two

Two emergency medical techs is too many for small coal mines, Kentucky lawmaker says

Frankfort, KY — A bill that would reduce – to one from two – the number of mine emergency technicians required during each shift at small underground coal mines is advancing in the Kentucky Legislature.




two

CP Kelco Expands Network of Global Innovation Centers

CP Kelco, a leader of nature-based ingredient solutions, launched a new global innovation center, adding to the company’s growing network of innovation and technical support facilities around the world. The Atlanta-based innovation center is designed as an open, collaborative space for scientists and customers alike to engage in ingredient research, problem-solving, development and pilot plant scale-up of food, beverage, home care, personal care and other consumer and industrial products.




two

Two Rivers Coffee Company Eggo Coffee

Deemed by the company as a morning chaos-solver, Eggo Coffee, made its trade debut at the Summer Fancy Food Show in New York.




two

Food Ordering Apps Surge in Popularity: Nearly Two-Thirds of Consumers Embrace Convenience Amid Rising Costs

Earlier this year, the US Department of Agriculture (USDA) reported that spending on food-ordering apps for deliveries from full-service restaurants quadrupled between pre-pandemic months and 2022. 





two

Gerflor Introduces Two Lines of USA-Manufactured LVT

Gerflor, a global leader in designing and manufacturing specialized resilient flooring for sport, commercial, transport, and residential environments, is unveiling two new lines of Luxury Vinyl Tile (LVT) manufactured in the USA for healthcare and the education segments.




two

Two FSMA Programs Offer Tools to Assist Stakeholders

QR codes and a graphic element are being offered to communicate the status of participants in TPP and LAAF and to promote awareness of the programs.




two

Two Recent Rulings Support Current Method for Assessing Prop 65 Exposure

If the plaintiff’s theories were adopted during recent attempts to use California’s Proposition 65 to sue food manufacturers, it could've dealt a major blow to food manufacturers, distributors and retailers who sell products in the state.




two

Two New Colors Added to Duchateau's Atelier Collection

Duchateau adds two colors, Aether and Solstice, to its Atelier engineered hardwood collection.




two

Riva Max Offers Two Unique Engineered Hardwood Grades

Riva Max, a new engineered hardwood collection from Riva Spain, comes in two grades, Select and Character. 




two

Q.E.P. Announces the Acquisition of Two Companies

Q.E.P. recently completed the acquisition of AC Products and Southern Cross Building Products.




two

Robust Networks to Power Food Automation

The shift toward automation has radically changed the infrastructure requirements for food manufacturers.




two

Revolutionizing Food & Beverage Processing with Time-Sensitive Networking

By embracing TSN, food and beverage companies not only improve their OEE but also set the stage for a future where production lines are not just automated but intelligently interconnected and extremely flexible.




two

Saputo Completes the Sale of Two Milk Processing Facilities

The completion of this transaction is part of the company’s overall network optimization strategy, one of the pillars of its Global Strategic Plan.




two

Armina Natural Stone Importer and Fabricator Opens Two New Miami Locations

Armina, a natural stone importer and fabrictor headquartered in Pittsburgh, Pennsylvania, is expanding into the South Florida market by opening two new locations. 





two

Re-examining ethical challenges of using ethnography to understand decision-making in family caregiving networks of children with feeding tubes.

Children's Geographies; 01/13/2022
(AN 154620403); ISSN: 14733285
Academic Search Premier





two

Diagnosing communities’ childcare friendliness: case studies of two South Korean cities.

Children's Geographies; 09/03/2024
(AN 179347240); ISSN: 14733285
Academic Search Premier





two

For Ray Rice, Is A Two-Game Suspension Light Punishment?

Did ESPN's Stephen Smith need to apologize for saying women need to be aware of provocation? The Barbershop guys weigh in.




two

The Bookshelf: A Story About Two Pairs Of Sister Years Apart

In a small New Hampshire community two sisters, Henrietta and Jane, grow up under the shadow of a folk tale about the ruins of a house near their own. The house, more than a century earlier, was the home of a family of five who, legend has it, were transformed into coyotes.




two

A 'cosmic connection' between two violinists

For decades, Cologne-based violinist Geoffry Wharton has played jazzy crowd-pleasing encores written in the 1930s by an obscure composer, Audrey Call. Then Wharton discovered a spooky connection with her.




two

Two city council members vie to succeed St. Cloud’s departing mayor

The mayoral race is highlighting some of St. Cloud’s most pressing challenges, including a housing crunch, a struggle to revive its downtown and a perception that the city is less safe. Both candidates talk about addressing those problems, but they differ — sometimes subtly — on how to do so.




two

Will Trump’s election slow the shift to clean energy? Two policy experts weigh in

Rolf Nordstrom, president and CEO of the nonpartisan nonprofit Great Plains Institute, and Gregg Mast, executive director of Clean Energy Economy Minnesota, weigh in on what the election results will mean for the energy transition already underway.




two

Man drifts for 67 days in rubber boat with bodies of his two relatives

A Russian man who had been drifting for two months in the Sea of ​​Okhotsk with the bodies of his relatives was rescued. His boat was discovered by the crew of the fishing vessel "Angel". When the fishermen found the boat, the man was conscious and was even able to shout a few words. The first phrase spoken by the survivor was: "Not enough strength." In response, the crew of the vessel that found the man, a Sakhalin resident, said that they had taken this information into account and promised to save him quickly.




two

Health Care Provider Boot Camp Day 7: Certified Workers’ Compensation Health Care Networks

Health Care Provider Boot Camp Day 7: Certified Workers’ Compensation Health Care Networks




two

ACDS’ cybersecurity portfolio gains competitive edge from AI-powered thoughtworks application managed services

Thoughtworks, the global technology consultancy that integrates strategy, design and engineering to drive digital innovation, has started a strategic partnership with UK-based cybersecurity startup Advanced Cyber Defence Systems (ACDS) by providing Thoughtworks DAMO AI-powered application managed services.




two

Singapore’s Cyber Security Agency award Veracity Trust Network S$1 million Grant to develop and deliver AI-powered bot detection

Veracity Trust Network (Veracity) has been awarded the Cybersecurity Co-Innovation and Development Fund (CCDF) CyberCall grant of S$1 million by the Cyber Security Agency Singapore (CSA).




two

Co-op Media Network powers up front-of-store digital screen rollout

The Co-op Media Network (CMN) is to install 300 new front-of-store digital media screens to turbo-charge its retail media offering, taking the total number of screens to over 9,000 across its store estate.




two

Son Heung-min Earns First Two Assists of Season in Premier League Win

[Sports] :
South Korean forward Son Heung-min of the Tottenham Hotspur has picked up his first two assists of the season, helping his club with the second win of the season. Son set up Brennan Johnson's 28th-minute goal in a match against Brentford on Saturday at Tottenham Hotspur Stadium in London, breaking ...

[more...]




two

Coordination geometry flexibility driving supramolecular isomerism of Cu/Mo pillared-layer hybrid networks

The hydro­thermal synthesis and structural characterization of four novel 3D pillared-layer metal–organic frameworks are studied, revealing how the malleability of copper coordination geometries drives diverse supramolecular isomerism. The findings provide new insights into designing advanced hybrid materials with tailored properties, emphasizing the significant role of reaction conditions and metal ion flexibility in determining network topologies.




two

Laboratory X-ray powder micro-diffraction in the research of painted artworks

This review summarizes the methodological aspects of laboratory X-ray powder micro-diffraction and demonstrates the assets of the method in the research of painted artworks for evaluation of their provenance or diagnosing their degradation.




two

Crystal structures of two polymorphs for fac-bromido­tricarbon­yl[4-(4-meth­oxy­phen­yl)-2-(pyridin-2-yl)thia­zole-κ2N,N']rhenium(I)

Crystallization of the title compound from CH2Cl2/n-pentane (1:5 v/v) at room temperature gave two polymorphs, which crystallize in monoclinic (P21/c; α form) and ortho­rhom­bic (Pna21; β form) space groups. The ReI complex mol­ecules in either polymorph adopt a six-coordinate octa­hedral geometry with three facially-oriented carbonyl ligands, one bromido ligand, and two nitro­gen atoms from one chelating ligand ppt-OMe. In the crystal, both polymorph α and β form di-periodic sheet-like architectures supported by multiple hydrogen bonds.




two

Welcoming two new Co-editors




two

Laboratory X-ray powder micro-diffraction in the research of painted artworks

Painted artworks represent a significant group of cultural heritage artifacts, which are primarily admired because of their aesthetic quality. Nevertheless, the value of each particular painting depends also on what is known about it. Material investigation of paintings is one of the most reliable sources of information. Materials in painted artworks (i.e. panel, easel and miniature paintings, wall paintings, polychromed sculptures etc.) represent an extensive set of inorganic and organic phases, which are often present in complicated mixtures and exhibit characteristics reflecting their geological genesis (mineral pigments), manufacturing technology (artificial pigments), diverse biological nature (binders or dyes) or secondary changes (degradation or intentional later interventions). The analyses of paintings are often made challenging by the heterogeneous nature and minute size of micro-samples or, in some cases, even by the impossibility of sampling due to the preciousness, fragility or small dimensions of the artwork. This review demonstrates the successful implementation of laboratory X-ray powder micro-diffraction for material investigation of paintings, illustrating its efficiency for mineralogical analysis of (i) earth-based materials indicating the provenance of paintings, (ii) copper-based pigments pointing to their origin, and (iii) products of both salt corrosion and saponification enabling one to reveal the deterioration and probable original appearance of artworks.




two

Crystal structures of two polymorphs for fac-bromidotricarbonyl[4-(4-methoxyphenyl)-2-(pyridin-2-yl)thiazole-κ2N,N']rhenium(I)

Crystallization of the title compound, fac-[ReBr(ppt-OMe)(CO)3] (ppt-OMe = C15H12N2OS), from CH2Cl2/n-pentane (1:5 v/v) at room temperature gave two polymorphs, which crystallize in monoclinic (P21/c; α form) and orthorhombic (Pna21; β form) space groups. The ReI complex molecules in either polymorph adopt a six-coordinate octahedral geometry with three facially-oriented carbonyl ligands, one bromido ligand, and two nitrogen atoms from one chelating ligand ppt-OMe. In the crystal, both polymorph α and β form di-periodic sheet-like architectures supported by multiple hydrogen bonds. In polymorph α, two types of hydrogen bonds (C—H...O) are found while, in polymorph β, four types of hydrogen bonds (C—H...O and C—H...Br) exist.




two

High-angular-sensitivity X-ray phase-contrast microtomography of soft tissue through a two-directional beam-tracking synchrotron set-up

Two-directional beam-tracking (2DBT) is a method for phase-contrast imaging and tomography that uses an intensity modulator to structure the X-ray beam into an array of independent circular beamlets that are resolved by a high-resolution detector. It features isotropic spatial resolution, provides two-dimensional phase sensitivity, and enables the three-dimensional reconstructions of the refractive index decrement, δ, and the attenuation coefficient, μ. In this work, the angular sensitivity and the spatial resolution of 2DBT images in a synchrotron-based implementation is reported. In its best configuration, angular sensitivities of ∼20 nrad and spatial resolution of at least 6.25 µm in phase-contrast images were obtained. Exemplar application to the three-dimensional imaging of soft tissue samples, including a mouse liver and a decellularized porcine dermis, is also demonstrated.




two

Development and performance simulations of a soft X-ray and XUV split-and-delay unit at beamlines FL23/24 at FLASH2 for time-resolved two-color pump–probe experiments

The split-and-delay unit (SDU) at FLASH2 will be upgraded to enable the simultaneous operation of two temporally, spatially and spectrally separated probe beams when the free-electron laser undulators are operated in a two-color scheme. By means of suitable thin filters and an optical grating beam path a wide range of combinations of photon energies in the spectral range from 150 eV to 780 eV can be chosen. In this paper, simulations of the spectral transmission and performance parameters of the filter technique are discussed, along with a monochromator with dispersion compensation presently under construction.




two

Using convolutional neural network denoising to reduce ambiguity in X-ray coherent diffraction imaging

The inherent ambiguity in reconstructed images from coherent diffraction imaging (CDI) poses an intrinsic challenge, as images derived from the same dataset under varying initial conditions often display inconsistencies. This study introduces a method that employs the Noise2Noise approach combined with neural networks to effectively mitigate these ambiguities. We applied this methodology to hundreds of ambiguous reconstructed images retrieved from a single diffraction pattern using a conventional retrieval algorithm. Our results demonstrate that ambiguous features in these reconstructions are effectively treated as inter-reconstruction noise and are significantly reduced. The post-Noise2Noise treated images closely approximate the average and singular value decomposition analysis of various reconstructions, providing consistent and reliable reconstructions.




two

Using synchrotron high-resolution powder X-ray diffraction for the structure determination of a new cocrystal formed by two active principle ingredients

The crystal structure of a new 1:1 cocrystal of carbamazepine and S-naproxen (C15H12N2O·C14H14O3) was solved from powder X-ray diffraction (PXRD). The PXRD pattern was measured at the high-resolution beamline CRISTAL at synchrotron SOLEIL (France). The structure was solved using Monte Carlo simulated annealing, then refined with Rietveld refinement. The positions of the H atoms were obtained from density functional theory (DFT) ground-state calculations. The symmetry is ortho­rhom­bic with the space group P212121 (No. 19) and the following lattice parameters: a = 33.5486 (9), b = 26.4223 (6), c = 5.3651 (10) Å and V = 4755.83 (19) Å3.




two

Supra­molecular hy­dro­gen-bonded networks formed from copper(II) car­box­yl­ate dimers

The well-known copper car­box­yl­ate dimer, with four car­box­yl­ate ligands ex­ten­ding outwards towards the corners of a square, has been employed to generate a series of crystalline com­pounds. In particular, this work centres on the use of the 4-hy­droxy­benzoate anion (Hhba−) and its deprotonated phe­nol­ate form 4-oxidobenzoate (hba2−) to obtain complexes with the general formula [Cu2(Hhba)4–x(hba)xL2–y]x−, where L is an axial coligand (including solvent mol­ecules), x = 0, 1 or 2, and y = 0 or 1. In some cases, short hy­dro­gen bonds result in complexes which may be represented as [Cu2(Hhba)2(H0.5hba)2L2]−. The main focus of the investigation is on the formation of a variety of extended networks through hy­dro­gen bonding and, in some crystals, coordinate bonds when bridging coligands (L) are employed. Crystals of [Cu2(Hhba)4(di­ox­ane)2]·4(di­ox­ane) consist of the expected Cu dimer with the Hhba− anions forming hy­dro­gen bonds to 1,4-di­ox­ane mol­ecules which block network formation. In the case of crystals of com­position [Et4N][Cu2(Hhba)2(H0.5hba)2(CH3OH)(H2O)]·2(di­ox­ane), Li[Cu2(Hhba)2(H0.5hba)2(H2O)2]·3(di­ox­ane)·4H2O and [Cu2(Hhba)2(H0.5hba)2(H0.5DABCO)2]·3CH3OH (DABCO is 1,4-di­aza­bicyclo­[2.2.2]octa­ne), square-grid hy­dro­gen-bonded networks are generated in which the complex serves as one type of 4-con­necting node, whilst a second 4-con­necting node is a hy­dro­gen-bonding motif assembled from four phenol/phenolate groups. Another two-dimensional (2D) network based upon a related square-grid structure is formed in the case of [Et4N]2[Cu2(Hhba)2(hba)2(di­ox­ane)2][Cu2(Hhba)4(di­ox­ane)(H2O)]·CH3OH. In [Cu2(Hhba)4(H2O)2]·2(Et4NNO3), a square-grid structure is again apparent, but, in this case, a pair of nitrate anions, along with four phenolic groups and a pair of water mol­ecules, combine to form a second type of 4-con­necting node. When 1,8-bis­(di­methyl­amino)­naphthalene (bdn, `proton sponge') is used as a base, another square-grid network is generated, i.e. [Hbdn]2[Cu2(Hhba)2(hba)2(H2O)2]·3(di­ox­ane)·H2O, but with only the copper dimer complex serving as a 4-con­necting node. Complex three-dimensional networks are formed in [Cu2(Hhba)4(O-bipy)]·H2O and [Cu2(Hhba)4(O-bipy)2]·2(di­ox­ane), where the potentially bridging 4,4'-bi­pyridine N,N'-dioxide (O-bipy) ligand is employed. Rare cases of mixed car­box­yl­ate copper dimer complexes were obtained in the cases of [Cu2(Hhba)3(OAc)(di­ox­ane)]·3.5(di­ox­ane) and [Cu2(Hhba)2(OAc)2(DABCO)2]·10(di­ox­ane), with each structure possessing a 2D network structure. The final com­pound re­por­ted is a simple hy­dro­gen-bonded chain of com­position (H0.5DABCO)(H1.5hba), formed from the reaction of H2hba and DABCO.




two

Crystal structures of two unexpected products of vicinal di­amines left to crystallize in acetone

Herein we report the crystal structures of two ben­zo­di­az­e­pines obtained by reacting N,N'-(4,5-di­amino-1,2-phenyl­ene)bis­(4-methyl­ben­zene­sul­fon­am­ide) (1) or 4,5-(4-methyl­ben­zene­sul­fon­am­ido)­ben­zene-1,2-diaminium dichloride (1·2HCl) with acetone, giving 2,2,4-trimethyl-8,9-bis­(4-methyl­ben­zene­sul­fon­am­ido)-2,3-di­hydro-5H-1,5-ben­zo­di­az­e­pine, C26H30N4O4S2 (2), and 2,2,4-tri­methyl-8,9-bis­(4-methyl­ben­zene­sul­fon­am­ido)-2,3-di­hydro-5H-1,5-ben­zo­di­az­e­pin-1-ium chloride 0.3-hydrate, C26H31N4O4S2+·Cl−·0.3H2O (3). Compounds 2 and 3 were first obtained in attempts to recrystallize 1 and 1·2HCl using acetone as solvent. This solvent reacted with the vicinal di­amines present in the mol­ecular structures, forming a 5H-1,5-ben­zo­di­az­e­pine ring. In the crystal structure of 2, the seven-membered ring of ben­zo­di­az­e­pine adopts a boat-like conformation, while upon protonation, observed in the crystal structure of 3, it adopts an envelope-like conformation. In both crystalline com­pounds, the tosyl­amide N atoms are not in resonance with the arene ring, mainly due to hy­dro­gen bonds and steric hindrance caused by the large vicinal groups in the aromatic ring. At a supra­molecular level, the crystal structure is maintained by a combination of hy­dro­gen bonds and hydro­phobic inter­actions. In 2, amine-to-tosyl N—H⋯O and amide-to-imine N—H⋯N hy­dro­gen bonds can be observed. In contrast, in 3, the chloride counter-ion and water mol­ecule result in most of the hy­dro­gen bonds being of the amide-to-chloride and ammonium-to-chloride N—H⋯Cl types, while the amine inter­acts with the tosyl group, as seen in 2. In conclusion, we report the synthesis of 1, 1·2HCl and 2, as well as their chemical characterization. For 2, two synthetic methods are described, i.e. solvent-mediated crystallization and synthesis via a more efficient and cleaner route as a polycrystalline material. Salt 3 was only obtained as presented, with only a few crystals being formed.




two

Deep residual networks for crystallography trained on synthetic data

The use of artificial intelligence to process diffraction images is challenged by the need to assemble large and precisely designed training data sets. To address this, a codebase called Resonet was developed for synthesizing diffraction data and training residual neural networks on these data. Here, two per-pattern capabilities of Resonet are demonstrated: (i) interpretation of crystal resolution and (ii) identification of overlapping lattices. Resonet was tested across a compilation of diffraction images from synchrotron experiments and X-ray free-electron laser experiments. Crucially, these models readily execute on graphics processing units and can thus significantly outperform conventional algorithms. While Resonet is currently utilized to provide real-time feedback for macromolecular crystallography users at the Stanford Synchrotron Radiation Lightsource, its simple Python-based interface makes it easy to embed in other processing frameworks. This work highlights the utility of physics-based simulation for training deep neural networks and lays the groundwork for the development of additional models to enhance diffraction collection and analysis.




two

Comparison of two crystal polymorphs of NowGFP reveals a new conformational state trapped by crystal packing

Crystal polymorphism serves as a strategy to study the conformational flexibility of proteins. However, the relationship between protein crystal packing and protein conformation often remains elusive. In this study, two distinct crystal forms of a green fluorescent protein variant, NowGFP, are compared: a previously identified monoclinic form (space group C2) and a newly discovered ortho­rhombic form (space group P212121). Comparative analysis reveals that both crystal forms exhibit nearly identical linear assemblies of NowGFP molecules interconnected through similar crystal contacts. However, a notable difference lies in the stacking of these assemblies: parallel in the monoclinic form and perpendicular in the orthorhombic form. This distinct mode of stacking leads to different crystal contacts and induces structural alteration in one of the two molecules within the asymmetric unit of the orthorhombic crystal form. This new conformational state captured by orthorhombic crystal packing exhibits two unique features: a conformational shift of the β-barrel scaffold and a restriction of pH-dependent shifts of the key residue Lys61, which is crucial for the pH-dependent spectral shift of this protein. These findings demonstrate a clear connection between crystal packing and alternative conformational states of proteins, providing insights into how structural variations influence the function of fluorescent proteins.




two

Structural dissection of two redox proteins from the shipworm symbiont Teredinibacter turnerae

The discovery of lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent enzymes that play a major role in polysaccharide degradation, has revealed the importance of oxidoreductases in the biological utilization of biomass. In fungi, a range of redox proteins have been implicated as working in harness with LPMOs to bring about polysaccharide oxidation. In bacteria, less is known about the interplay between redox proteins and LPMOs, or how the interaction between the two contributes to polysaccharide degradation. We therefore set out to characterize two previously unstudied proteins from the shipworm symbiont Teredinibacter turnerae that were initially identified by the presence of carbohydrate binding domains appended to uncharacterized domains with probable redox functions. Here, X-ray crystal structures of several domains from these proteins are presented together with initial efforts to characterize their functions. The analysis suggests that the target proteins are unlikely to function as LPMO electron donors, raising new questions as to the potential redox functions that these large extracellular multi-haem-containing c-type cytochromes may perform in these bacteria.




two

KINNTREX: a neural network to unveil protein mechanisms from time-resolved X-ray crystallography

Here, a machine-learning method based on a kinetically informed neural network (NN) is introduced. The proposed method is designed to analyze a time series of difference electron-density maps from a time-resolved X-ray crystallographic experiment. The method is named KINNTREX (kinetics-informed NN for time-resolved X-ray crystallography). To validate KINNTREX, multiple realistic scenarios were simulated with increasing levels of complexity. For the simulations, time-resolved X-ray data were generated that mimic data collected from the photocycle of the photoactive yellow protein. KINNTREX only requires the number of intermediates and approximate relaxation times (both obtained from a singular valued decomposition) and does not require an assumption of a candidate mechanism. It successfully predicts a consistent chemical kinetic mechanism, together with difference electron-density maps of the intermediates that appear during the reaction. These features make KINNTREX attractive for tackling a wide range of biomolecular questions. In addition, the versatility of KINNTREX can inspire more NN-based applications to time-resolved data from biological macromolecules obtained by other methods.




two

Crystallographic phase identifier of a convolutional self-attention neural network (CPICANN) on powder diffraction patterns

Spectroscopic data, particularly diffraction data, are essential for materials characterization due to their comprehensive crystallographic information. The current crystallographic phase identification, however, is very time consuming. To address this challenge, we have developed a real-time crystallographic phase identifier based on a convolutional self-attention neural network (CPICANN). Trained on 692 190 simulated powder X-ray diffraction (XRD) patterns from 23 073 distinct inorganic crystallographic information files, CPICANN demonstrates superior phase-identification power. Single-phase identification on simulated XRD patterns yields 98.5 and 87.5% accuracies with and without elemental information, respectively, outperforming JADE software (68.2 and 38.7%, respectively). Bi-phase identification on simulated XRD patterns achieves 84.2 and 51.5% accuracies, respectively. In experimental settings, CPICANN achieves an 80% identification accuracy, surpassing JADE software (61%). Integration of CPICANN into XRD refinement software will significantly advance the cutting-edge technology in XRD materials characterization.




two

Phase quantification using deep neural network processing of XRD patterns

Mineral identification and quantification are key to the understanding and, hence, the capacity to predict material properties. The method of choice for mineral quantification is powder X-ray diffraction (XRD), generally using a Rietveld refinement approach. However, a successful Rietveld refinement requires preliminary identification of the phases that make up the sample. This is generally carried out manually, and this task becomes extremely long or virtually impossible in the case of very large datasets such as those from synchrotron X-ray diffraction computed tomography. To circumvent this issue, this article proposes a novel neural network (NN) method for automating phase identification and quantification. An XRD pattern calculation code was used to generate large datasets of synthetic data that are used to train the NN. This approach offers significant advantages, including the ability to construct databases with a substantial number of XRD patterns and the introduction of extensive variability into these patterns. To enhance the performance of the NN, a specifically designed loss function for proportion inference was employed during the training process, offering improved efficiency and stability compared with traditional functions. The NN, trained exclusively with synthetic data, proved its ability to identify and quantify mineral phases on synthetic and real XRD patterns. Trained NN errors were equal to 0.5% for phase quantification on the synthetic test set, and 6% on the experimental data, in a system containing four phases of contrasting crystal structures (calcite, gibbsite, dolomite and hematite). The proposed method is freely available on GitHub and allows for major advances since it can be applied to any dataset, regardless of the mineral phases present.




two

Crystal structures of two new high-pressure oxynitrides with composition SnGe4N4O4, from single-crystal electron diffraction

SnGe4N4O4 was synthesized at high pressure (16 and 20 GPa) and high temperature (1200 and 1500°C) in a large-volume press. Powder X-ray diffraction experiments using synchrotron radiation indicate that the derived samples are mixtures of known and unknown phases. However, the powder X-ray diffraction patterns are not sufficient for structural characterization. Transmission electron microscopy studies reveal crystals of several hundreds of nanometres in size with different chemical composition. Among them, crystals of a previously unknown phase with stoichiometry SnGe4N4O4 were detected and investigated using automated diffraction tomography (ADT), a three-dimensional electron diffraction method. Via ADT, the crystal structure could be determined from single nanocrystals in space group P63mc, exhibiting a nolanite-type structure. This was confirmed by density functional theory calculations and atomic resolution scanning transmission electron microscopy images. In one of the syntheses runs a rhombohedral 6R polytype of SnGe4N4O4 could be found together with the nolanite-type SnGe4N4O4. The structure of this polymorph was solved as well using ADT.




two

Synthesis and crystal structures of two related Co and Mn complexes: a celebration of collaboration between the universities of Dakar and Southampton

We report the synthesis and structures of two transition-metal complexes involving 2-(2-hy­droxy­phen­yl)benzimidazole (2hpbi – a ligand of inter­est for its photoluminescent applications), with cobalt, namely, bis­[μ-2-(1H-1,3-benzo­diazol-2-yl)phenolato]bis­[ethanol(thio­cyanato)­cobalt(II)], [Co2(C13H9N2O)2(NCS)2(C2H6O)2], (1), and manganese, namely, bis­[μ-2-(1H-1,3-benzo­diazol-2-yl)phenolato]bis­{[2-(1H-1,3-benzo­diazol-2-yl)phenolato](thio­cyanato)­mang­an­ese(III)} dihydrate, [Mn2(C13H9N2O)4(NCS)2]·2H2O, (2). These structures are two recent examples of a fruitful collaboration between researchers at the Laboratoire de Chimie de Coordination Organique/Organic Coordination Chemistry Laboratory (LCCO), University of Dakar, Senegal and the National Crystallography Service (NCS), School of Chemistry, University Southampton, UK. This productive partnership was forged through meeting at Pan-African Conferences on Crystallography and quickly grew as the plans for the AfCA (African Crystallographic Association) developed. This article therefore also showcases this productive partnership, in celebration of the IUCr's 75 year anniversary and the recent inclusion of AfCA as a Regional Associate of the IUCr.




two

Crystal structures of two formamidinium hexa­fluorido­phosphate salts, one with batch-dependent disorder

Syntheses of the acyclic amidinium salts, morpholino­formamidinium hexa­fluorido­phosphate [OC4H8N—CH=NH2]PF6 or C5H11N2O+·PF6−, 1, and pyrrolidinoformamidinium hexa­fluorido­phosphate [C4H8N—CH= NH2]PF6 or C5H11N2+·PF6−, 2, were carried out by heating either morpholine or pyrrolidine with triethyl orthoformate and ammonium hexa­fluorido­phosphate. Crystals of 1 obtained directly from the reaction mixture contain one cation and one anion in the asymmetric unit. The structure involves cations linked in chains parallel to the b axis by N—H⋯O hydrogen bonds in space group Pbca, with glide-related chains pointing in opposite directions. Crystals of 1 obtained by recrystallization from ethanol, however, showed a similar unit cell and the same basic structure, but unexpectedly, there was positional disorder [occupancy ratio 0.639 (4):0.361 (4)] in one of the cation chains, which lowered the crystal symmetry to the non-centrosymmetric space group Pca21, with two cations and anions in the asymmetric unit. In the pyrrolidino compound, 2, cations and anions are ordered and are stacked separately, with zigzag N—H⋯F hydrogen-bonding between stacks, forming ribbons parallel to (101), extended along the b-axis direction. Slight differences in the delocalized C=N distances between the two cations may reflect the inductive effect of the oxygen atom in the morpholino compound.