in 1-[(1-deoxy-β-d-fructopyranos-1-yl)azaniumyl]cyclopentanecarboxylate (`d-fructose-cycloleucine') By scripts.iucr.org Published On :: 2019-07-02 The title compound, C12H21NO7, (I), is conformationally unstable; the predominant form present in its solution is the β-pyranose form (74.3%), followed by the β- and α-furanoses (12.1 and 10.2%, respectively), α-pyranose (3.4%), and traces of the acyclic carbohydrate tautomer. In the crystalline state, the carbohydrate part of (I) adopts the 2C5 β-pyranose conformation, and the amino acid portion exists as a zwitterion, with the side chain cyclopentane ring assuming the E9 envelope conformation. All heteroatoms are involved in hydrogen bonding that forms a system of antiparallel infinite chains of fused R33(6) and R33(8) rings. The molecule features extensive intramolecular hydrogen bonding, which is uniquely multicentered and involves the carboxylate, ammonium and carbohydrate hydroxy groups. In contrast, the contribution of intermolecular O⋯H/H⋯O contacts to the Hirshfeld surface is relatively low (38.4%), as compared to structures of other d-fructose-amino acids. The 1H NMR data suggest a slow rotation around the C1—C2 bond in (I), indicating that the intramolecular heteroatom contacts survive in aqueous solution of the molecule as well. Full Article text
car Crystal structure of poly[[[μ4-3-(1,2,4-triazol-4-yl)adamantane-1-carboxylato-κ5N1:N2:O1:O1,O1']silver(I)] dihydrate] By scripts.iucr.org Published On :: 2019-07-12 The heterobifunctional organic ligand, 3-(1,2,4-triazol-4-yl)adamantane-1-carboxylate (tr-ad-COO−), was employed for the synthesis of the title silver(I) coordination polymer, {[Ag(C13H16N3O2)]·2H2O}n, crystallizing in the rare orthorhombic C2221 space group. Alternation of the double μ2-1,2,4-triazole and μ2-η2:η1-COO− (chelating, bridging mode) bridges between AgI cations supports the formation of sinusoidal coordination chains. The AgI centers possess a distorted {N2O3} square-pyramidal arrangement with τ5 = 0.30. The angular organic linkers connect the chains into a tetragonal framework with small channels along the c-axis direction occupied by water molecules of crystallization, which are interlinked via O—H⋯O hydrogen bonds with carboxylate groups, leading to right- and left-handed helical dispositions. Full Article text
car Synthesis and crystal structure of tert-butyl 1-(2-iodobenzoyl)cyclopent-3-ene-1-carboxylate By scripts.iucr.org Published On :: 2019-08-30 1-(2-Iodobenzoyl)-cyclopent-3-ene-1-carboxylates are novel substrates to construct bicyclo[3.2.1]octanes with antibacterial and antithrombotic activities. In this context, tert-butyl 1-(2-iodobenzoyl)-cyclopent-3-ene-1-carboxylate, C17H19IO3, was synthesized and structurally characterized. The 2-iodobenzoyl group is attached to the tertiary C atom of the cyclopent-3-ene ring. The dihedral angle between the benzene ring and the mean plane of the envelope-type cyclopent-3-ene ring is 26.0 (3)°. In the crystal, pairs of C-H⋯O hydrogen bonds link the molecules to form inversion dimers. Full Article text
car Synthesis and redetermination of the crystal structure of salicylaldehyde N(4)-morpholinothiosemicarbazone By scripts.iucr.org Published On :: 2019-08-30 The structure of the title compound (systematic name: N-{[(2-hydroxyphenyl)methylidene]amino}morpholine-4-carbothioamide), C12H15N3O2S, was previously determined (Koo et al., 1977) using multiple-film equi-inclination Weissenberg data, but has been redetermined with higher precision to explore its conformation and the hydrogen-bonding patterns and supramolecular interactions. The molecular structure shows intramolecular O—H⋯N and C—H⋯S interactions. The configuration of the C=N bond is E. The molecule is slightly twisted about the central N—N bond. The best planes through the phenyl ring and the morpholino ring make an angle of 43.44 (17)°. In the crystal, the molecules are connected into chains by N—H⋯O and C—H⋯O hydrogen bonds, which combine to generate sheets lying parallel to (002). The most prominent contribution to the surface contacts are H⋯H contacts (51.6%), as concluded from a Hirshfeld surface analysis. Full Article text
car Crystal structures and Hirshfeld surface analyses of (E)-N'-benzylidene-2-oxo-2H-chromene-3-carbohydrazide and the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-trimethoxybenzylidene)-2H-chromene-3-carbohydrazide: lattice ene By scripts.iucr.org Published On :: 2019-09-03 The crystal structures of the disordered hemi-DMSO solvate of (E)-2-oxo-N'-(3,4,5-trimethoxybenzylidene)-2H-chromene-3-carbohydrazide, C20H18N2O6·0.5C2H6OS, and (E)-N'-benzylidene-2-oxo-2H-chromene-3-carbohydrazide, C17H12N2O3 (4: R = C6H5), are discussed. The non-hydrogen atoms in compound [4: R = (3,4,5-MeO)3C6H2)] exhibit a distinct curvature, while those in compound, (4: R = C6H5), are essential coplanar. In (4: R = C6H5), C—H⋯O and π–π intramolecular interactions combine to form a three-dimensional array. A three-dimensional array is also found for the hemi-DMSO solvate of [4: R = (3,4,5-MeO)3C6H2], in which the molecules of coumarin are linked by C—H⋯O and C—H⋯π interactions, and form tubes into which the DMSO molecules are cocooned. Hirshfeld surface analyses of both compounds are reported, as are the lattice energy and intermolecular interaction energy calculations of compound (4: R = C6H5). Full Article text
car Crystal structure, Hirshfeld surface analysis and interaction energy and DFT studies of 2-chloroethyl 2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydroquinoline-4-carboxylate By scripts.iucr.org Published On :: 2019-09-06 The title compound, C15H12ClNO3, consists of a 1,2-dihydroquinoline-4-carboxylate unit with 2-chloroethyl and propynyl substituents, where the quinoline moiety is almost planar and the propynyl substituent is nearly perpendicular to its mean plane. In the crystal, the molecules form zigzag stacks along the a-axis direction through slightly offset π-stacking interactions between inversion-related quinoline moieties which are tied together by intermolecular C—HPrpnyl⋯OCarbx and C—HChlethy⋯OCarbx (Prpnyl = propynyl, Carbx = carboxylate and Chlethy = chloroethyl) hydrogen bonds. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (29.9%), H⋯O/O⋯H (21.4%), H⋯C/C⋯ H (19.4%), H⋯Cl/Cl⋯H (16.3%) and C⋯C (8.6%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HPrpnyl⋯OCarbx and C—HChlethy⋯OCarbx hydrogen bond energies are 67.1 and 61.7 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
car Crystal structure of 4-bromo-N-[(3,6-di-tert-butyl-9H-carbazol-1-yl)methylidene]aniline By scripts.iucr.org Published On :: 2019-09-10 In the title compound, C27H29BrN2, the carbazole ring system is essentially planar, with an r.m.s. deviation of 0.0781 (16) Å. An intramolecular N—H⋯N hydrogen bond forms an S(6) ring motif. One of the tert-butyl substituents shows rotational disorder over two sites with occupancies of 0.592 (3) and 0.408 (3). In the crystal, two molecules are associated into an inversion dimer through a pair of C—H⋯π interactions. The dimers are further linked by another pair of C—H⋯π interactions, forming a ribbon along the c-axis direction. A C—H⋯π interaction involving the minor disordered component and the carbazole ring system links the ribbons, generating a network sheet parallel to (100). Full Article text
car Crystal structure and Hirshfeld surface analysis of 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-phenyl-4,5-dihydro-1H-pyrazole-1-carboxamide By scripts.iucr.org Published On :: 2019-09-12 In the title compound, C24H31N3O2, the mean plane of the central pyrazole ring [r.m.s. deviation = 0.095 Å] makes dihedral angles of 11.93 (9) and 84.53 (8)°, respectively, with the phenyl and benzene rings. There is a short intramolecular N—H⋯N contact, which generates an S(5) ring motif. In the crystal, pairs of N—H⋯O hydrogen bonds link inversion-related molecules into dimers, generating an R22(8) ring motif. The Hirshfeld surface analysis indicates that the most significant contribution involves H⋯H contacts of 68.6% Full Article text
car (N,N-Diisopropyldithiocarbamato)triphenyltin(IV): crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2019-09-12 The crystal and molecular structures of the title triorganotin dithiocarbamate, [Sn(C6H5)3(C7H14NS2)], are described. The molecular geometry about the metal atom is highly distorted being based on a C3S tetrahedron as the dithiocarbamate ligand is asymmetrically chelating to the tin centre. The close approach of the second thione-S atom [Sn⋯S = 2.9264 (4) Å] is largely responsible for the distortion. The molecular packing is almost devoid of directional interactions with only weak phenyl-C—H⋯C(phenyl) interactions, leading to centrosymmetric dimeric aggregates, being noted. An analysis of the calculated Hirshfeld surface points to the significance of H⋯H contacts, which contribute 66.6% of all contacts to the surface, with C⋯H/H⋯C [26.8%] and S⋯H/H⋯H [6.6%] contacts making up the balance. Full Article text
car Crystal structure of benzyl N'-[(1E,4E)-1,5-bis(4-methoxyphenyl)penta-1,4-dien-3-ylidene]hydrazine-1-carbodithioate By scripts.iucr.org Published On :: 2019-10-03 In the title hydrazinecarbodithioate derivative, C27H26N2O2S2, the asymmetric unit is comprised of four molecules (Z = 8 and Z' = 4). The 4-methoxyphenyl rings are slightly twisted away from their attached olefinic double bonds [torsion angles = 5.9 (4)–19.6 (4)°]. The azomethine double bond has an s-trans configuration relative to one of the C=C bonds and an s-cis configuration relative to the other [C=C—C= N = 147.4 (6)–175.7 (2) and 15.3 (3)–37.4 (7)°, respectively]. The torsion angles between the azomethine C=N double bond and hydrazine-1-carbodithioate moiety indicate only small deviations from planarity, with torsion angles ranging from 0.9 (3) to 6.9 (3)° and from 174.9 (3) to 179.7 (2)°, respectively. The benzyl ring and the methylenesulfanyl moiety are almost perpendicular to each other, as indicated by their torsion angles [range 93.7 (3)–114.6 (2)°]. In the crystal, molecules are linked by C—H⋯O, N—H⋯S and C—H⋯π(ring) hydrogen-bonding interactions into a three-dimensional network. Structural details of related benzyl hydrazine-1-carbodithioate are surveyed and compared with those of the title compound. Full Article text
car Crystal structure, DFT and Hirshfeld surface analysis of 2-amino-4-(2-chlorophenyl)-7-hydroxy-4H-benzo[1,2-b]pyran-3-carbonitrile By scripts.iucr.org Published On :: 2019-10-22 The benzopyran ring of the title compound, C16H11ClN2O2, is planar [maximum deviation = 0.079 (2) Å] and is almost perpendicular to the chlorophenyl ring [dihedral angle = 86.85 (6)°]. In the crystal, N—H⋯O, O—H⋯N, C—H⋯O and C—H⋯Cl hydrogen bonds form inter- and intramolecular interactions. The DFT/B3LYP/6-311G(d,p) method was used to determine the HOMO–LUMO energy levels. The molecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular interactions in the molecule. Full Article text
car Crystal structure and luminescence properties of 2-[(2',6'-dimethoxy-2,3'-bipyridin-6-yl)oxy]-9-(pyridin-2-yl)-9H-carbazole By scripts.iucr.org Published On :: 2019-10-22 In the title compound, C29H22N4O3, the carbazole system forms a dihedral angle of 68.45 (3)° with the mean plane of the bipyridine ring system. The bipyridine ring system, with two methoxy substituents, is approximately planar (r.m.s. deviation = 0.0670 Å), with a dihedral angle of 7.91 (13)° between the planes of the two pyridine rings. Intramolecular C—H⋯O/N hydrogen bonds may promote the planarity of the bipyridyl ring system. In the pyridyl-substituted carbazole fragment, the pyridine ring is tilted by 56.65 (4)° with respect to the mean plane of the carbazole system (r.m.s. deviation = 0.0191 Å). In the crystal, adjacent molecules are connected via C—H⋯O/N hydrogen bonds and C—H⋯π interactions, resulting in the formation of a three-dimensional (3D) supramolecular network. In addition, the 3D structure contains intermolecular π–π stacking interactions, with centroid–centroid distances of 3.5634 (12) Å between pyridine rings. The title compound exhibits a high energy gap (3.48 eV) and triplet energy (2.64 eV), indicating that it could be a suitable host material in organic light-emitting diode (OLED) applications. Full Article text
car The first structural characterization of the protonated azacyclam ligand in catena-poly[[[(perchlorato)copper(II)]-μ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane] bis(per& By scripts.iucr.org Published On :: 2019-10-22 The asymmetric unit of the title compound, catena-poly[[[(perchlorato-κO)copper(II)]-μ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane-κ4N1,N5,N8,N12] bis(perchlorate)], {[Cu(C13H30N5O2)(ClO4)](ClO4)2}n, (I), consists of a macrocyclic cation, one coordinated perchlorate anion and two perchlorate ions as counter-anions. The metal ion is coordinated in a tetragonally distorted octahedral geometry by the four secondary N atoms of the macrocyclic ligand, the mutually trans O atoms of the perchlorate anion and the carbonyl O atom of the protonated carboxylic acid group of a neighbouring cation. The average equatorial Cu—N bond lengths [2.01 (6) Å] are significantly shorter than the axial Cu—O bond lengths [2.379 (8) Å for carboxylate and average 2.62 (7) Å for disordered perchlorate]. The coordinated macrocyclic ligand in (I) adopts the most energetically favourable trans-III conformation with an equatorial orientation of the substituent at the protonated distal 3-position N atom in a six-membered chelate ring. The coordination of the carboxylic acid group of the cation to a neighbouring complex unit results in the formation of infinite chains running along the b-axis direction, which are crosslinked by N—H⋯O hydrogen bonds between the secondary amine groups of the macrocycle and O atoms of the perchlorate counter-anions to form sheets lying parallel to the (001) plane. Additionally, the extended structure of (I) is consolidated by numerous intra- and interchain C—H⋯O contacts. Full Article text
car Crystal structure of a two-dimensional coordination polymer of formula [Zn(NDC)(DEF)] (H2NDC is naphthalene-2,6-dicarboxylic acid and DEF is N,N-diethylformamide) By scripts.iucr.org Published On :: 2019-10-29 A zinc metal–organic framework, namely poly[bis(N,N-diethylformamide)(μ4-naphthalene-2,6-dicarboxylato)(μ2-naphthalene-2,6-dicarboxylato)dizinc(II)], [Zn(C12H6O4)(C15H11NO)]n, built from windmill-type secondary building units and forming zigzag shaped two-dimensional stacked layers, has been solvothermally synthesized from naphthalene-2,6-dicarboxylic acid and zinc(II) acetate as the metal source in N,N-diethylformamide containing small amounts of formic acid. Full Article text
car Crystal structure, Hirshfeld surface analysis and DFT studies of ethyl 2-{4-[(2-ethoxy-2-oxoethyl)(phenyl)carbamoyl]-2-oxo-1,2-dihydroquinolin-1-yl}acetate By scripts.iucr.org Published On :: 2019-10-29 The title compound, C24H24N2O6, consists of ethyl 2-(1,2,3,4-tetrahydro-2-oxoquinolin-1-yl)acetate and 4-[(2-ethoxy-2-oxoethyl)(phenyl)carbomoyl] units, where the oxoquinoline unit is almost planar and the acetate substituent is nearly perpendicular to its mean plane. In the crystal, C—HOxqn⋯OEthx and C—HPhyl⋯OCarbx (Oxqn = oxoquinolin, Ethx = ethoxy, Phyl = phenyl and Carbx = carboxylate) weak hydrogen bonds link the molecules into a three-dimensional network sturucture. A π–π interaction between the constituent rings of the oxoquinoline unit, with a centroid–centroid distance of 3.675 (1) Å may further stabilize the structure. Both terminal ethyl groups are disordered over two sets of sites. The ratios of the refined occupanies are 0.821 (8):0.179 (8) and 0.651 (18):0.349 (18). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (53.9%), H⋯O/O⋯H (28.5%) and H⋯C/C⋯H (11.8%) interactions. Weak intermolecular hydrogen-bond interactions and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) geometric optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO molecular orbital behaviour was elucidated to determine the energy gap. Full Article text