ual

National polydrug collaborative project : treatment manual 3 : referral strategies for polydrug abusers.

Rockville, Maryland : National Institute on Drug Abuse, 1977.




ual

Effect of marihuana and alcohol on visual search performance / H.A. Moskowitz, K. Ziedman, S. Sharma.

Washington : Dept. of Transportation, National Highway Traffic Safety Administration, 1976.




ual

Sydney Wiese, recovering from coronavirus, continually talking with friends and family: 'Our world is uniting'

Hear how former Oregon State guard and current member of the WNBA's LA Sparks Sydney Wiese is recovering from a COVID-19 diagnosis, seeing friends and family show support and love during a trying time.




ual

Parseval inequalities and lower bounds for variance-based sensitivity indices

Olivier Roustant, Fabrice Gamboa, Bertrand Iooss.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 386--412.

Abstract:
The so-called polynomial chaos expansion is widely used in computer experiments. For example, it is a powerful tool to estimate Sobol’ sensitivity indices. In this paper, we consider generalized chaos expansions built on general tensor Hilbert basis. In this frame, we revisit the computation of the Sobol’ indices with Parseval equalities and give general lower bounds for these indices obtained by truncation. The case of the eigenfunctions system associated with a Poincaré differential operator leads to lower bounds involving the derivatives of the analyzed function and provides an efficient tool for variable screening. These lower bounds are put in action both on toy and real life models demonstrating their accuracy.




ual

On the Complexity Analysis of the Primal Solutions for the Accelerated Randomized Dual Coordinate Ascent

Dual first-order methods are essential techniques for large-scale constrained convex optimization. However, when recovering the primal solutions, we need $T(epsilon^{-2})$ iterations to achieve an $epsilon$-optimal primal solution when we apply an algorithm to the non-strongly convex dual problem with $T(epsilon^{-1})$ iterations to achieve an $epsilon$-optimal dual solution, where $T(x)$ can be $x$ or $sqrt{x}$. In this paper, we prove that the iteration complexity of the primal solutions and dual solutions have the same $Oleft(frac{1}{sqrt{epsilon}} ight)$ order of magnitude for the accelerated randomized dual coordinate ascent. When the dual function further satisfies the quadratic functional growth condition, by restarting the algorithm at any period, we establish the linear iteration complexity for both the primal solutions and dual solutions even if the condition number is unknown. When applied to the regularized empirical risk minimization problem, we prove the iteration complexity of $Oleft(nlog n+sqrt{frac{n}{epsilon}} ight)$ in both primal space and dual space, where $n$ is the number of samples. Our result takes out the $left(log frac{1}{epsilon} ight)$ factor compared with the methods based on smoothing/regularization or Catalyst reduction. As far as we know, this is the first time that the optimal $Oleft(sqrt{frac{n}{epsilon}} ight)$ iteration complexity in the primal space is established for the dual coordinate ascent based stochastic algorithms. We also establish the accelerated linear complexity for some problems with nonsmooth loss, e.g., the least absolute deviation and SVM.




ual

Fractional backward stochastic variational inequalities with non-Lipschitz coefficient

Katarzyna Jańczak-Borkowska.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 480--497.

Abstract:
We prove the existence and uniqueness of the solution of backward stochastic variational inequalities with respect to fractional Brownian motion and with non-Lipschitz coefficient. We assume that $H>1/2$.




ual

Novel bodies : disability and sexuality in eighteenth-century British literature

Farr, Jason S., 1978- author.
9781684481088 hardcover alkaline paper




ual

Primal and dual model representations in kernel-based learning

Johan A.K. Suykens, Carlos Alzate, Kristiaan Pelckmans

Source: Statist. Surv., Volume 4, 148--183.

Abstract:
This paper discusses the role of primal and (Lagrange) dual model representations in problems of supervised and unsupervised learning. The specification of the estimation problem is conceived at the primal level as a constrained optimization problem. The constraints relate to the model which is expressed in terms of the feature map. From the conditions for optimality one jointly finds the optimal model representation and the model estimate. At the dual level the model is expressed in terms of a positive definite kernel function, which is characteristic for a support vector machine methodology. It is discussed how least squares support vector machines are playing a central role as core models across problems of regression, classification, principal component analysis, spectral clustering, canonical correlation analysis, dimensionality reduction and data visualization.




ual

DualSMC: Tunneling Differentiable Filtering and Planning under Continuous POMDPs. (arXiv:1909.13003v4 [cs.LG] UPDATED)

A major difficulty of solving continuous POMDPs is to infer the multi-modal distribution of the unobserved true states and to make the planning algorithm dependent on the perceived uncertainty. We cast POMDP filtering and planning problems as two closely related Sequential Monte Carlo (SMC) processes, one over the real states and the other over the future optimal trajectories, and combine the merits of these two parts in a new model named the DualSMC network. In particular, we first introduce an adversarial particle filter that leverages the adversarial relationship between its internal components. Based on the filtering results, we then propose a planning algorithm that extends the previous SMC planning approach [Piche et al., 2018] to continuous POMDPs with an uncertainty-dependent policy. Crucially, not only can DualSMC handle complex observations such as image input but also it remains highly interpretable. It is shown to be effective in three continuous POMDP domains: the floor positioning domain, the 3D light-dark navigation domain, and a modified Reacher domain.




ual

Visualisation and knowledge discovery from interpretable models. (arXiv:2005.03632v1 [cs.LG])

Increasing number of sectors which affect human lives, are using Machine Learning (ML) tools. Hence the need for understanding their working mechanism and evaluating their fairness in decision-making, are becoming paramount, ushering in the era of Explainable AI (XAI). In this contribution we introduced a few intrinsically interpretable models which are also capable of dealing with missing values, in addition to extracting knowledge from the dataset and about the problem. These models are also capable of visualisation of the classifier and decision boundaries: they are the angle based variants of Learning Vector Quantization. We have demonstrated the algorithms on a synthetic dataset and a real-world one (heart disease dataset from the UCI repository). The newly developed classifiers helped in investigating the complexities of the UCI dataset as a multiclass problem. The performance of the developed classifiers were comparable to those reported in literature for this dataset, with additional value of interpretability, when the dataset was treated as a binary class problem.




ual

Generative Feature Replay with Orthogonal Weight Modification for Continual Learning. (arXiv:2005.03490v1 [cs.LG])

The ability of intelligent agents to learn and remember multiple tasks sequentially is crucial to achieving artificial general intelligence. Many continual learning (CL) methods have been proposed to overcome catastrophic forgetting. Catastrophic forgetting notoriously impedes the sequential learning of neural networks as the data of previous tasks are unavailable. In this paper we focus on class incremental learning, a challenging CL scenario, in which classes of each task are disjoint and task identity is unknown during test. For this scenario, generative replay is an effective strategy which generates and replays pseudo data for previous tasks to alleviate catastrophic forgetting. However, it is not trivial to learn a generative model continually for relatively complex data. Based on recently proposed orthogonal weight modification (OWM) algorithm which can keep previously learned input-output mappings invariant approximately when learning new tasks, we propose to directly generate and replay feature. Empirical results on image and text datasets show our method can improve OWM consistently by a significant margin while conventional generative replay always results in a negative effect. Our method also beats a state-of-the-art generative replay method and is competitive with a strong baseline based on real data storage.




ual

The Washington manual internship survival guide

9781975116859




ual

The Startup Owner's Manual : the Step-By-Step Guide for Building a Great Company

Blank, Steven G. (Steven Gary), author.
9781119690726 (electronic book)




ual

Ocular therapeutics handbook : a clinical manual

Onofrey, Bruce E., author.
197510904X




ual

Manual of valvular heart disease

9781496310125 paperback




ual

Manual of Screeners for Dementia

Larner, A. J. author. aut http://id.loc.gov/vocabulary/relators/aut
9783030416362 978-3-030-41636-2




ual

LGBTQ cultures : what health care professionals need to know about sexual and gender diversity

Eliason, Michele J., author.
9781496394606 paperback




ual

Drying atlas : drying kinetics and quality of agricultural products

Mühlbauer, Werner, author
9780128181638 (electronic bk.)




ual

Crafting qualitative research : beyond positivist traditions

Prasad, Pushkala, author.
9781315715070 (e-book)




ual

Clinical manual of fever in children

El-Radhi, A. Sahib, author.
9783319923369 (electronic book)




ual

Clinical Manual of Dermatology

Huang, William W. author.
9783030239404




ual

Children’s Palliative Care: An International Case-Based Manual

9783030273750 978-3-030-27375-0




ual

Atlas of sexually transmitted diseases : clinical aspects and differential diagnosis

9783319574707 (electronic bk.)




ual

On partial-sum processes of ARMAX residuals

Steffen Grønneberg, Benjamin Holcblat.

Source: The Annals of Statistics, Volume 47, Number 6, 3216--3243.

Abstract:
We establish general and versatile results regarding the limit behavior of the partial-sum process of ARMAX residuals. Illustrations include ARMA with seasonal dummies, misspecified ARMAX models with autocorrelated errors, nonlinear ARMAX models, ARMA with a structural break, a wide range of ARMAX models with infinite-variance errors, weak GARCH models and the consistency of kernel estimation of the density of ARMAX errors. Our results identify the limit distributions, and provide a general algorithm to obtain pivot statistics for CUSUM tests.




ual

On testing conditional qualitative treatment effects

Chengchun Shi, Rui Song, Wenbin Lu.

Source: The Annals of Statistics, Volume 47, Number 4, 2348--2377.

Abstract:
Precision medicine is an emerging medical paradigm that focuses on finding the most effective treatment strategy tailored for individual patients. In the literature, most of the existing works focused on estimating the optimal treatment regime. However, there has been less attention devoted to hypothesis testing regarding the optimal treatment regime. In this paper, we first introduce the notion of conditional qualitative treatment effects (CQTE) of a set of variables given another set of variables and provide a class of equivalent representations for the null hypothesis of no CQTE. The proposed definition of CQTE does not assume any parametric form for the optimal treatment rule and plays an important role for assessing the incremental value of a set of new variables in optimal treatment decision making conditional on an existing set of prescriptive variables. We then propose novel testing procedures for no CQTE based on kernel estimation of the conditional contrast functions. We show that our test statistics have asymptotically correct size and nonnegligible power against some nonstandard local alternatives. The empirical performance of the proposed tests are evaluated by simulations and an application to an AIDS data set.




ual

Weighted Lépingle inequality

Pavel Zorin-Kranich.

Source: Bernoulli, Volume 26, Number 3, 2311--2318.

Abstract:
We prove an estimate for weighted $p$th moments of the pathwise $r$-variation of a martingale in terms of the $A_{p}$ characteristic of the weight. The novelty of the proof is that we avoid real interpolation techniques.




ual

First-order covariance inequalities via Stein’s method

Marie Ernst, Gesine Reinert, Yvik Swan.

Source: Bernoulli, Volume 26, Number 3, 2051--2081.

Abstract:
We propose probabilistic representations for inverse Stein operators (i.e., solutions to Stein equations) under general conditions; in particular, we deduce new simple expressions for the Stein kernel. These representations allow to deduce uniform and nonuniform Stein factors (i.e., bounds on solutions to Stein equations) and lead to new covariance identities expressing the covariance between arbitrary functionals of an arbitrary univariate target in terms of a weighted covariance of the derivatives of the functionals. Our weights are explicit, easily computable in most cases and expressed in terms of objects familiar within the context of Stein’s method. Applications of the Cauchy–Schwarz inequality to these weighted covariance identities lead to sharp upper and lower covariance bounds and, in particular, weighted Poincaré inequalities. Many examples are given and, in particular, classical variance bounds due to Klaassen, Brascamp and Lieb or Otto and Menz are corollaries. Connections with more recent literature are also detailed.




ual

On the best constant in the martingale version of Fefferman’s inequality

Adam Osękowski.

Source: Bernoulli, Volume 26, Number 3, 1912--1926.

Abstract:
Let $X=(X_{t})_{tgeq 0}in H^{1}$ and $Y=(Y_{t})_{tgeq 0}in{mathrm{BMO}} $ be arbitrary continuous-path martingales. The paper contains the proof of the inequality egin{equation*}mathbb{E}int _{0}^{infty }iglvert dlangle X,Y angle_{t}igrvert leq sqrt{2}Vert XVert _{H^{1}}Vert YVert _{mathrm{BMO}_{2}},end{equation*} and the constant $sqrt{2}$ is shown to be the best possible. The proof rests on the construction of a certain special function, enjoying appropriate size and concavity conditions.




ual

Logarithmic Sobolev inequalities for finite spin systems and applications

Holger Sambale, Arthur Sinulis.

Source: Bernoulli, Volume 26, Number 3, 1863--1890.

Abstract:
We derive sufficient conditions for a probability measure on a finite product space (a spin system ) to satisfy a (modified) logarithmic Sobolev inequality. We establish these conditions for various examples, such as the (vertex-weighted) exponential random graph model, the random coloring and the hard-core model with fugacity. This leads to two separate branches of applications. The first branch is given by mixing time estimates of the Glauber dynamics. The proofs do not rely on coupling arguments, but instead use functional inequalities. As a byproduct, this also yields exponential decay of the relative entropy along the Glauber semigroup. Secondly, we investigate the concentration of measure phenomenon (particularly of higher order) for these spin systems. We show the effect of better concentration properties by centering not around the mean, but around a stochastic term in the exponential random graph model. From there, one can deduce a central limit theorem for the number of triangles from the CLT of the edge count. In the Erdős–Rényi model the first-order approximation leads to a quantification and a proof of a central limit theorem for subgraph counts.




ual

A characterization of the finiteness of perpetual integrals of Lévy processes

Martin Kolb, Mladen Savov.

Source: Bernoulli, Volume 26, Number 2, 1453--1472.

Abstract:
We derive a criterium for the almost sure finiteness of perpetual integrals of Lévy processes for a class of real functions including all continuous functions and for general one-dimensional Lévy processes that drifts to plus infinity. This generalizes previous work of Döring and Kyprianou, who considered Lévy processes having a local time, leaving the general case as an open problem. It turns out, that the criterium in the general situation simplifies significantly in the situation, where the process has a local time, but we also demonstrate that in general our criterium can not be reduced. This answers an open problem posed in ( J. Theoret. Probab. 29 (2016) 1192–1198).




ual

Around the entropic Talagrand inequality

Giovanni Conforti, Luigia Ripani.

Source: Bernoulli, Volume 26, Number 2, 1431--1452.

Abstract:
In this article, we study generalization of the classical Talagrand transport-entropy inequality in which the Wasserstein distance is replaced by the entropic transportation cost. This class of inequalities has been introduced in the recent work ( Probab. Theory Related Fields 174 (2019) 1–47), in connection with the study of Schrödinger bridges. We provide several equivalent characterizations in terms of reverse hypercontractivity for the heat semigroup, contractivity of the Hamilton–Jacobi–Bellman semigroup and dimension-free concentration of measure. Properties such as tensorization and relations to other functional inequalities are also investigated. In particular, we show that the inequalities studied in this article are implied by a Logarithmic Sobolev inequality and imply Talagrand inequality.




ual

Consistent semiparametric estimators for recurrent event times models with application to virtual age models

Eric Beutner, Laurent Bordes, Laurent Doyen.

Source: Bernoulli, Volume 26, Number 1, 557--586.

Abstract:
Virtual age models are very useful to analyse recurrent events. Among the strengths of these models is their ability to account for treatment (or intervention) effects after an event occurrence. Despite their flexibility for modeling recurrent events, the number of applications is limited. This seems to be a result of the fact that in the semiparametric setting all the existing results assume the virtual age function that describes the treatment (or intervention) effects to be known. This shortcoming can be overcome by considering semiparametric virtual age models with parametrically specified virtual age functions. Yet, fitting such a model is a difficult task. Indeed, it has recently been shown that for these models the standard profile likelihood method fails to lead to consistent estimators. Here we show that consistent estimators can be constructed by smoothing the profile log-likelihood function appropriately. We show that our general result can be applied to most of the relevant virtual age models of the literature. Our approach shows that empirical process techniques may be a worthwhile alternative to martingale methods for studying asymptotic properties of these inference methods. A simulation study is provided to illustrate our consistency results together with an application to real data.




ual

How can the smoker and the nonsmoker be equally free in the same place? George Bernard Shaw / Biman Mullick.

[London?], [199-?]




ual

These Clark Booties Are Actually Comfortable Enough to Wear All Day—and They’re on Sale

You can save 50% right now. 




ual

White Matter Microstructure in Transsexuals and Controls Investigated by Diffusion Tensor Imaging

Georg S. Kranz
Nov 12, 2014; 34:15466-15475
Systems/Circuits




ual

What Visual Information Is Processed in the Human Dorsal Stream?

Martin N. Hebart
Jun 13, 2012; 32:8107-8109
Journal Club




ual

Interactions of Top-Down and Bottom-Up Mechanisms in Human Visual Cortex

Stephanie McMains
Jan 12, 2011; 31:587-597
BehavioralSystemsCognitive




ual

Visualization of Microtubule Growth in Cultured Neurons via the Use of EB3-GFP (End-Binding Protein 3-Green Fluorescent Protein)

Tatiana Stepanova
Apr 1, 2003; 23:2655-2664
Cellular




ual

Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque

Earl K. Miller
Aug 15, 1996; 16:5154-5167
Articles




ual

Experience-Dependent Plasticity of Binocular Responses in the Primary Visual Cortex of the Mouse

Joshua A. Gordon
May 15, 1996; 16:3274-3286
Articles




ual

A computational analysis of the relationship between neuronal and behavioral responses to visual motion

MN Shadlen
Feb 15, 1996; 16:1486-1510
Articles




ual

The Phase of Ongoing EEG Oscillations Predicts Visual Perception

Niko A. Busch
Jun 17, 2009; 29:7869-7876
BehavioralSystemsCognitive




ual

A selective impairment of motion perception following lesions of the middle temporal visual area (MT)

WT Newsome
Jun 1, 1988; 8:2201-2211
Articles




ual

{alpha}-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection

Gregor Thut
Sep 13, 2006; 26:9494-9502
BehavioralSystemsCognitive




ual

Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex

Matteo Carandini
Nov 1, 1997; 17:8621-8644
Articles




ual

Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex

EL Bienenstock
Jan 1, 1982; 2:32-48
Articles




ual

Highly Selective Receptive Fields in Mouse Visual Cortex

Cristopher M. Niell
Jul 23, 2008; 28:7520-7536
BehavioralSystemsCognitive




ual

Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task

Jamie D. Roitman
Nov 1, 2002; 22:9475-9489
Behavioral




ual

The analysis of visual motion: a comparison of neuronal and psychophysical performance

KH Britten
Dec 1, 1992; 12:4745-4765
Articles




ual

La fiducia: l'anello mancante delle criptovalute attuali

Italian translation of the Press Release on the pre-release of two special chapters of the Annual Economic Report of the BIS, 17 June 2018. Trust is the missing link in today's cryptocurrencies - Cryptocurrencies' model of generating trust limits their potential to replace conventional money, the Bank for International Settlements (BIS) writes in its Annual Economic Report (AER), a new title launched this year.