si

Proteomic changes of Klebsiella pneumoniae in response to colistin treatment and crrB mutation-mediated colistin resistance [Mechanisms of Resistance]

Polymyxins are increasingly used as the critical last-resort therapeutic options for multidrug-resistant gram-negative bacteria. Unfortunately, polymyxin resistance has increased gradually for the last few years. Although studies on mechanisms of polymyxin are expanding, system-wide analyses of the underlying mechanism for polymyxin resistance and stress response are still lacking. To understand how Klebsiella pneumoniae adapt to colistin (polymyxin E) pressure, we carried out proteomic analysis of Klebsiella pneumoniae strain cultured with different concentrations of colistin. Our results showed that the proteomic responses to colistin treatment in Klebsiella pneumoniae involving several pathways, including (i) gluconeogenesis and TCA cycle; (ii) arginine biosynthesis; (iii) porphyrin and chlorophyll metabolism; and (iv) enterobactin biosynthesis. Interestingly, decreased abundance of class A β-lactamases including TEM, SHV-11, SHV-4 were observed in cells treated with colistin. Moreover, we also present comprehensive proteome atlases of paired polymyxin-susceptible and -resistant Klebsiella pneumoniae strains. The polymyxin-resistant strain Ci, a mutant of Klebsiella pneumoniae ATCC BAA 2146, showed missense mutation in crrB. The crrB mutant Ci, which displayed lipid A modification with 4-amino-4-deoxy-L-arabinose (L-Ara4N) and palmitoylation, showed striking increases of CrrAB, PmrAB, PhoPQ, ArnBCADT and PagP. We hypothesize that crrB mutations induce elevated expression of the arnBCADTEF operon and pagP via PmrAB and PhoPQ. Moreover, multidrug efflux pump KexD, which was induced by crrB mutation, also contributed to colistin resistance. Overall, our results demonstrated proteomic responses to colistin treatment and the mechanism of CrrB-mediate colistin resistance, which may further offer valuable information to manage polymyxin resistance.




si

Antimicrobial resistance in clinical Ureaplasma spp. and Mycoplasma hominis and structural mechanisms underlying the quinolone resistance [Mechanisms of Resistance]

Antibiotic resistance is a global concern; however, data on antibiotic-resistant Ureaplasma spp. and Mycoplasma hominis are limited in comparison to similar data on other microbes. A total of 492 Ureaplasma spp. and 13 M. hominis strains obtained in Hangzhou, China, in 2018, were subjected to antimicrobial susceptibility testing for levofloxacin, moxifloxacin, erythromycin, clindamycin, and doxycycline using the broth microdilution method. The mechanisms underlying quinolone and macrolide resistance were determined. Meanwhile, a model of the topoisomerase IV complex bound to levofloxacin in wild-type Ureaplasma spp. was built to study the quinolone resistance mutations. For Ureaplasma spp., the levofloxacin, moxifloxacin and erythromycin resistance rates were 84.69%, 51.44% and 3.59% in U. parvum and 82.43%, 62.16% and 5.40% in U. urealyticum, respectively. Of the 13 M. hominis strains, 11 were resistant to both levofloxacin and moxifloxacin, and five strains showed clindamycin resistance. ParC S83L was the most prevalent mutation in levofloxacin-resistant Ureaplasma strains, followed by ParE R448K. The two mutations GyrA S153L and ParC S91I were commonly identified in quinolone-resistant M. hominis. A molecular dynamics-refined structure revealed that quinolone resistance-associated mutations inhibited the interaction and reduced affinity with gyrase or topoisomerase IV and quinolones. The novel mutations S21A in the L4 protein and G2654T and T2245C in 23S rRNA and ermB gene were identified in erythromycin-resistant Ureaplasma spp. Fluoroquinolone resistance in Ureaplasma spp. and Mycoplasma hominis remains high in China, the rational use of antibiotics needs to be further enhanced.




si

MgrB inactivation is responsible for acquired resistance to colistin in Enterobacter hormaechei subsp. steigerwaltii [Mechanisms of Resistance]

Multidrug resistant strains belonging to the Enterobacter cloacae complex (ECC) group, and especially those belonging to clusters C-III, C-IV and C-VIII, have increasingly emerged as a leading cause of healthcare-associated infections, with colistin used as one of the last line of treatment. However, colistin-resistant ECC strains have emerged. The aim of this study was to prove that MgrB, the negative regulator of PhoP/PhoQ two-component regulatory system, is involved in colistin resistance in ECC of cluster C-VIII, formerly referred to as Enterobacter hormaechei subsp. steigerwaltii. An in vitro mutant (Eh22-Mut) was selected from a clinical isolate of Eh22. The sequencing analysis of its mgrB gene showed the presence of one nucleotide deletion leading to the formation of a truncated protein of six instead of 47 amino acids. Wild-type mgrB gene from Eh22, as well as that of a clinical strain of Klebsiella pneumoniae used as controls, were cloned and the corresponding recombinant plasmids were used for complementation assays. Results showed a fully restored susceptibility to colistin, and confirmed for the first time that mgrB gene expression plays a key role in acquired resistance to colistin in ECC strains.




si

Transferable Resistance Gene optrA in Enterococcus faecalis from Swine in Brazil [Mechanisms of Resistance]

OptrA is an ATP-binding cassette (ABC)-F protein that confers resistance to oxazolidinones and phenicols, and can be either plasmid or chromosomally encoded. We isolated 13 Enterococcus faecalis strains possessing linezolid MIC ≥ 4 mg/L from nursery pigs in swine herds located across Brazil. Genome sequence comparison showed that these strains possess optrA in different genetic contexts occurring in 5 different E. faecalis sequence type backgrounds. The optrA gene invariably occurred in association with an araC regulator and a gene encoding a hypothetical protein. In some contexts, this genetic island was able to excise and form a covalently closed circle within the cell which appeared to occur in high abundance, and to be transmissible by co-resident plasmids.




si

Novel peptide from commensal Staphylococcus simulans blocks MRSA quorum sensing and protects host skin from damage [Mechanisms of Action]

Recent studies highlight the abundance of commensal coagulase-negative staphylococci (CoNS) on healthy skin. Evidence suggests that CoNS actively shape the skin immunological and microbial milieu to resist colonization or infection by opportunistic pathogens, including methicillin resistant Staphylococcus aureus (MRSA), in a variety of mechanisms collectively termed colonization resistance. One potential colonization resistance mechanism is the application of quorum sensing, also called the Accessory Gene Regulator (agr) system, which is ubiquitous among staphylococci. Common and rare CoNS make autoinducing peptides (AIPs) that function as MRSA agr inhibitors, protecting the host from invasive infection. In a screen of CoNS spent media we found that Staphylococcus simulans, a rare human skin colonizer and frequent livestock colonizer, released potent inhibitors of all classes of MRSA agr signaling. We identified three S. simulans agr classes, and have shown intraspecies cross-talk between non-cognate S. simulans agr types for the first time. The S. simulans AIP-I structure was confirmed, and the novel AIP-II and AIP-III structures were solved via mass spectrometry. Synthetic S. simulans AIPs inhibited MRSA agr signaling with nanomolar potency. S. simulans in competition with MRSA reduced dermonecrotic and epicutaneous skin injury in murine models. Addition of synthetic AIP-I also effectively reduced MRSA dermonecrosis and epicutaneous skin injury in murine models. These results demonstrate potent anti-MRSA quorum sensing inhibition by a rare human skin commensal, and suggest that cross-talk between CoNS and MRSA may be important in maintaining healthy skin homeostasis and preventing MRSA skin damage during colonization or acute infection.




si

Pharmacodynamics of Cefepime Combined with the Novel Extended-Spectrum Beta Lactamase (ESBL) Inhibitor Enmetazobactam for Murine Pneumonia caused by ESBL-Producing Klebsiella pneumoniae [Pharmacology]

Klebsiella pneumoniae that produce extended spectrum beta lactamases (ESBLs) are a persistent public health threat. There are relatively few therapeutic options and there is undue reliance on carbapenems. Alternative therapeutic options are urgently required. A combination of cefepime and the novel beta lactamase inhibitor enmetazobactam is being developed for treatment of serious infections caused by ESBL-producing organisms. The pharmacokinetics-pharmacodynamics (PK-PD) of cefepime-enmetazobactam against ESBL-producing K. pneumoniae was studied in a neutropenic murine pneumonia model. Dose ranging studies were performed. Dose fractionation studies were performed to define the relevant PD index for the inhibitor. The partitioning of cefepime and enmetazobactam into the lung was determined by comparing area under the concentration time curve (AUC) in plasma and epithelial lining fluid. The magnitude of drug exposure for cefepime-enmetazobactam required for logarithmic killing in the lung was defined using 3 ESBL-producing strains. Cefepime 100 mg/kg q8h i.v. had minimal antimicrobial effect. When this background regimen of cefepime was combined with enmetazobactam half-maximal effect was induced with enmetazobactam 4.71 mg/kg q8h i.v. The dose fractionation study suggest both fT>threshold and fAUC:MIC are potentially relevant PD indices. The AUCELF:AUCplasma for cefepime and enmetazobactam was 73.4% and 61.5%, respectively. A ≥2-log kill in the lung was achieved with a plasma and ELF cefepime fT>MIC of ≥20% and enmetazobactam fT>2 mg/L of ≥20% of the dosing interval. These data and analyses provide the underpinning evidence for the combined use of cefepime and enmetazobactam for nosocomial pneumonia.




si

Structural recognition of spectinomycin by resistance enzyme ANT(9) from Enterococcus faecalis [Mechanisms of Resistance]

Spectinomycin is a ribosome-binding antibiotic that blocks the translocation step of translation. A prevalent resistance mechanism is the modification of the drug by aminoglycoside nucleotidyl transferase (ANT) enzymes of the spectinomycin-specific ANT (9) family or by the dual-specificity ANT(3") (9) family that also acts on streptomycin. We previously reported the structural mechanism of streptomycin modification by the ANT(3") (9) AadA from Salmonella enterica. ANT (9) from Enterococcus faecalis adenylates the 9-hydroxyl of spectinomycin. We here present the first structures of spectinomycin bound to an ANT enzyme. Structures were solved for ANT (9) in apo form, in complex with ATP, spectinomycin and magnesium or in complex with only spectinomycin. ANT (9) shows similar overall structure as AadA with an N-terminal nucleotidyltransferase domain and a C-terminal α-helical domain. Spectinomycin binds close to the entrance of the interdomain cleft, while ATP is buried at the bottom. Upon drug binding, the C-terminal domain rotates by 14 degrees to close the cleft, allowing contacts of both domains with the drug. Comparison with AadA shows that spectinomycin specificity is explained by a straight α5 helix and a shorter α5-α6 loop that would clash with the larger streptomycin substrate. In the active site, we observe two magnesium ions, one of them in a previously un-observed position that may activate the 9-hydroxyl for deprotonation by the catalytic base Glu-86. The observed binding mode for spectinomycin suggests that also spectinamides and aminomethyl spectinomycins, recent spectinomycin analogues with expansions in position 4 of the C ring, will be subjected to modification by ANT (9) and ANT(3") (9) enzymes.




si

Repurposing the antiamoebic drug diiodohydroxyquinoline for treatment of Clostridioides difficile infections [Experimental Therapeutics]

Clostridioides difficile, the leading cause of nosocomial infections, is an urgent health threat worldwide. The increased incidence and severity of disease, the high recurrence rates, and the dearth of effective anticlostridial drugs have created an urgent need for new therapeutic agents. In an effort to discover new drugs for treatment of Clostridioides difficile infections (CDIs), we investigated a panel of FDA-approved antiparasitic drugs against C. difficile and identified diiodohydroxyquinoline (DIHQ), an FDA-approved oral antiamoebic drug. DIHQ exhibited potent activity against 39 C. difficile isolates, inhibiting growth of 50% and 90% of these isolates at the concentrations of 0.5 μg/mL and 2 μg/mL, respectively. In a time-kill assay, DIHQ was superior to vancomycin and metronidazole, reducing a high bacterial inoculum by 3-log10 within six hours. Furthermore, DIHQ reacted synergistically with vancomycin and metronidazole against C. difficile in vitro. Moreover, at subinhibitory concentrations, DIHQ was superior to vancomycin and metronidazole in inhibiting two key virulence factors of C. difficile, toxin production and spore formation. Additionally, DIHQ did not inhibit growth of key species that compose the host intestinal microbiota, such as Bacteroides, Bifidobacterium and Lactobacillus spp. Collectively, our results indicate that DIHQ is a promising anticlostridial drug that warrants further investigation as a new therapeutic for CDIs.




si

Ceftazidime-avibactam resistance mediated by the N346Y substitution in various AmpC {beta}-lactamases [Mechanisms of Resistance]

Chromosomal and plasmid-borne AmpC cephalosporinases are a major resistance mechanism to β-lactams in Enterobacteriaceae and Pseudomonas aeruginosa. The new β-lactamase inhibitor avibactam effectively inhibits class C enzymes and can fully restore ceftazidime susceptibility. The conserved amino acid residue Asn346 of AmpC cephalosporinases directly interacts with the avibactam sulfonate. Disruption of this interaction caused by the N346Y amino acid substitution in Citrobacter freundii AmpC was previously shown to confer resistance to the ceftazidime-avibactam combination (CAZ-AVI). The aim of this study was to phenotypically and biochemically characterize the consequences of the N346Y substitution in various AmpC backgrounds. Introduction of N346Y into Enterobacter cloacae AmpC (AmpCcloacae), plasmid-mediated DHA-1, and P. aeruginosa PDC-5, led to 270-, 12,000-, and 79-fold decreases in the inhibitory efficacy (k2/Ki) of avibactam, respectively. The kinetic parameters of AmpCcloacaeand DHA-1 for ceftazidime hydrolysis were moderately affected by the substitution. Accordingly, AmpCcloacaeand DHA-1 harboring N346Y conferred CAZ-AVI resistance (MIC of ceftazidime of 16 µg/ml in the presence of 4 µg/ml of avibactam). In contrast, production of PDC-5 N346Y was associated with a lower MIC (4 µg/ml) since this β-lactamase retained a higher inactivation efficacy by avibactam in comparison to AmpCcloacaeN346Y. For FOX-3, the I346Y substitution did not reduce the inactivation efficacy of avibactam and the substitution was highly deleterious for β-lactam hydrolysis, including ceftazidime, preventing CAZ-AVI resistance. Since AmpCcloacaeand DHA-1 display substantial sequence diversity, our results suggest that loss of hydrogen interaction between Asn346 and avibactam could be a common mechanism of acquisition of CAZ-AVI resistance.




si

Development of probiotic formulations for oral candidiasis prevention: Gellan gum as a carrier to deliver Lactobacillus paracasei 28.4 [Experimental Therapeutics]

Probiotics might provide an alternative approach for the control of oral candidiasis. However, studies on the antifungal activity of probiotics in the oral cavity are based on the consumption of yogurt or other dietary products, and there is a necessary to use appropriate biomaterials and specific strains to obtain probiotic formulations targeting local oral administration. In this study, we impregnated gellan gum, a natural biopolymer used as a food-additive, with a probiotic and investigated its antifungal activity against Candida albicans. Lactobacillus paracasei 28.4, a strain recently isolated from the oral cavity of a caries-free individual, was incorporated in several concentrations of gellan gum (0.6% to 1%). All tested concentrations could incorporate L. paracasei cells while maintaining bacterial viability. Probiotic/gellan formulations were stable for 7 days when stored at room temperature or 4°C. Long-term storage of bacteria-impregnated gellan gum was achieved when L. paracasei 28.4 was lyophilized. The probiotic/gellan formulations provided a release of L. paracasei cells over 24 hours that was sufficient to inhibit the growth of C. albicans with effects dependent on the cell concentrations incorporated into gellan gum. The probiotic/gellan formulations also had inhibitory activity against Candida spp. biofilms by reducing the number of Candida spp. cells (p < 0.0001), decreasing the total biomass (p = 0.0003), and impairing hyphae formation (p = 0.0002), compared to the control group which received no treatment. Interestingly, probiotic formulation of 1% w/v gellan gum provided an oral colonization of L. paracasei in mice with approximately 6 log of CFU/mL after 10 days. This formulation inhibited the C. albicans growth (p < 0.0001), prevented the development of candidiasis lesions (p = 0.0013), and suppressed inflammation (p = 0.0006) when compared to the mice not treated in the microscopic analysis of the tongue dorsum. These results indicate that gellan gum is a promising biomaterial and can be used as a carrier system to promote oral colonization for probiotics that prevent oral candidiasis.




si

The Added Value of Longitudinal Imaging for Preclinical In vivo Efficacy Testing of Therapeutic Compounds against Cerebral Cryptococcosis [Experimental Therapeutics]

Brain infections with Cryptococcus neoformans are associated with significant morbidity and mortality. Cryptococcosis typically presents as meningoencephalitis or fungal mass lesions called cryptococcomas. Despite frequent in vitro discoveries of promising novel antifungals, the clinical need for drugs that can more efficiently treat these brain infections remains. A crucial step in drug development is the evaluation of in vivo drug efficacy in animal models. This mainly relies on survival studies or post-mortem analyses in large groups of animals, but these techniques only provide information on specific organs of interest at predefined time points. In this proof-of-concept study, we validated the use of non-invasive preclinical imaging to obtain longitudinal information on the therapeutic efficacy of amphotericin B or fluconazole monotherapy in meningoencephalitis and cryptococcoma mouse models. Bioluminescence imaging (BLI) enabled the rapid in vitro and in vivo evaluation of drug efficacy while complementary high-resolution anatomical information obtained by magnetic resonance imaging (MRI) of the brain allowed a precise assessment of the extent of infection and lesion growth rates. We demonstrated a good correlation between both imaging readouts and the fungal burden in various organs. Moreover, we identified potential pitfalls associated with the interpretation of therapeutic efficacy based solely on post-mortem studies, demonstrating the added value of this non-invasive dual imaging approach compared to standard mortality curves or fungal load endpoints. This novel preclinical imaging platform provides insights in the dynamic aspects of the therapeutic response and facilitates a more efficient and accurate translation of promising antifungal compounds from bench to bedside.




si

Structural basis of reduced susceptibility to ceftazidime-avibactam and cefiderocol in Enterobacter cloacae due to AmpC R2 loop deletion [Mechanisms of Resistance]

Ceftazidime–avibactam and cefiderocol are two of the latest generation β-lactam agents that possess expanded activity against highly drug-resistant bacteria, including carbapenem-resistant Enterobacterales. Here we show that structural changes in AmpC β-lactamases can confer reduced susceptibility to both agents. A multidrug-resistant Enterobacter cloacae clinical strain (Ent385) was found to be resistant to ceftazidime–avibactam and cefiderocol without prior exposure to either agent. The AmpC β-lactamase of Ent385 (AmpCEnt385) contained an alanine–proline deletion at positions 294–295 (A294_P295del) in the R2 loop. AmpCEnt385 conferred reduced susceptibility to ceftazidime–avibactam and cefiderocol when cloned into Escherichia coli TOP10. Purified AmpCEnt385 showed increased hydrolysis of ceftazidime and cefiderocol compared with AmpCEnt385Rev, in which the deletion was reverted. Comparisons of crystal structures of AmpCEnt385 and AmpCP99, the canonical AmpC of E. cloacae, revealed that the two-residue deletion in AmpCEnt385 induced drastic structural changes of the H-9 and H-10 helices and the R2 loop, which accounted for the increased hydrolysis of ceftazidime and cefiderocol. The potential for a single mutation in ampC to confer reduced susceptibility to both ceftazidime–avibactam and cefiderocol requires close monitoring.

Importance Ceftazidime–avibactam and cefiderocol are newly approved β-lactam agents that possess broad spectrum activity against multidrug-resistant (MDR) Gram-negative bacteria. We show here that a two amino-acid deletion in the chromosomal AmpC β-lactamase, identified in a clinical strain of Enterobacter cloacae, confers reduced susceptibility to both agents. By crystallographic studies of free and drug-bound forms of enzyme, we demonstrate that this deletion in AmpC induces slanting of the H-9 helix that is directly connected with the R2 loop, and disappearance of the H-10 helix, is directly responsible for increased hydrolysis of ceftazidime and cefiderocol. These findings provide novel insights into how MDR Gram-negative bacteria may evolve their β-lactamases to survive selective pressure from these newly developed β-lactam agents.




si

A novel deletion mutation in pmrB contributes to concurrent colistin resistance in carbapenem resistant E. coli ST 405 of clinical origin [Mechanisms of Resistance]

We report the first clinical Escherichia. coli strain EC3000 with concomitant chromosomal colistin and carbapenem resistance. A novel in-frame deletion, 6-11(RPISLR), in pmrB contributing to colistin resistance was verified using recombinant DNA techniques. Although decreased fitness compared to the wild-type (WT) strain or EC3000 revertant (chromosomal replacement of WT pmrB in EC3000), a portion of serially passaged EC3000 strains preserving colistin resistance without selective pressure raises the concern for further spread.




si

Detection of Protein Aggregation in Live Plasmodium Parasites [Pharmacology]

The rapid evolution of resistance in the malaria parasite to every single drug developed against it calls for the urgent identification of new molecular targets. Using a stain specific for the detection of intracellular amyloid deposits in live cells we have detected the presence of abundant protein aggregates in Plasmodium falciparum blood stages and female gametes cultured in vitro, in the blood stages of mice infected by Plasmodium yoelii, and in the mosquito stages of the murine malaria species Plasmodium berghei. Aggregated proteins could not be detected in early rings, the parasite form that starts the intraerythrocytic cycle. A proteomics approach was followed to pinpoint actual aggregating polypeptides in functional P. falciparum blood stages, which resulted in the identification of 369 proteins, with roles particularly enriched in nuclear import-related processes. Five aggregation-prone short peptides selected from this protein pool exhibited different aggregation propensity according to Thioflavin-T fluorescence measurements, and were observed to form amorphous aggregates and amyloid fibrils in transmission electron microscope images. The results presented suggest that generalized protein aggregation might have a functional role in malaria parasites. Future antimalarial strategies based on the upsetting of the pathogen's proteostasis and therefore affecting multiple gene products could represent the entry to new therapeutic approaches.




si

Pharmacokinetic-Pharmacodynamic Characterization of Omadacycline Against Haemophilus influenzae Using a One-Compartment In Vitro Infection Model [Pharmacology]

Omadacycline is a novel aminomethylcycline with activity against Gram-positive and -negative organisms, including Haemophilus influenzae, which is one of the leading causes of community-acquired bacterial pneumonia (CABP). The evaluation of antimicrobial agents against H. influenzae using standard murine infection models is challenging due to the low pathogenicity of this species in mice. Therefore, 24-hour dose-ranging studies using a one-compartment in vitro infection model were undertaken with the goal of characterizing the magnitude of the ratio of the area under the concentration-time curve (AUC) to the MIC (AUC/MIC ratio) associated with efficacy for a panel of five clinical H. influenzae isolates. These five isolates, which had MIC values of 1 or 2 mg/L, were exposed to omadacycline total-drug epithelial lining fluid (ELF) concentration-time profiles based on those observed in healthy volunteers following intravenous omadacycline administration. Relationships between change in log10 colony forming units (CFU) from baseline at 24 hours and total-drug ELF AUC/MIC ratio for each isolate and the isolates pooled together were evaluated using Hill-type models and non-linear least squares regression. As evidenced by the high coefficient of determination (r2) of 0.88 to 0.98, total-drug ELF AUC/MIC ratio described the data well for each isolate and the isolates pooled together. The median total-drug ELF AUC/MIC ratio associated with net bacterial stasis and 1- and 2-log10 CFU/mL reductions from baseline at 24 hours was 6.91, 8.91, and 11.1, respectively. These data were useful to support the omadacycline dosing regimens selected for the treatment of patients with CABP, as well as susceptibility breakpoints for H. influenzae.




si

A genotype-phenotype correlation study of SHV {beta}-lactamases - new insight into SHV resistance profiles [Mechanisms of Resistance]

The SHV β-lactamases (BLs) have undergone strong allele diversification that changed their substrate specificities. Based on 147 NCBI entries for SHV alleles, in silico mathematical models predicted five positions as relevant for the β-lactamase inhibitor (BLI) resistant (2br) phenotype, 12 as relevant for the extended-spectrum BL (ESBL) (2be) phenotype, and two positions were related to solely the narrow spectrum (2b) phenotype. These positions and additional 6 positions described in other studies (including one promoter mutation), were systematically substituted and investigated for their substrate specificities in a BL-free E. coli background, representing, to our knowledge, the most comprehensive substrate and substitution analysis for SHV alleles to date. An in vitro analysis confirmed the essentiality of the positions 238 and 179 for the 2be phenotype and 69 for the 2br phenotype. The substitutions E240K and E240R, which do not occur alone in known 2br SHV variants, led to a 2br phenotype, indicating a latent BLI-resistance potential of these substitutions. The substitutions M129V, A234G, S271I and R292Q conferred latent resistance to cefotaxime. In addition, 7 positions that were found to be not always associated with the ESBL phenotype resulted in increased resistance to ceftaroline. We also observed that coupling of a strong promoter (IS26) to a A146V mutant with the 2b phenotype resulted in a highly increased resistance to BLIs, cefepime and ceftaroline but not to 3rd generation cephalosporins, indicating that SHV enzymes represent an underestimated risk for empirical therapies that use piperacillin/tazobactam or cefepime to treat different infectious diseases caused by gram-negatives.




si

Population pharmacokinetics of piperacillin following continuous infusion in critically ill patients: Impact of renal function on target attainment [Clinical Therapeutics]

Pharmacokinetic changes are often seen in patients with severe infections. Administration by continuous infusion has been suggested to optimize antibiotic exposure and pharmacokinetic/pharmacodynamic (PK/PD) target attainment for β-lactams. In an observational study, unbound piperacillin concentrations (n=196) were assessed in 78 critically ill patients following continuous infusion of piperacillin/tazobactam (ratio 8:1). The initial dose of 8, 12 or 16 g (piperacillin component) was determined by individual creatinine clearance (CRCL). Piperacillin concentrations were compared to the EUCAST clinical breakpoint MIC for Pseudomonas aeruginosa (16 mg/L), and the following PK/PD targets were evaluated: 100% fT>1xMIC and 100% fT>4xMIC. A population pharmacokinetic model was developed using NONMEM 7.4.3 consisting of a one-compartment disposition model with linear elimination separated into non-renal and renal (linearly increasing with patient CRCL) clearances. Target attainment was predicted and visualized for all individuals based on the utilized CRCL dosing algorithm. The target of 100% fT>1xMIC was achieved for all patients based on the administered dose, but few patients achieved the target of 100% fT>4xMIC. Probability of target attainment for a simulated cohort of patients showed, that increasing the daily dose by 4 g increments (piperacillin component) did not result in substantially improved target attainment for the 100% fT>4xMIC target. To conclude, in patients with high CRCL combined with high-MIC bacterial infections, even a CI regimen with a daily dose of 24 g may be insufficient to achieve therapeutic concentrations.




si

Epidemiological study on prevalence, serovar diversity, multi-drug resistance and CTX-M-type extended-spectrum {beta}-lactamases of Salmonella spp. from patients with diarrhea, food of animal origin, and pets in several provinces of China [Epidemiology an

A total of 2,283 Salmonella spp. isolates were recovered from 18,334 samples including patients with diarrhea, food of animal origin and pets across 5 provinces of China. The highest prevalence of Salmonella spp. was detected in chicken meats (39.3%, 486/1,237). Fifteen serogroups and 66 serovars were identified, with Typhimurium and Enteritidis being the most dominant. Most (85.5%, 1,952/2,283) isolates exhibited resistant to ≥ 1 antimicrobial and 56.4% were multi-drug resistant (MDR). A total of 222 isolates harbored extended-spectrum β-lactamases (ESBLs), 200 of which were CTX-M-type that were mostly detected from chicken meat and turtle fecal. Overall, eight blaCTX-M genes were identified, with blaCTX-M-65, blaCTX-M-123, blaCTX-M-14, blaCTX-M-79, and blaCTX-M-130 being the most prevalent. Totally, 166 of the 222 ESBL-producing isolates had amino acid substitutions in GyrA (S83Y, S83F, D87G, D87N, and D87Y) and ParC (and S80I), whilst the PMQR-encoding genes oqxA/B, qepA, and qnrB/S were detected in almost all isolates. Of the fifteen sequence types (STs) identified in the 222 ESBLs, ST17, ST11, ST34, and ST26 ranked among the top 5 in the number of isolates. Our study revealed considerable serovars diversity, high prevalence of co-occurrence of MDR determinants, including CTX-M-type ESBLs, QRDRs mutations and PMQR genes. This is the first report of CTX-M-130 Salmonella spp. from patients with diarrhea and QRDRs mutations from turtle fecal samples. Our study emphasizes the importance of actions, both in the health care settings and in the veterinary medicine sector, to control the dissemination of MDR, especially the CTX-M Salmonella spp. isolates.




si

The Emerging Role of {beta}-lactams in the Treatment of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections [Minireviews]

Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) are associated with substantial morbidity and mortality. Monotherapy with first-line antimicrobials such as vancomycin (VAN; glycopeptide) and daptomycin (DAP; lipopeptide) are inadequate in some cases due to reduced antibiotic susceptibilities or therapeutic failure. In recent years, β-lactam antibiotics have emerged as a potential option for combination therapy with VAN/DAP that may meet an unmet therapeutic need for MRSA BSI. Ceftaroline (CPT), the only commercially available β-lactam in the United States with intrinsic in vitro activity against MRSA, has been increasingly studied in the setting of VAN and DAP failures. Novel combinations of first-line agents (VAN and DAP) with β-lactams have been the subject of many recent investigations due to in vitro findings such as the "see-saw effect", where β-lactam susceptibility may be improved in the presence of decreased glycopeptide and lipopeptide susceptibility. The combination of CPT and DAP, in particular, has become the focus of many scientific evaluations, due to intrinsic anti-MRSA activities and potent in vitro synergistic activity against various MRSA strains. This article reviews the available literature describing these innovative therapeutic approaches for MRSA BSI, focusing on preclinical and clinical studies, and evaluates the potential benefits and limitations of each strategy.




si

Genetic Mutations Associated with Isoniazid Resistance in Mycobacterium tuberculosis in Mongolia [Epidemiology and Surveillance]

Globally, mutations in the katG gene account for the majority of isoniazid-resistant strains of Mycobacterium tuberculosis. Buyankhishig et al analyzed a limited number of Mycobacterium tuberculosis strains in Mongolia and found that isoniazid resistance was mainly attributable to inhA mutations. The GenoType® MTBDRplus assay was performed for isolates collected in the First National Tuberculosis Prevalence Survey and the Third Anti-Tuberculosis Drug Resistance Survey to investigate genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis in Mongolia. Of the 409 isoniazid-resistant isolates detected by the GenoType® MTBDRplus assay, 127 (31.1%) were resistant to rifampicin, 294 (71.9%) had inhA mutations without katG mutations, 113 (27.6%) had katG mutations without inhA mutations, and two (0.5%) strains had mutations in both the inhA and katG genes. Of the 115 strains with any katG mutation, 114 (99.1%) had mutations in codon 315 (S315T). Of the 296 trains with any inhA mutation, 290 (98.0%) had a C–15T mutation. The proportion of isoniazid-resistant strains with katG mutations was 25.3% among new cases and 36.2% among retreatment cases (p=0.03), as well as 17.0% among rifampicin-susceptible strains and 52.8% among rifampicin-resistant strains (p<0.01). Rifampicin resistance was significantly associated with the katG mutation (adjusted odds ratio 5.36, 95% CI 3.3–8.67, p<0.001). Mutations in inhA predominated in isoniazid-resistant tuberculosis in Mongolia. However, the proportion of katG mutations in isolates from previously treated cases was higher than that among new cases, and that in cases with rifampicin resistance was higher than that in cases without rifampicin resistance.




si

Cardiovascular safety and population pharmacokinetic properties of piperaquine in African patients with uncomplicated falciparum malaria - a pooled multicentre analysis [Clinical Therapeutics]

Dihydroartemisinin-piperaquine has shown excellent efficacy and tolerability in malaria treatment. However, concerns have been raised of potentially harmful cardiotoxic effects associated with piperaquine. The population pharmacokinetics and cardiac effects of piperaquine were evaluated in 1,000 patients, mostly children enrolled in a multicentre trial from 10 sites in Africa. A linear relationship described the QTc-prolonging effect of piperaquine, estimating a 5.90ms mean QTc-prolongation per 100ng/mL increase in piperaquine concentration. The effect of piperaquine on absolute QTc-interval estimated a mean maximum QTc-interval of 456ms (EC50=209ng/mL). Simulations from the pharmacokinetic-pharmacodynamic models predicted 1.98-2.46% risk of having QTc-prolongation > 60ms in all treatment settings. Although piperaquine administration resulted in QTc-prolongation, no cardiovascular adverse events were found in these patients. Thus, the use of dihydroartemisinin-piperaquine should not be limited by this concern.




si

Mutation of kvrA causes OmpK35/36 porin downregulation and reduced meropenem/vaborbactam susceptibility in KPC-producing Klebsiella pneumoniae. [Mechanisms of Resistance]

Meropenem/vaborbactam resistance in Klebsiella pneumoniae is associated with loss of function mutations in the OmpK35 and OmpK36 porins. Here we identify two previously unknown loss of function mutations that confer cefuroxime resistance in K. pneumoniae. The proteins lost were NlpD and KvrA; the latter is a transcriptional repressor controlling capsule production. We demonstrate that KvrA loss reduces OmpK35 and OmpK36 porin production, which confers reduced susceptibility to meropenem/vaborbactam in a KPC-3 producing K. pneumoniae isolate.




si

Advanced quantification methods to improve the 18b dormancy model for assessing the activity of tuberculosis drugs in vitro. [Clinical Therapeutics]

One of the reasons for the lengthy tuberculosis (TB) treatment is the difficult to treat non-multiplying mycobacterial subpopulation. In order to assess the ability of (new) TB drugs to target this subpopulation, we need to incorporate dormancy models in our pre-clinical drug development pipeline. In most available dormancy models it takes a long time to create a dormant state and it is difficult to identify and quantify this non-multiplying condition.

The Mycobacterium tuberculosis 18b strain might overcome some of these problems, because it is dependent on streptomycin for growth and becomes non-multiplying after 10 days of streptomycin starvation, but still can be cultured on streptomycin-supplemented culture plates. We developed our 18b dormancy time-kill kinetic model to assess the difference in the activity of isoniazid, rifampicin, moxifloxacin and bedaquiline against log-phase growth compared to the non-multiplying M. tuberculosis subpopulation by CFU counting including a novel AUC-based approach as well as time-to-positivity (TTP) measurements.

We observed that isoniazid and moxifloxacin were relatively more potent against replicating bacteria, while rifampicin and high dose bedaquiline were equally effective against both subpopulations. Moreover, the TTP data suggest that including a liquid culture-based method could be of additional value as it identifies a specific mycobacterial subpopulation that is non-culturable on solid media.

In conclusion, the results of our study underline that the time-kill kinetics 18b dormancy model in its current form is a useful tool to assess TB drug potency and thus has its place in the TB drug development pipeline.




si

Emergence of Mycobacterium leprae rifampicin resistance evaluated by whole-genome sequencing after 48 years of irregular treatment [Epidemiology and Surveillance]

A case of M. leprae rifampicin resistance after irregular anti-leprosy treatments since 1971 is reported. Whole-genome sequencing from four longitudinal samples indicated relapse due to acquired rifampicin resistance and not to reinfection with another strain. A putative compensatory mutation in rpoC was also detected. Clinical improvement was achieved using an alternative therapy.




si

Effect of the Lysin, Exebacase, on Cardiac Vegetation Progression in a Rabbit Model of Methicillin-Resistant Staphylococcus aureus (MRSA) Endocarditis as Determined by Echocardiography [Pharmacology]

Background: MRSA pose significant therapeutic challenges, related to their: frequency in clinical infections; innate virulence properties; and propensity for multi-antibiotic resistance. MRSA are among the most common causes of endovascular infections, including infective endocarditis (IE).

Objective: To employ transthoracic echocardiography (TTE) to evaluate the effect of exebacase, a novel direct lytic agent, in experimental aortic valve MRSA IE.

Study Design: TTE was utilized to evaluate the in vivo effect of exebacase on MRSA-infected vegetation progression when combined with daptomycin (vs daptomycin alone). Primary intravegetation outcomes were: maximum size; weights at sacrifice; and MRSA counts at infection baseline vs after 4 days of daptomycin treatment (alone or in addition to exebacase administered once on treatment Day 1).

Results: A single dose of exebacase in addition to daptomycin cleared significantly more intravegetation MRSA than daptomycin alone. This was associated with a statistical trend toward reduced maximum vegetation size in the exebacase + daptomycin vs the daptomycin-alone therapy groups (p = 0.07). Also, mean vegetation weights in the exebacase-treated group were significantly lower vs daptomycin-alone (p < 0.0001). Maximum vegetation size by TTE correlated with vegetation weight (p = 0.005). In addition, intravegetation MRSA counts in the combination group were significantly lower vs untreated controls (p<0.0001) and the daptomycin-alone group (p<0.0001).

Conclusion: This study suggests that exebacase has a salutary impact on MRSA-infected vegetation progression when combined with daptomycin, especially in terms of vegetation MRSA burden, size and weight. Moreover, TTE appears to be an efficient non-invasive tool to assess therapeutic efficacies in experimental MRSA IE.




si

PAGI-associated CrpP-like fluoroquinolone-modifying enzymes among Pseudomonas aeruginosa clinical isolates in Europe [Mechanisms of Resistance]

Many transferable quinolone-resistance mechanisms have been already identified in Gram-negative bacteria. The plasmid-encoded 65 amino-acid long ciprofloxacin-modifying enzyme, namely CrpP, was recently identified in Pseudomonas aeruginosa. We analyzed a collection of 100 clonally-unrelated and multidrug-resistant P. aeruginosa clinical isolates among which 46 (46%) were found positive for crpP-like genes, encoding five CrpP variants conferring variable levels of reduced susceptibility to fluoroquinolones. Those crpP-like genes were chromosomally located, as part of PAGI-like pathogenicity genomic islands.




si

Impact of vanA-positive Enterococcus faecium exhibiting diverse susceptibility phenotypes to glycopeptides on 30-day mortality of patients with a bloodstream infection [Epidemiology and Surveillance]

Introduction: This study was performed to evaluate the impacts of vanA-positivity of Enterococcus faecium (EFM) exhibiting diverse susceptibility phenotypes to glycopeptides on clinical outcomes in patients with a bloodstream infection (BSI) through a prospective, multicenter, observational study.

Methods: A total of 509 patients with an EFM BSI from eight sentinel hospitals in South Korea during a two-year period were enrolled in this study. Risk factors of the hosts and causative EFM isolates were assessed to determine associations with the 30-day mortality of EFM BSI patients via multivariable logistic regression analyses.

Results: The vanA gene was detected in 35.2% (179/509) of EFM isolates; 131 EFM isolates exhibited typical VanA phenotypes (group vanA-VanA), while the remaining 48 EFM isolates exhibited atypical phenotypes (group vanA-Atypical), including VanD (n = 43) and vancomycin-variable phenotypes (n = 5). A multivariable logistic regression indicated that vanA-positivity of causative pathogens was independently associated with the increased 30-day mortality rate in the patients with an EFM BSI; however, there was no significant difference in the survival rates between the patients of the vanA-VanA and vanA-Atypical groups (log-rank test, P = 0.904).

Conclusions: A high 30-day mortality rate was observed in patients with vanA-positive EFM BSIs, and vanA-positivity of causative EFM was an independent risk factor for early mortality irrespective of the susceptibility phenotypes to glycopeptides; thus, intensified antimicrobial stewardship is needed to improve clinical outcome of patients with vanA-positive EFM BSI.




si

Population Pharmacokinetic Analyses for Omadacycline Using Phase 1 and 3 Data [Pharmacology]

Omadacycline, a novel aminomethylcycline antibiotic with activity against Gram-positive and -negative organisms, including tetracycline-resistant pathogens, received FDA approval in October, 2018 for the treatment of patients with acute bacterial skin and skin structure infections (ABSSSI) and community-acquired bacterial pneumonia (CABP). A previously-developed population pharmacokinetic (PK) model based on Phase 1 intravenous and oral PK data was refined using data from infected patients. Data from 10 Phase 1 studies used to develop the previous model were pooled with data from three additional Phase 1 studies, a Phase 1b uncomplicated urinary tract infection study, one Phase 3 CABP study, and two Phase 3 ABSSSI studies. The final population PK model was a three-compartment model with first-order absorption using transit compartments to account for absorption delay following oral dosing and first-order elimination. Epithelial lining fluid (ELF) concentrations were modeled as a sub-compartment of the first peripheral compartment. A food effect on oral bioavailability was included in the model. Sex was the only significant covariate identified, with 15.6% lower clearance for females relative to males. Goodness-of-fit diagnostics indicated a precise and unbiased fit to the data. The final model, which was robust in its ability to predict plasma and ELF exposures following omadacycline administration, was also able to predict the central tendency and variability in concentration-time profiles using an external Phase 3 ABSSSI dataset. A population PK model, which described omadacycline PK in healthy subjects and infected patients, was developed and subsequently used to support pharmacokinetic-pharmacodynamic (PK-PD) and PK-PD target attainment assessments.




si

Experimentally engineered mutations in a ubiquitin hydrolase, UBP-1, modulate in vivo susceptibility to artemisinin and chloroquine in Plasmodium berghei. [Mechanisms of Resistance]

As resistance to artemisinins (current frontline drugs in malaria treatment) emerges in south East Asia, there is an urgent need to identify the genetic determinants and understand the molecular mechanisms underpinning such resistance. Such insights could lead to prospective interventions to contain resistance and prevent the eventual spread to other malaria endemic regions. Artemisinin reduced susceptibility in South East Asia (SEA) has been primarily linked to mutations in P. falciparum Kelch-13, which is currently widely recognised as a molecular marker of artemisinin resistance. However, 2 mutations in a ubiquitin hydrolase, UBP-1, have been previously associated with artemisinin reduced susceptibility in a rodent model of malaria and some cases of UBP-1 mutation variants associating with artemisinin treatment failure have been reported in Africa and SEA. In this study, we have employed CRISPR-Cas9 genome editing and pre-emptive drug pressures to test these artemisinin susceptibility associated mutations in UBP-1 in P. berghei sensitive lines in vivo. Using these approaches, we have shown that the V2721F UBP-1 mutation results in reduced artemisinin susceptibility, while the V2752F mutation results in resistance to chloroquine and moderately impacts tolerance to artemisinins. Genetic reversal of the V2752F mutation restored chloroquine sensitivity in these mutant lines while simultaneous introduction of both mutations could not be achieved and appears to be lethal. Interestingly, these mutations carry a detrimental growth defect, which would possibly explain their lack of expansion in natural infection settings. Our work has provided independent experimental evidence on the role of UBP-1 in modulating parasite responses to artemisinin and chloroquine under in vivo conditions.




si

Combination Therapy Using Benznidazole and Aspirin During the Acute Phase of Experimental Chagas Disease Prevents Cardiovascular Dysfunction and Decreases Typical Cardiac Lesions in the Chronic Phase [Clinical Therapeutics]

Chagas disease, caused by the protozoan Trypanosoma cruzi, is one of the main causes of death due to cardiomyopathy and heart failure in Latin American countries. The treatment of Chagas disease is directed at eliminating the parasite, decreasing the probability of cardiomyopathy, and disrupting the disease transmission cycle. Benznidazole (BZ) and nifurtimox (NFX) are recognized as effective drugs for the treatment of Chagas disease by the World Health Organization, but both have high toxicity and limited efficacy, especially in the chronic disease phase. At low doses, aspirin (ASA) has been reported to protect against T. cruzi infection. We evaluated the effectiveness of BZ in combination with ASA at low doses during the acute disease phase and evaluated cardiovascular aspects and cardiac lesions in the chronic phase. ASA treatment prevented the cardiovascular dysfunction (hypertension and tachycardia) and typical cardiac lesions. Moreover, BZ+ASA-treated mice had a smaller cardiac fibrotic area than that in BZ-treated mice. These results were associated with an increase in the number of eosinophils and reticulocytes and level of nitric oxide in the plasma and cardiac tissue of ASA-treated mice relative to respective controls. These effects of ASA and BZ+ASA in chronically infected mice were inhibited by pretreatment with the LXA4 receptor antagonist, Boc-2, indicating that the protective effects of ASA are mediated by ASA-triggered lipoxin. These results emphasize the importance of exploring new drug combinations for treatments of acute phase of Chagas disease that are beneficial for chronic patients.




si

The emergence of fexA in mediating resistance to florfenicols in Campylobacter [Mechanisms of Resistance]

Florfenicol belongs to a class of phenicol antimicrobials widely used as feed additives and for the treatment of respiratory infections. In recent years, increasing resistance to florfenicol has been reported in Campylobacter spp., the leading foodborne enteric pathogen causing diarrheal diseases worldwide. Here, we reported the identification of fexA, a novel mobile florfenicol resistance gene in Campylobacter. Of the 100 Campylobacter jejuni strains isolated from poultry in Zhejiang, China, nine of them were shown to be fexA positive, and their whole genome sequences were further determined by integration of Illumina short-read and MinION long-read sequencing. The fexA gene was found in the plasmid of one strain and chromosomes of eight strains, and its location was verified by S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting. Based on comparative analysis, the fexA gene was located within a region with the tet(L)-fexA-catA-tet(O) gene arrangement, demonstrated to be successfully transferrable among C. jejuni strains. Functional cloning indicated that acquisition of the single fexA gene significantly increased resistance to florfenicol, whereas its inactivation resulted in increased susceptibility to florfenicol in Campylobacter. Taken together, these results indicated that the emerging fexA resistance is horizontally transferable, which might greatly facilitate the adaptation of Campylobacter in food producing environments where florfenicols are frequently used.




si

Optimal dose or optimal exposure? Consideration for linezolid in tuberculosis treatment [Letters]

Exploring different ways of minimising linezolid toxicity without compromising efficacy is a major quest in the treatment of drug resistant tuberculosis (TB)....




si

Focusing the lens on the CAMERA concepts: Early combination {beta}-lactam and vancomycin therapy in methicillin-resistant Staphylococcus aureus bacteremia [Minireviews]

Methicillin-resistant Staphylococcus aureus (MRSA) has grown to become a major burden on healthcare systems. The cumulation of limited therapeutic options and worsened patient outcomes with persistent MRSA bacteremia has driven research in optimizing its initial management. The guidelines published by the Infectious Disease of America currently recommend combination therapy for refractory MRSA bacteremia, but the utility of combining antibiotics from the start of therapy is under investigation. The alternative strategy of early use of a β-lactam antibiotics in combination with vancomycin upon initial MRSA bacteremia detection has shown promise. While this concept has gained international attention, providers should give this strategy serious consideration prior to implementation. The objective of this review is to examine retrospective and prospective evidence for early combination with vancomycin and β-lactam antibiotics, as well as explore potential consequences of combination therapy.




si

Distribution of linezolid in tuberculosis lesions in patients with spinal multidrug-resistant tuberculosis [Pharmacology]

Linezolid has strong antimicrobial activity against the multidrug-resistant (MDR) strains of Mycobacterium tuberculosis. Little is known about the distribution of linezolid in tuberculosis (TB) lesions in patients with MDR-TB. The aim of this study is to evaluate the distribution of linezolid in TB lesions in patients with spinal MDR-TB. Nine patients with spinal MDR-TB were enrolled prospectively from August 2019 to February 2020. The patients received a linezolid-containing anti-TB treatment regimen and needed surgery for the removal of TB lesions. During the operation, nine blood samples, eight diseased bone tissue samples, seven pus samples and four granulation tissue samples were collected simultaneously and 2 h after the oral administration of 600 mg of linezolid. Linezolid concentrations in plasma, diseased bone tissue, pus, and granulation tissue samples were subjected to high-performance liquid chromatography–tandem mass spectrometry. At sample collection, the mean concentrations of linezolid in plasma, diseased bone tissue, pus, and granulation tissue samples of the nine patients were 11.14 ± 5.82, 5.94 ± 4.27, 11.09 ± 4.58, 14.08 ± 10.61 mg/L, respectively. The mean ratios of linezolid concentration in diseased bone/plasma, pus/plasma, and granulation/plasma were 53.84%, 91.69%, and 103.57%, respectively. The mean ratios of linezolid concentration in pus/plasma and granulation/plasma were higher than those in diseased bone/plasma, and the difference was statistically significant (t =-2.810, p = 0.015; t =-4.901, p = 0.001). In conclusion, linezolid had different concentration distributions in different types of TB infected tissues in patients with spinal MDR-TB.




si

Clinically relevant epithelial lining fluid concentrations of meropenem with ciprofloxacin provide synergistic killing and resistance suppression of hypermutable Pseudomonas aeruginosa in a dynamic biofilm model [Pharmacology]

Treatment of exacerbations of chronic Pseudomonas aeruginosa infections in patients with cystic fibrosis (CF) is highly challenging due to hypermutability, biofilm formation and an increased risk of resistance emergence. We evaluated the impact of ciprofloxacin and meropenem as monotherapy and in combination in the dynamic in vitro CDC biofilm reactor (CBR). Two hypermutable P. aeruginosa strains, PAOmutS (MICciprofloxacin 0.25 mg/L, MICmeropenem 2 mg/L) and CW44 (MICciprofloxacin 0.5 mg/L, MICmeropenem 4 mg/L), were investigated for 120h. Concentration-time profiles achievable in epithelial lining fluid (ELF) following FDA-approved doses were simulated in the CBR. Treatments were ciprofloxacin 0.4g every 8h as 1h-infusions (80% ELF penetration), meropenem 6 g/day as continuous infusion (CI; 30% and 60% ELF penetration) and their combinations. Counts of total and less-susceptible planktonic and biofilm bacteria and MICs were determined. Antibiotic concentrations were quantified by UHPLC-PDA. For both strains, all monotherapies failed with substantial regrowth and resistance of planktonic (≥8log10 CFU/mL) and biofilm (>8log10 CFU/cm2) bacteria at 120h (MICciprofloxacin up to 8 mg/L, MICmeropenem up to 64 mg/L). Both combination treatments demonstrated synergistic bacterial killing of planktonic and biofilm bacteria of both strains from ~48h onwards and suppressed regrowth to ≤4log10 CFU/mL and ≤6log10 CFU/cm2 at 120h. Overall, both combination treatments suppressed amplification of resistance of planktonic bacteria for both strains, and biofilm bacteria for CW44. The combination with meropenem at 60% ELF penetration also suppressed amplification of resistance of biofilm bacteria for PAOmutS. Thus, combination treatment demonstrated synergistic bacterial killing and resistance suppression against difficult-to-treat hypermutable P. aeruginosa strains.




si

Reply to Kim et al., "Optimal Dose or Optimal Exposure? Consideration for Linezolid in Tuberculosis Treatment" [Author Reply]

We thank Kim and colleagues for their interest in our study....




si

Evaluation of leishmanicidal activity of an in silico screened novel inhibitor against ascorbate peroxidase of Leishmania donovani [Mechanisms of Action]

Peroxidases are a group of heterogeneous family of enzyme that plays diverse biological functions. Ascorbate peroxidase is a redox enzyme that is reduced by trypanothione, which plays a central role in the redox defence system of Leishmania. In view of developing new and novel therapeutics, we have performed in silico studies in order to search for ligand library and identification of new drug candidates and its physiological role against promastigotes and intracellular amastigotes of Leishmania donovani. Our results demonstrated that the selected inhibitor ZINC96021026 has significant anti-leishmanial effect and effectively killed both free and intracellular forms of the parasite. ZINC96021026 was found to be identical to ML-240, a selective inhibitor of Valosin-containing protein (VCP) or p97, a member of AAA-ATPase protein family which was derived from the scaffold of DBeQ, targeting the D2-ATPase domain of the enzyme. ZINC96021026 (ML-240) thus have broad range of cellular functions, thought to be derived from its ability to unfold proteins or disassemble protein complexes besides inhibiting the ascorbate peroxidase activity. ML-240 may inhibits the parasite's ascorbate peroxidase leading to extensive apoptosis and inducing generation of reactive oxygen species. Taken together, our results demonstrated that ML-240 could be an attractive therapeutic option for treatment against leishmaniasis.




si

Influence of CYP2C8, CYP3A4 and CYP3A5 host genotypes on early recurrence of Plasmodium vivax [Mechanisms of Resistance]

CYP450 enzymes are involved in biotransformation of chloroquine (CQ), but the role of the different metabolism profiles of this drug has not been properly investigated in relation to P. vivax recurrences. To investigate the influence of CYPs genotypes associated with CQ-metabolism on early recurrence rates of P. vivax, a case-control study was carried out. Cases included patients presenting an early recurrence (CQ-recurrent), defined as recurrence during the first 28 days after initial infection, plasma concentrations of CQ plus desethylchloroquine (DCQ, the major CQ metabolite) higher than 100 ng/mL. A control (CQ-responsive) with no parasite recurrence over the follow-up was also included. CQ and DCQ plasma levels were measured on Day 28. CQ CYPs (CYP2C8, CYP3A4 and CYP3A5) genotypes were determined by real-time PCR. An ex vivo study was conducted to verify CQ and DCQ efficacy in P. vivax isolates. The frequency of alleles associated with normal and slow metabolism was similar between the cases and controls for CYP2C8 (OR=1.45, 95% CI=0.51-4.14, p=0.570), CYP3A4 (OR=2.38, 95% CI=0.92-6.19, p=0.105) and CYP3A5 (OR=4.17, 95% CI=0.79-22.04, p=1.038) genes. DCQ levels were higher than CQ, regardless of the genotype. Regarding the DCQ/CQ rate, there was no difference between groups or between those patients who had a normal or mutant genotype. DCQ and CQ showed similar efficacy ex vivo. CYPs genotypes had no influence on early recurrence rates. Similar efficacy of CQ and DCQ ex vivo could explain the absence of therapeutic failure, despite presence of alleles associated with slow metabolism.




si

Comparative Genomic Analysis of Third Generation Cephalosporin-Resistant Escherichia coli Harboring blaCMY-2-Positive IncI1 group, IncB/O/K/Z, and IncC Plasmids Isolated from Healthy Broilers in Japan. [Epidemiology and Surveillance]

The off-label use of third generation cephalosporin (3GC) during in ovo vaccination or vaccination of newly hatched chicks, was a common practice worldwide. CMY-2-producing Escherichia coli have been disseminated among broiler production. The objectives of this study were to determine the epidemiological linkage of blaCMY-2-positive plasmids among broilers both within and outside Japan because grandparent stock and parent stock were imported in Japan. We examined the whole genome sequences of 132 3GC-resistant E. coli isolates collected from healthy broilers during 2002-2014. The predominant 3GC-resistance gene was blaCMY-2, which was detected in the plasmids of 87 (65.9%) isolates. The main plasmid replicon types were IncI1-I (n=21; 24.1%), IncI (n=12; 13.8%), IncB/O/K/Z (n=28; 32.2%), and IncC (n=22; 25.3%). Those plasmids were subjected to gene clustering and network analyses and plasmid multi-locus sequence typing (pMLST). The chromosomal DNA of isolates was subjected to MLST and single nucleotide variant (SNV)-based phylogenetic analysis.

MLST and SNV-based phylogenetic analysis revealed high diversity of E. coli isolates. ST429 harboring blaCMY-2-positive IncB/O/K/Z was closely related to isolates from broiler in Germany harboring blaCMY-2-positive IncB/O/K/Z. pST55-IncI and pST12-IncI1-I and pST3-IncC were prevalent in western Japan. pST12-IncI1-I and pST3-IncC were closely related to those detected in E. coli isolates from chicken in American continent, whereas 26 IncB/O/K/Z were related to those in Europe. These data will be useful to reveal the whole picture of transmission of CMY-2-producing bacteria in and out of Japan.




si

Fin24.com | JSE wrap | Oil price drop drives further stock pessimism

The JSE fell on Tuesday as global markets tumbled on the back of a rout in crude oil prices.




si

Fin24.com | Brent crude oil drops to 21-year low as selling pressure intensifies

"The entire energy market is still on a knife edge," says an economist.




si

Fin24.com | Oil prices roar back on US-Iran tensions

Oil prices made a spectacular comeback Thursday as fresh US-Iran tensions erupted, also helping equities advance after US labour market figures provided a glimmer of hope for the world's top economy.




si

Fin24.com | Positive virus drug trial news spurs stocks

The surge in stocks was on the back of positive news from trials being conducted on a potential treatment for the coronavirus. With most economies looking to partially reopen their economies, this brought a jump across most asset classes including commodities.




si

Fin24.com | Oil rises for a fifth day with output cuts easing glut concern

Oil was headed for the longest run of daily gains in more than nine months on signs the worst of the supply glut may be over as production cuts start to take effect.




si

Fin24.com | Markets wrap | Firmer close in Asia lifts JSE All-Share Index

On the currency market, the rand traded softer against the greenback as it slipped to a session low of R18.77/$.




si

RHSU Classic: How Education Philanthropy Can Accidentally Promote Groupthink and Bandwagonism

In number 10 in our countdown, I tried to offer a few thoughts to funders as they embraced new agendas and looked to avoid repeating yesterday's missteps.




si

Education Is the Darling of Wealthy Philanthropists, But K-12 Is Losing Its Luster

Around the world, education is the largest recipient of philanthropic giving by a large margin, but in the United States, funders are moving away from investing in K-12 schools in favor of early childhood and higher education.




si

Performance of the Modified Boston and Philadelphia Criteria for Invasive Bacterial Infections

BACKGROUND:

The ability of the decades-old Boston and Philadelphia criteria to accurately identify infants at low risk for serious bacterial infections has not been recently reevaluated.

METHODS:

We assembled a multicenter cohort of infants 29 to 60 days of age who had cerebrospinal fluid (CSF) and blood cultures obtained. We report the performance of the modified Boston criteria (peripheral white blood cell count [WBC] ≥20 000 cells per mm3, CSF WBC ≥10 cells per mm3, and urinalysis with >10 WBC per high-power field or positive urine dip result) and modified Philadelphia criteria (peripheral WBC ≥15 000 cells per mm3, CSF WBC ≥8 cells per mm3, positive CSF Gram-stain result, and urinalysis with >10 WBC per high-power field or positive urine dip result) for the identification of invasive bacterial infections (IBIs). We defined IBI as bacterial meningitis (growth of pathogenic bacteria from CSF culture) or bacteremia (growth from blood culture).

RESULTS:

We applied the modified Boston criteria to 8344 infants and the modified Philadelphia criteria to 8131 infants. The modified Boston criteria identified 133 of the 212 infants with IBI (sensitivity 62.7% [95% confidence interval (CI) 55.9% to 69.3%] and specificity 59.2% [95% CI 58.1% to 60.2%]), and the modified Philadelphia criteria identified 157 of the 219 infants with IBI (sensitivity 71.7% [95% CI 65.2% to 77.6%] and specificity 46.1% [95% CI 45.0% to 47.2%]). The modified Boston and Philadelphia criteria misclassified 17 of 53 (32.1%) and 13 of 56 (23.3%) infants with bacterial meningitis, respectively.

CONCLUSIONS:

The modified Boston and Philadelphia criteria misclassified a substantial number of infants 29 to 60 days old with IBI, including those with bacterial meningitis.




si

Efficacy of Melatonin in Children With Postconcussive Symptoms: A Randomized Clinical Trial

BACKGROUND:

Approximately 25% of children with concussion have persistent postconcussive symptoms (PPCS) with resultant significant impacts on quality of life. Melatonin has significant neuroprotective properties, and promising preclinical data suggest its potential to improve outcomes after traumatic brain injury. We hypothesized that treatment with melatonin would result in a greater decrease in PPCS symptoms when compared with a placebo.

METHODS:

We conducted a randomized, double-blind trial of 3 or 10 mg of melatonin compared with a placebo (NCT01874847). We included youth (ages 8–18 years) with PPCS at 4 to 6 weeks after mild traumatic brain injury. Those with significant medical or psychiatric histories or a previous concussion within the last 3 months were excluded. The primary outcome was change in the total youth self-reported Post-Concussion Symptom Inventory score measured after 28 days of treatment. Secondary outcomes included change in health-related quality of life, cognition, and sleep.

RESULTS:

Ninety-nine children (mean age: 13.8 years; SD = 2.6 years; 58% girls) were randomly assigned. Symptoms improved over time with a median Post-Concussion Symptom Inventory change score of –21 (95% confidence interval [CI]: –16 to –27). There was no significant effect of melatonin when compared with a placebo in the intention-to-treat analysis (3 mg melatonin, –2 [95% CI: –13 to 6]; 10 mg melatonin, 4 [95% CI: –7 to 14]). No significant group differences in secondary outcomes were observed. Side effects were mild and similar to the placebo.

CONCLUSIONS:

Children with PPCS had significant impairment in their quality of life. Seventy-eight percent demonstrated significant recovery between 1 and 3 months postinjury. This clinical trial does not support the use of melatonin for the treatment of pediatric PPCS.




si

Dietary Fats and Atherosclerosis From Childhood to Adulthood

BACKGROUND:

The association of dietary fat distribution with markers of subclinical atherosclerosis during early life is unknown. We examined whether success in achieving the main target of an infancy-onset dietary intervention based on the distribution of dietary fat was associated with aortic and carotid intima-media thickness (IMT) and distensibility from childhood to young adulthood.

METHODS:

In the prospective randomized controlled Special Turku Coronary Risk Factor Intervention Project trial, personalized dietary counseling was given biannually to healthy children from infancy to young adulthood. The counseling was based on Nordic Nutrition Recommendations, with the main aim of improving the distribution of dietary fat in children’s diets. IMT and distensibility of the abdominal aorta and common carotid artery were measured repeatedly at ages 11 (n = 439), 13 (n = 499), 15 (n = 506), 17 (n = 477), and 19 years (n = 429). The targeted distribution of dietary fat was defined as a ratio of saturated fatty acids to monounsaturated and polyunsaturated fatty acids of <1:2 and as an intake of saturated fatty acids of <10% of energy intake. Participants who met ≥1 of these 2 criteria were defined to achieve the main intervention target.

RESULTS:

Individuals who achieved the main intervention target had lower aortic IMT (age- and sex-adjusted mean difference 10.4 µm; 95% confidence interval: 0.3 to 20.5 µm) and better aortic distensibility (0.13% per 10 mm Hg; 95% confidence interval: 0.00% to 0.26% per10 mm Hg) compared with their peers who did not meet the target.

CONCLUSIONS:

Achieving the main target of an infancy-onset dietary intervention, reflecting dietary guidelines, was favorably associated with aortic IMT and distensibility during the early life course. These data support the recommendation of favoring unsaturated fat to enhance arterial health.