qua

Optimizing crucible geometry to improve the quality of AlN crystals by the physical vapor transport method

The growth quality of AlN single crystals was improved by optimizing the crucible structure for Al vapor transport with the help of finite element simulation.




qua

Optimal operation guidelines for direct recovery of high-purity precursor from spent lithium-ion batteries: hybrid operation model of population balance equation and data-driven classifier

This study proposes an operation optimization framework for impurity-free recycling of spent lithium-ion batteries. Using a hybrid population balance equation integrated with a data-driven condition classifier, the study firstly identifies the optimal batch and semi-batch operation conditions that significantly reduce the operation time with 100% purity of product; detailed guidelines are given for industrial applications.




qua

Optimizing crucible geometry to improve the quality of AlN crystals by the physical vapor transport method

In the conventional crucible structure for AlN crystal growth by physical vapor transport, owing to the long molecular transport path of Al vapor and the disruption of the gas flow by the presence of a deflector, the Al vapor easily forms polycrystals in the growth domain. The result is increased internal stress in the crystals and increased difficulty in growing large-sized crystals. On this basis, with the help of finite element simulations, a novel crucible structure is designed. This crucible not only optimizes the gas transport but also increases the radial gradient of the AlN crystal surface, making the enhanced growth rate in the central region more obvious. The thermal stresses between the deflector and the crystal are also reduced. High-quality AlN crystals with an FWHM of 79 arcsec were successfully grown with this structure, verifying the accuracy of finite element simulation of the growth of AlN crystals. Our work has important guiding significance for the growth of high-quality AlN crystals.




qua

Structure of face-centred icosahedral quasicrystals with cluster close packing

A 6D structure model for face-centred icosahedral quasicrystals consisting of so-called pseudo-Mackay and mini-Bergman-type atomic clusters is proposed based on the structure model of the Al69.1Pd22Cr2.1Fe6.8 3/2 cubic approximant crystal (with space group Pa3, a = 40.5 Å) [Fujita et al. (2013). Acta Cryst. A69, 322–340]. The cluster centres form an icosahedral close sphere packing generated by the occupation domains similar to those in the model proposed by Katz & Gratias [J. Non-Cryst. Solids (1993), 153–154, 187–195], but their size is smaller by a factor τ2 [τ = (1 + (5)1/2)/2]. The clusters cover approximately 99.46% of the atomic structure, and the cluster arrangement exhibits 15 and 19 different local configurations, respectively, for the pseudo-Mackay and mini-Bergman-type clusters. The occupation domains that generate cluster shells are modelled and discussed in terms of structural disorder and local reorganization of the cluster arrangements (phason flip).




qua

An alternative method to the Takagi–Taupin equations for studying dark-field X-ray microscopy of deformed crystals

This study introduces an alternative method to the Takagi–Taupin equations for investigating the dark-field X-ray microscopy (DFXM) of deformed crystals. In scenarios where dynamical diffraction cannot be disregarded, it is essential to assess the potential inaccuracies of data interpretation based on the kinematic diffraction theory. Unlike the Takagi–Taupin equations, this new method utilizes an exact dispersion relation, and a previously developed finite difference scheme with minor modifications is used for the numerical implementation. The numerical implementation has been validated by calculating the diffraction of a diamond crystal with three components, wherein dynamical diffraction is applicable to the first component and kinematic diffraction pertains to the remaining two. The numerical convergence is tested using diffraction intensities. In addition, the DFXM image of a diamond crystal containing a stacking fault is calculated using the new method and compared with the experimental result. The new method is also applied to calculate the DFXM image of a twisted diamond crystal, which clearly shows a result different from those obtained using the Takagi–Taupin equations.




qua

Combination of XEOL, TR-XEOL and HB-T interferometer at the TPS 23A X-ray nanoprobe for exploring quantum materials

In this study, a combination of X-ray excited optical luminescence (XEOL), time-resolved XEOL (TR-XEOL) and the Hanbury-Brown and Twiss (HB-T) interferometer at the Taiwan Photon Source (TPS) 23A X-ray nanoprobe beamline for exploring quantum materials is demonstrated. On the basis of the excellent spatial resolution rendered using a nano-focused beam, emission distributions of artificial micro-diamonds can be obtained by XEOL maps, and featured emission peaks of a selected local area can be obtained by XEOL spectra. The hybrid bunch mode of the TPS not only provides a sufficiently high peak power density for experiments at each beamline but also permits high-quality temporal domain (∼200 ns) measurements for investigating luminescence dynamics. From TR-XEOL measurements, the decay lifetime of micro-diamonds is determined to be approximately 16 ns. Furthermore, the XEOL spectra of artificial micro-diamonds can be investigated by the HB-T interferometer to identify properties of single-photon sources. The unprecedented strategy of combining XEOL, TR-XEOL and the HB-T interferometer at the X-ray nanoprobe beamline will open new avenues with significant characterization abilities for unraveling the emission mechanisms of single-photon sources for quantum materials.




qua

Quantifying bunch-mode influence on photon-counting detectors at SPring-8

Count-loss characteristics of photon-counting 2D detectors are demonstrated for eight bunch-modes at SPring-8 through Monte Carlo simulations. As an indicator, the effective maximum count rate was introduced to signify the X-ray intensity that the detector can count with a linearity of 1% or better after applying a count-loss correction in each bunch-mode. The effective maximum count rate is revealed to vary depending on the bunch-mode and the intrinsic dead time of the detectors, ranging from 0.012 to 0.916 Mcps (megacounts per second) for a 120 ns dead time, 0.009 to 0.807 Mcps for a 0.5 µs dead time and 0.020 to 0.273 Mcps for a 3 µs intrinsic detector dead time. Even with equal-interval bunch-modes at SPring-8, the effective maximum count rate does not exceed 1 Mcps pixel−1. In other words, to obtain data with a linearity better than 1%, the maximum intensity of X-rays entering the detector should be reduced to 1 Mcps pixel−1 or less, and, in some cases, even lower, depending on the bunch-mode. When applying count-loss correction using optimized dead times tailored to each bunch-mode, the effective maximum count rate exceeds the values above. However, differences in the effective maximum count rate due to bunch-modes persist. Users of photon-counting 2D detectors are encouraged to familiarize themselves with the count-loss characteristics dependent on bunch-mode, and to conduct experiments accordingly. In addition, when designing the time structure of bunch-modes at synchrotron radiation facilities, it is essential to take into account the impact on experiments using photon-counting 2D detectors.




qua

PEPICO analysis of catalytic reactor effluents towards quantitative isomer discrimination: DME conversion over a ZSM-5 zeolite

The methanol-to-hydrocarbons (MTH) process involves the conversion of methanol, a C1 feedstock that can be produced from green sources, into hydrocarbons using shape-selective microporous acidic catalysts – zeolite and zeotypes. This reaction yields a complex mixture of species, some of which are highly reactive and/or present in several isomeric forms, posing significant challenges for effluent analysis. Conventional gas-phase chromatography (GC) is typically employed for the analysis of reaction products in laboratory flow reactors. However, GC is not suitable for the detection of highly reactive intermediates such as ketene or formaldehyde and is not suitable for kinetic studies under well defined low pressure conditions. Photoelectron–photoion coincidence (PEPICO) spectroscopy has emerged as a powerful analytical tool for unraveling complex compositions of catalytic effluents, but its availability is limited to a handful of facilities worldwide. Herein, PEPICO analysis of catalytic reactor effluents has been implemented at the FinEstBeAMS beamline of MAX IV Laboratory. The conversion of dimethyl ether (DME) on a zeolite catalyst (ZSM-5-MFI27) is used as a prototypical model reaction producing a wide distribution of hydrocarbon products. Since in zeolites methanol is quickly equilibrated with DME, this reaction can be used to probe vast sub-networks of the full MTH process, while eliminating or at least slowing down methanol-induced secondary reactions and catalyst deactivation. Quantitative discrimination of xylene isomers in the effluent stream is achieved by deconvoluting the coincidence photoelectron spectra.




qua

Sub-nanometre quality X-ray mirrors created using ion beam figuring

Ion beam figuring (IBF) is a powerful technique for figure correction of X-ray mirrors to a high accuracy. Here, recent technical advancements in the IBF instrument developed at Diamond Light Source are presented and experimental results for figuring of X-ray mirrors are given. The IBF system is equipped with a stable DC gridded ion source (120 mm diameter), a four-axis motion stage to manipulate the optic, a Faraday cup to monitor the ion-beam current, and a camera for alignment. A novel laser speckle angular measurement instrument also provides on-board metrology. To demonstrate the IBF system's capabilities, two silicon X-ray mirrors were processed. For 1D correction, a height error of 0.08 nm r.m.s. and a slope error of 44 nrad r.m.s. were achieved. For 2D correction over a 67 mm × 17 mm clear aperture, a height error of 0.8 nm r.m.s. and a slope error of 230 nrad r.m.s. were obtained. For the 1D case, this optical quality is comparable with the highest-grade, commercially available, X-ray optics.




qua

A 1D imaging soft X-ray spectrometer for the small quantum systems instrument at the European XFEL

A 1D imaging soft X-ray spectrometer installed on the small quantum systems (SQS) scientific instrument of the European XFEL is described. It uses movable cylindrical constant-line-spacing gratings in the Rowland configuration for energy dispersion in the vertical plane, and Wolter optics for simultaneous 1D imaging of the source in the horizontal plane. The soft X-ray fluorescence spectro-imaging capability will be exploited in pump–probe measurements and in investigations of propagation effects and other nonlinear phenomena.




qua

Tetra­aqua­(ethane-1,2-di­amine-κ2N,N')nickel(II) naphthalene-1,5-di­sulfonate dihydrate

The reaction of ethane-1,2-di­amine (en, C2H8N2), the sodium salt of naphthalene-1,5-di­sulfonic acid (H2NDS, C10H8O6S2), and nickel sulfate in an aqueous solution resulted in the formation of the title salt, [Ni(C2H8N2)(H2O)4](C10H6O6S2)·2H2O or [Ni(en)(H2O)4](NDS)·2H2O. In the asymmetric unit, one half of an [Ni(en)(H2O)4]2+ cation and one half of an NDS2− anion, and one water mol­ecule of crystallization are present. The Ni2+ cation in the complex is positioned on a twofold rotation axis and exhibits a slight tetra­gonal distortion of the cis-NiO4N2 octa­hedron, with an Ni—N bond length of 2.0782 (16) Å, and Ni—O bond lengths of 2.1170 (13) Å and 2.0648 (14) Å. The anion is completed by inversion symmetry. In the extended structure, the cations, anions, and non-coordinating water mol­ecules are connected by inter­molecular N—H⋯O and O—H⋯O hydrogen bonding, as well as C—H⋯π inter­actions, forming a three-dimensional network.




qua

Synthesis and structure of trans-bis­(4-amino-3-nitro­benzoato-κO)bis­(4-amino-3-nitro­benzoic acid-κO)di­aqua­manganese(II) dihydrate

The manganese title complex, [Mn(C7H5N2O4)2(C7H6N2O4)2(H2O)2]·2H2O, is one of the first 4-amino 3-nitro­benzoic acid (4 A3NBA) monoligand metal complexes to be synthesized. It crystallizes in the centrosymmetric monoclinic space group P21/n with the complex mol­ecules located on inversion centers. Four 4 A3NBA ligand mol­ecules are monodentately coordinated by the Mn2+ ion through the carb­oxy­lic oxygen atoms while the other two positions of the inner coordination sphere are occupied by water mol­ecules, giving rise to a distorted octa­hedron, and two water mol­ecules are in the outer coordination sphere. There are two intra­molecular hydrogen bonds in the complex mol­ecule. The first is of the common N—H⋯O=N type, while the second is a rarely occurring very strong hydrogen bond in which a common proton is shared by two uncoordinated oxygen atoms of neighboring carboxyl­ate groups. In the crystal, an intricate system of inter­molecular hydrogen bonds links the complex mol­ecules into a three-dimensional-network.




qua

Aqua­bis­(2,2'-bi­pyridine-κ2N,N')(isonicotinamide-κN)ruthenium(II) bis­(trifluoromethanesulfonate)

In the title complex, [Ru(C10H8N2)2(C6H6N2O)(H2O)](CF3SO3)2, the central RuII atom is sixfold coordinated by two bidentate 2,2'-bi­pyridine, an isonic­otinamide ligand, and a water mol­ecule in a distorted octa­hedral environment with tri­fluoro­methane­sulfonate ions completing the outer coordination sphere of the complex. Hydrogen bonding involving the water mol­ecule and weak π–π stacking inter­actions between the pyridyl rings in adjacent mol­ecules contribute to the alignment of the complexes in columns parallel to the c axis.




qua

trans-Di­aqua­tetra­kis­(tetra­hydro­furan-κO)iron(II) μ-carbonyl-tetra­deca­carbonyl­tetra­chlorido-μ-di­methyl­silanediolato-tetra­galliumtetra­iron(7 Ga–Fe)(Fe–Fe) tetra­hydro&#

The title compound, [Fe(C4H8O)4(H2O)2][Fe4Ga4(C2H6O2Si)Cl4(CO)15]·4C4H8O, consists of an iron(II) cation octa­hedrally coordinated by two water mol­ecules (trans) with four tetra­hydro­furans (THF) at equatorial sites. Two additional THF mol­ecules are hydrogen bonded to each of the water mol­ecules. The dianion of the title compound is an organometallic butterfly complex with a dimethyl siloxane core and two iron-gallium fragments. The lengths of the iron to gallium metal–metal bonds range from 2.3875 (6) to 2.4912 (6) Å.




qua

Poly[tris­(2-amino­butan-1-ol)copper(II) [hexa­kis-μ2-cyanido-κ12C:N-tetra­copper(I)] bis­(2-amino­butan-1-olato)aqua­copper(II) monohydrate]

The title structure, {[Cu(C4H11NO)3][Cu4(CN)6]·[Cu(C4H10NO)2(H2O)]·H2O}n, is made up of diperiodic honeycomb CuICN networks built from [Cu4(CN)6]2− units, together with two independent CuII complexes: six-coord­inate [Cu(CH3CH2CH(NH2)CH2OH)3]2+ cations, and five-coordinate [Cu(CH3CH2CH(NH2)CH2O)2·H2O] neutral species. The two CuII complexes are not covalently bonded to the CuICN networks. Strong O—H⋯O hydrogen bonds link the CuII complexes into pairs and the pairs are hydrogen bonded into chains along the crystallographic b axis via the hydrate water mol­ecule. In addition, O—H⋯(CN) and N—H⋯(CN) hydrogen bonds link the cations to the CuCN network. In the honeycomb polymeric moiety, all bridging cyanido ligands are disordered over two orientations, head-to-tail and tail-to-head, with occupancies for C and N atoms varying for each CN group.




qua

3-[(Benzo-1,3-dioxol-5-yl)amino]-4-meth­oxy­cyclo­but-3-ene-1,2-dione: polymorphism and twinning of a precursor to an anti­mycobacterial squaramide

The title compound, 3-[(benzo-1,3-dioxol-5-yl)amino]-4-meth­oxy­cyclo­but-3-ene-1,2-dione, C12H9NO5 (3), is a precursor to an anti­mycobacterial squaramide. Block-shaped crystals of a monoclinic form (3-I, space group P21/c, Z = 8, Z' = 2) and needle-shaped crystals of a triclinic form (3-II, space group P-1, Z = 4, Z' = 2) were found to crystallize concomitantly. In both crystal forms, R22(10) dimers assemble through N—H⋯O=C hydrogen bonds. These dimers are formed from crystallographically unique mol­ecules in 3-I, but exhibit crystallographic Ci symmetry in 3-II. Twinning by pseudomerohedry was encountered in the crystals of 3-II. The conformations of 3 in the solid forms 3-I and 3-II are different from one another but are similar for the unique mol­ecules in each polymorph. Density functional theory (DFT) calculations on the free mol­ecule of 3 indicate that a nearly planar conformation is preferred.




qua

Na[GeF5]·2HF: the first quarternary phase in the H–Na–Ge–F system

The structure of cis- or trans-bridged [GeF5]− anionic chains have been investigated [Mallouk et al. (1984). Inorg. Chem. 23, 3160–3166] showing the first crystal structures of μ-F-bridged penta­fluoro­germanates. Herein, we report the second crystal structure of trans-penta­fluoro­germanate anions present in the crystal structure of sodium trans-penta­fluoro­germanate(IV) bis­(hy­dro­gen fluoride), Na[GeF5]·2HF. The crystal structure [ortho­rhom­bic Pca21, a = 12.3786 (3), b = 7.2189 (2), c = 11.4969 (3) Å and Z = 8] is built up from infinite chains of trans-linked [GeF6]2− octa­hedra, extending along the b axis and spanning a network of penta­gonal bipyramidal distorted Na-centred polyhedra. These [NaF7] polyhedra are linked in a trans-edge fashion via hy­dro­gen fluoride mol­ecules, in analogy to already known sodium hy­dro­gen fluorides and potassium hy­dro­gen fluorides.




qua

Tomo Live: an on-the-fly reconstruction pipeline to judge data quality for cryo-electron tomography workflows

Data acquisition and processing for cryo-electron tomography can be a significant bottleneck for users. To simplify and streamline the cryo-ET workflow, Tomo Live, an on-the-fly solution that automates the alignment and reconstruction of tilt-series data, enabling real-time data-quality assessment, has been developed. Through the integration of Tomo Live into the data-acquisition workflow for cryo-ET, motion correction is performed directly after each of the acquired tilt angles. Immediately after the tilt-series acquisition has completed, an unattended tilt-series alignment and reconstruction into a 3D volume is performed. The results are displayed in real time in a dedicated remote web platform that runs on the microscope hardware. Through this web platform, users can review the acquired data (aligned stack and 3D volume) and several quality metrics that are obtained during the alignment and reconstruction process. These quality metrics can be used for fast feedback for subsequent acquisitions to save time. Parameters such as Alignment Accuracy, Deleted Tilts and Tilt Axis Correction Angle are visualized as graphs and can be used as filters to export only the best tomograms (raw data, reconstruction and intermediate data) for further processing. Here, the Tomo Live algorithms and workflow are described and representative results on several biological samples are presented. The Tomo Live workflow is accessible to both expert and non-expert users, making it a valuable tool for the continued advancement of structural biology, cell biology and histology.




qua

Protonation of histidine rings using quantum-mechanical methods

Histidine can be protonated on either or both of the two N atoms of the imidazole moiety. Each of the three possible forms occurs as a result of the stereochemical environment of the histidine side chain. In an atomic model, comparing the possible protonation states in situ, looking at possible hydrogen bonding and metal coordination, it is possible to predict which is most likely to be correct. A more direct method is described that uses quantum-mechanical methods to calculate, also in situ, the minimum geometry and energy for comparison, and therefore to more accurately identify the most likely proton­ation state.




qua

Toward a quantitative description of solvation structure: a framework for differential solution scattering measurements

Appreciating that the role of the solute–solvent and other outer-sphere interactions is essential for understanding chemistry and chemical dynamics in solution, experimental approaches are needed to address the structural consequences of these interactions, complementing condensed-matter simulations and coarse-grained theories. High-energy X-ray scattering (HEXS) combined with pair distribution function analysis presents the opportunity to probe these structures directly and to develop quantitative, atomistic models of molecular systems in situ in the solution phase. However, at concentrations relevant to solution-phase chemistry, the total scattering signal is dominated by the bulk solvent, prompting researchers to adopt a differential approach to eliminate this unwanted background. Though similar approaches are well established in quantitative structural studies of macromolecules in solution by small- and wide-angle X-ray scattering (SAXS/WAXS), analogous studies in the HEXS regime—where sub-ångström spatial resolution is achieved—remain underdeveloped, in part due to the lack of a rigorous theoretical description of the experiment. To address this, herein we develop a framework for differential solution scattering experiments conducted at high energies, which includes concepts of the solvent-excluded volume introduced to describe SAXS/WAXS data, as well as concepts from the time-resolved X-ray scattering community. Our theory is supported by numerical simulations and experiment and paves the way for establishing quantitative methods to determine the atomic structures of small molecules in solution with resolution approaching that of crystallography.




qua

Phase quantification using deep neural network processing of XRD patterns

Mineral identification and quantification are key to the understanding and, hence, the capacity to predict material properties. The method of choice for mineral quantification is powder X-ray diffraction (XRD), generally using a Rietveld refinement approach. However, a successful Rietveld refinement requires preliminary identification of the phases that make up the sample. This is generally carried out manually, and this task becomes extremely long or virtually impossible in the case of very large datasets such as those from synchrotron X-ray diffraction computed tomography. To circumvent this issue, this article proposes a novel neural network (NN) method for automating phase identification and quantification. An XRD pattern calculation code was used to generate large datasets of synthetic data that are used to train the NN. This approach offers significant advantages, including the ability to construct databases with a substantial number of XRD patterns and the introduction of extensive variability into these patterns. To enhance the performance of the NN, a specifically designed loss function for proportion inference was employed during the training process, offering improved efficiency and stability compared with traditional functions. The NN, trained exclusively with synthetic data, proved its ability to identify and quantify mineral phases on synthetic and real XRD patterns. Trained NN errors were equal to 0.5% for phase quantification on the synthetic test set, and 6% on the experimental data, in a system containing four phases of contrasting crystal structures (calcite, gibbsite, dolomite and hematite). The proposed method is freely available on GitHub and allows for major advances since it can be applied to any dataset, regardless of the mineral phases present.




qua

Quantum refinement in real and reciprocal space using the Phenix and ORCA software

X-ray and neutron crystallography, as well as cryogenic electron microscopy (cryo-EM), are the most common methods to obtain atomic structures of biological macromolecules. A feature they all have in common is that, at typical resolutions, the experimental data need to be supplemented by empirical restraints, ensuring that the final structure is chemically reasonable. The restraints are accurate for amino acids and nucleic acids, but often less accurate for substrates, inhibitors, small-molecule ligands and metal sites, for which experimental data are scarce or empirical potentials are harder to formulate. This can be solved using quantum mechanical calculations for a small but interesting part of the structure. Such an approach, called quantum refinement, has been shown to improve structures locally, allow the determination of the protonation and oxidation states of ligands and metals, and discriminate between different interpretations of the structure. Here, we present a new implementation of quantum refinement interfacing the widely used structure-refinement software Phenix and the freely available quantum mechanical software ORCA. Through application to manganese superoxide dismutase and V- and Fe-nitro­genase, we show that the approach works effectively for X-ray and neutron crystal structures, that old results can be reproduced and structural discrimination can be performed. We discuss how the weight factor between the experimental data and the empirical restraints should be selected and how quantum mechanical quality measures such as strain energies should be calculated. We also present an application of quantum refinement to cryo-EM data for particulate methane monooxygenase and show that this may be the method of choice for metal sites in such structures because no accurate empirical restraints are currently available for metals.




qua

Current developments and trends in quantum crystallography

Quantum crystallography is an emerging research field of science that has its origin in the early days of quantum physics and modern crystallography when it was almost immediately envisaged that X-ray radiation could be somehow exploited to determine the electron distribution of atoms and molecules. Today it can be seen as a composite research area at the intersection of crystallography, quantum chemistry, solid-state physics, applied mathematics and computer science, with the goal of investigating quantum problems, phenomena and features of the crystalline state. In this article, the state-of-the-art of quantum crystallography will be described by presenting developments and applications of novel techniques that have been introduced in the last 15 years. The focus will be on advances in the framework of multipole model strategies, wavefunction-/density matrix-based approaches and quantum chemical topological techniques. Finally, possible future improvements and expansions in the field will be discussed, also considering new emerging experimental and computational technologies.




qua

Crystal structure and Hirshfeld-surface analysis of di­aqua­bis­(5-methyl-1H-1,2,4-triazole-3-carboxyl­ato)copper(II)

The title compound, [Cu(HL)2(H2O)2] or [Cu(C4H4N3O2)2(H2O)2], is a mononuclear octa­hedral CuII complex based on 5-methyl-1H-1,2,4-triazole-3-carb­oxy­lic acid (H2L). [Cu(HL)2(H2O)2] was synthesized by reaction of H2L with copper(II) nitrate hexa­hydrate (2:1 stoichiometric ratio) in water under ambient conditions to produce clear light-blue crystals. The central Cu atom exhibits an N2O4 coordination environment in an elongated octa­hedral geometry provided by two bidentate HL− anions in the equatorial plane and two water mol­ecules in the axial positions. Hirshfeld surface analysis revealed that the most important contributions to the surface contacts are from H⋯O/O⋯H (33.1%), H⋯H (29.5%) and H⋯N/N⋯H (19.3%) inter­actions.




qua

Crystal structure of propane-1,3-diaminium squarate dihydrate

Propane-1,3-diaminium squarate dihydrate, C3H12N22+·C4O42−·2H2O, results from the proton-transfer reaction of propane-1,3-di­amine with squaric acid and subsequent crystallization from aqueous medium. The title compound crystallizes in the tetra­gonal crystal system (space group P4bm) with Z = 2. The squarate dianion belongs to the point group D4h and contains a crystallographic fourfold axis. The propane-1,3-diaminium dication exhibits a C2v-symmetric all-anti conformation and resides on a special position with mm2 site symmetry. The orientation of the propane-1,3-diaminium ions makes the crystal structure polar in the c-axis direction. The solid-state supra­molecular structure features a triperiodic network of strong hydrogen bonds of the N—H⋯O and O—H⋯O types.




qua

Three-dimensional alkaline earth metal–organic framework poly[[μ-aqua-aqua­bis­(μ3-carba­moyl­cyano­nitro­somethanido)barium] monohydrate] and its thermal decomposition

In the structure of the title salt, {[Ba(μ3-C3H2N3O2)2(μ-H2O)(H2O)]·H2O}n, the barium ion and all three oxygen atoms of the water mol­ecules reside on a mirror plane. The hydrogen atoms of the bridging water and the solvate water mol­ecules are arranged across a mirror plane whereas all atoms of the monodentate aqua ligand are situated on this mirror plane. The distorted ninefold coord­ination of the Ba ions is completed with four nitroso-, two carbonyl- and three aqua-O atoms at the distances of 2.763 (3)–2.961 (4) Å and it is best described as tricapped trigonal prism. The three-dimensional framework structure is formed by face-sharing of the trigonal prisms, via μ-nitroso- and μ-aqua-O atoms, and also by the bridging coordination of the anions via carbonyl-O atoms occupying two out of the three cap positions. The solvate water mol­ecules populate the crystal channels and facilitate a set of four directional hydrogen bonds. The principal Ba–carbamoyl­cyano­nitro­somethanido linkage reveals a rare example of the inherently polar binodal six- and three-coordinated bipartite topology (three-letter notation sit). It suggests that small resonance-stabilized cyano­nitroso anions can be utilized as bridging ligands for the supra­molecular synthesis of MOF solids. Such an outcome may be anti­cipated for a broader range of hard Lewis acidic alkaline earth metal ions, which perfectly match the coordination preferences of highly nucleophilic nitroso-O atoms. Thermal analysis reveals two-stage dehydration of the title compound (383 and 473 K) followed by decomposition with release of CO2, HCN and H2O at 558 K.




qua

Crystal structure of bis­(μ2-5-nona­noylquinolin-8-olato)bis­[aqua­dichlorido­indium(III)]

Crystallization of 5-nona­noyl-8-hy­droxy­quinoline in the presence of InCl3 in aceto­nitrile yields a dinuclear InIII complex crystallizing in the space group Poverline{1}. In this complex, [In2(C18H22NO2)2Cl4(H2O)2], each indium ion is sixfold coordinated by two chloride ions, one water mol­ecule and two 8-quinolino­late ions. The crystal of the title complex is composed of two-dimensional supra­molecular aggregates, resulting from the linkage of the Owater—H⋯O=C and Owater—H⋯Cl hydrogen bonds as well as bifurcated Carene—H⋯Cl contacts.




qua

Synthesis, crystal structure and Hirshfeld surface analysis of (2-amino-1-methyl­benzimidazole-κN3)aqua­bis­(4-oxopent-2-en-2-olato-κ2O,O')nickel(II) ethanol monosolvate

The mol­ecule of the title compound, [Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H5OH, has triclinic (Poverline{1}) symmetry. This compound is of inter­est for its anti­microbial properties. The asymmetric unit comprises two independent complex mol­ecules, which are linked by N—H⋯O and O—H⋯O hydrogen bonds along [111]. Hirshfeld surface analysis indicates that 71.7% of inter­mol­ecular inter­actions come from H⋯H contacts, 17.7% from C⋯H/H⋯C contacts and 7.6% from O⋯H/H⋯O contacts, with the remaining contribution coming from N⋯H/H⋯N, C⋯N/N⋯C, C⋯C and O⋯O contacts.




qua

Crystal structure of catena-poly[[di­aqua­di­imida­zole­cobalt(II)]-μ2-2,3,5,6-tetra­bromo­benzene-1,4-di­carboxyl­ato]

The asymmetric unit of the title compound, [Co(C8Br4O4)(C3H4N2)2(H2O)2]n or [Co(Br4bdc)(im)2(H2O)2]n, comprises half of CoII ion, tetra­bromo­benzene­dicarboxylate (Br4bdc2−), imidazole (im) and a water mol­ecule. The CoII ion exhibits a six-coordinated octa­hedral geometry with two oxygen atoms of the Br4bdc2− ligand, two oxygen atoms of the water mol­ecules, and two nitro­gen atoms of the im ligands. The carboxyl­ate group is nearly perpendicular to the benzene ring and shows monodentate coordination to the CoII ion. The CoII ions are bridged by the Br4bdc2− ligand, forming a one-dimensional chain. The carboxyl­ate group acts as an inter­molecular hydrogen-bond acceptor toward the im ligand and a coordinated water mol­ecule. The chains are connected by inter­chain N—H⋯O(carboxyl­ate) and O—H(water)⋯O(carboxyl­ate) hydrogen-bonding inter­actions and are not arranged in parallel but cross each other via inter­chain hydrogen bonding and π–π inter­actions, yielding a three-dimensional network.




qua

Texture measurements on quartz single crystals to validate coordinate systems for neutron time-of-flight texture analysis

In crystallographic texture analysis, ensuring that sample directions are preserved from experiment to the resulting orientation distribution is crucial to obtain physical meaning from diffraction data. This work details a procedure to ensure instrument and sample coordinates are consistent when analyzing diffraction data with a Rietveld refinement using the texture analysis software MAUD. A quartz crystal is measured on the HIPPO diffractometer at Los Alamos National Laboratory for this purpose. The methods described here can be applied to any diffraction instrument measuring orientation distributions in polycrystalline materials.




qua

Neural networks for rapid phase quantification of cultural heritage X-ray powder diffraction data

Recent developments in synchrotron radiation facilities have increased the amount of data generated during acquisitions considerably, requiring fast and efficient data processing techniques. Here, the application of dense neural networks (DNNs) to data treatment of X-ray diffraction computed tomography (XRD-CT) experiments is presented. Processing involves mapping the phases in a tomographic slice by predicting the phase fraction in each individual pixel. DNNs were trained on sets of calculated XRD patterns generated using a Python algorithm developed in-house. An initial Rietveld refinement of the tomographic slice sum pattern provides additional information (peak widths and integrated intensities for each phase) to improve the generation of simulated patterns and make them closer to real data. A grid search was used to optimize the network architecture and demonstrated that a single fully connected dense layer was sufficient to accurately determine phase proportions. This DNN was used on the XRD-CT acquisition of a mock-up and a historical sample of highly heterogeneous multi-layered decoration of a late medieval statue, called `applied brocade'. The phase maps predicted by the DNN were in good agreement with other methods, such as non-negative matrix factorization and serial Rietveld refinements performed with TOPAS, and outperformed them in terms of speed and efficiency. The method was evaluated by regenerating experimental patterns from predictions and using the R-weighted profile as the agreement factor. This assessment allowed us to confirm the accuracy of the results.




qua

Quantitative selection of sample structures in small-angle scattering using Bayesian methods

Small-angle scattering (SAS) is a key experimental technique for analyzing nanoscale structures in various materials. In SAS data analysis, selecting an appropriate mathematical model for the scattering intensity is critical, as it generates a hypothesis of the structure of the experimental sample. Traditional model selection methods either rely on qualitative approaches or are prone to overfitting. This paper introduces an analytical method that applies Bayesian model selection to SAS measurement data, enabling a quantitative evaluation of the validity of mathematical models. The performance of the method is assessed through numerical experiments using artificial data for multicomponent spherical materials, demonstrating that this proposed analysis approach yields highly accurate and interpretable results. The ability of the method to analyze a range of mixing ratios and particle size ratios for mixed components is also discussed, along with its precision in model evaluation by the degree of fitting. The proposed method effectively facilitates quantitative analysis of nanoscale sample structures in SAS, which has traditionally been challenging, and is expected to contribute significantly to advancements in a wide range of fields.




qua

Quality assessment of the wide-angle detection option planned at the high-intensity/extended Q-range SANS diffractometer KWS-2 combining experiments and McStas simulations

For a reliable characterization of materials and systems featuring multiple structural levels, a broad length scale from a few ångström to hundreds of nanometres must be analyzed and an extended Q range must be covered in X-ray and neutron scattering experiments. For certain samples or effects, it is advantageous to perform such characterization with a single instrument. Neutrons offer the unique advantage of contrast variation and matching by D-labeling, which is of great value in the characterization of natural or synthetic polymers. Some time-of-flight small-angle neutron scattering (TOF-SANS) instruments at neutron spallation sources can cover an extended Q range by using a broad wavelength band and a multitude of detectors. The detectors are arranged to cover a wide range of scattering angles with a resolution that allows both large-scale morphology and crystalline structure to be resolved simultaneously. However, for such analyses, the SANS instruments at steady-state sources operating in conventional monochromatic pinhole mode rely on additional wide-angle neutron scattering (WANS) detectors. The resolution must be tuned via a system of choppers and a TOF data acquisition option to reliably measure the atomic to mesoscale structures. The KWS-2 SANS diffractometer at Jülich Centre for Neutron Science allows the exploration of a wide Q range using conventional pinhole and lens focusing modes and an adjustable resolution Δλ/λ between 2 and 20%. This is achieved through the use of a versatile mechanical velocity selector combined with a variable slit opening and rotation frequency chopper. The installation of WANS detectors planned on the instrument required a detailed analysis of the quality of the data measured over a wide angular range with variable resolution. This article presents an assessment of the WANS performance by comparison with a McStas [Willendrup, Farhi & Lefmann (2004). Physica B, 350, E735–E737] simulation of ideal experimental conditions at the instrument.




qua

Formulation of perfect-crystal diffraction from Takagi–Taupin equations: numerical implementation in the crystalpy library

The Takagi–Taupin equations are solved in their simplest form (zero deformation) to obtain the Bragg-diffracted and transmitted complex amplitudes. The case of plane-parallel crystal plates is discussed using a matrix model. The equations are implemented in an open-source Python library crystalpy adapted for numerical applications such as crystal reflectivity calculations and ray tracing.




qua

The general equation of δ direct methods and the novel SMAR algorithm residuals using the absolute value of ρ and the zero conversion of negative ripples

The general equation of the δ direct methods is established and applied in its difference form to the definition of one of the two residuals that constitute the SMAR phasing algorithm. These two residuals use the absolute value of ρ and/or the zero conversion of negative Fourier ripples (≥50% of the unit-cell volume). Alternatively, when solved for ρ, the general equation provides a simple derivation of the already known δM tangent formula.




qua

PEA on Gold Project in Quebec Due Out This Quarter

Source: Bryce Adams 11/04/2024

The takeout potential for the company's shares is expected to increase over the next two years as derisking continues, noted a CIBC report.

O3 Mining Inc. (TSXV:OIII; OTCQX:OIIIF) updated the timeline for its flagship Marban Alliance gold project in Quebec and closed a small equity financing, reported CIBC analyst Bryce Adams in an Oct. 30 research note.

"With the updated shareholder register and continued derisking of Marban, we expect that the takeout potential for O3 shares increases within the next two years," Adams wrote.

O3 Mining is the third iteration of the successful Osisko Mining Inc. (OSK:TSX) model, focused on acquiring, exploring and developing mineral properties in Canada.

168% Return Implied

The Canadian company was trading at the time of the report at about CA$1.12 per share, and CIBC's target price on it is CA$3 per share, noted Adams. These figures reflect a potential return for investors of 168%.

O3 Mining has an Outperformer rating.

PEA Coming this Quarter

Adams presented O3's timeline for Marban Alliance and noted it aligns with CIBC's projections. The next step is completion of a preliminary economic assessment (PEA), slated for Q4/24, "which we expect will be reported on a standalone basis, with upside from potential toll milling agreements," the analyst wrote. G Mining Services now is the lead consultant on the PEA.

Next, a feasibility study will be done based on the PEA and the 2022 prefeasibility study. Targeted dates are Q1/25 to start it and Q2/25 to finish it.

Also in Q1/25, baseline environmental studies are slated for completion. Impact studies are to be started in Q2/25, and filing is slated for Q1/26.

More Strategic Investments

O3 Mining completed a non-brokered private placement of CA$1.4 million with Sidex LP and NQ Investissement Minier, two mining investment funds sponsored by the Quebec government, reported Adams. Subsequently, O3 closed a follow-up offering of US$76,800 to the company's strategic investor at the same terms.

"We view these as smaller issuances, and after model updates, our net asset value per share estimate is now one penny lower at CA$4.48 per share," Adams wrote.

O3 Mining will use the proceeds to drill at Kinebik, where it continues to consolidate land. This project shares the same formation as Hecla Mining Co.'s (HL:NYSE) Casa Berardi mine and Gold Fields Ltd.'s (GFI:NYSE; GFI:JSE) Windfall project.

Takeout Target Potential

Through its acquisition of Osisko, Gold Fields gained 100% ownership of Windfall (it previously had acquired 50% from Osisko in 2023) and 17% of O3 Mining, Adams pointed out. Gold Fields also unsuccessfully made a bid for Yamana Gold Inc.'s (YRI:TSX; AUY:NYSE; YAU:LSE) interests in the Canadian Malartic mine in Quebec earlier in 2023 and "has indicated further growth interest in Quebec."

"With Measured and Indicated resources of 2,400,000 ounces (2.4 Moz) and Inferred resources of 0.6 Moz at its flagship Marban project and near-term final permitting submission, O3 has above average takeout potential," purported Adams.

Sign up for our FREE newsletter at: www.streetwisereports.com/get-news

Important Disclosures:

  1. O3 Miing Inc. is a billboard sponsor of Streetwise Reports and pays SWR a monthly sponsorship fee between US$4,000 and US$5,000.
  2. Doresa Banning wrote this article for Streetwise Reports LLC and provides services to Streetwise Reports as an independent contractor.
  3. This article does not constitute investment advice and is not a solicitation for any investment. Streetwise Reports does not render general or specific investment advice and the information on Streetwise Reports should not be considered a recommendation to buy or sell any security. Each reader is encouraged to consult with his or her personal financial adviser and perform their own comprehensive investment research. By opening this page, each reader accepts and agrees to Streetwise Reports' terms of use and full legal disclaimer. Streetwise Reports does not endorse or recommend the business, products, services or securities of any company.

For additional disclosures, please click here.

Disclosures for CIBC Equity Research, O3 Mining Inc., October 30, 2024

Analyst Certification: Each CIBC World Markets Inc. research analyst named on the front page of this research report, or at the beginning of any subsection hereof, hereby certifies that (i) the recommendations and opinions expressed herein accurately reflect such research analyst's personal views about the company and securities that are the subject of this report and all other companies and securities mentioned in this report that are covered by such research analyst and (ii) no part of the research analyst's compensation was, is, or will be, directly or indirectly, related to the specific recommendations or views expressed by such research analyst in this report.

Potential Conflicts of Interest: Equity research analysts employed by CIBC World Markets Inc. are compensated from revenues generated by various CIBC World Markets Inc. businesses, including the CIBC World Markets Investment Banking Department. Research analysts do not receive compensation based upon revenues from specific investment banking transactions. CIBC World Markets Inc. generally prohibits any research analyst and any member of his or her household from executing trades in the securities of a company that such research analyst covers. Additionally, CIBC World Markets Inc. generally prohibits any research analyst from serving as an officer, director or advisory board member of a company that such analyst covers. In addition to 1% ownership positions in covered companies that are required to be specifically disclosed in this report, CIBC World Markets Inc. may have a long position of less than 1% or a short position or deal as principal in the securities discussed herein, related securities or in options, futures or other derivative instruments based thereon. Recipients of this report are advised that any or all of the foregoing arrangements, as well as more specific disclosures set forth below, may at times give rise to potential conflicts of interest. CIBC World Markets Inc. does and seeks to do business with companies covered in its research reports. As a result, investors should be aware that CIBC World Markets Inc. may have a conflict of interest that could affect the objectivity of this report. Investors should consider this report as only a single factor in making their investment decision. Analysts employed outside the U.S. are not registered as research analysts with FINRA. These analysts may not be associated persons of CIBC World Markets Corp. and therefore may not be subject to FINRA Rule 2241 restrictions on communications with a subject company, public appearances and trading securities held by a research analyst account.

CIBC World Markets Inc. Price Chart For price and performance charts, please visit CIBC on the web at https://researchcentral.cibccm.com/#/disclaimer-centralnew or write to CIBC World Markets Inc., 161 Bay Street, 4th Floor, Toronto, ON M5H 2S8, Attn: Research Disclosure Chart Request.

Important Disclosure Footnotes for O3 Mining Inc. (OIII.V) • 2a These companies are clients for which a CIBC World Markets company has performed investment banking services in the past 12 months: O3 Mining Inc. • 2c CIBC World Markets Inc. has managed or co-managed a public offering of securities for these companies in the past 12 months: O3 Mining Inc. • 2e CIBC World Markets Inc. has received compensation for investment banking services from these companies in the past 12 months: O3 Mining Inc. • 2g CIBC World Markets Inc. expects to receive or intends to seek compensation for investment banking services from these companies in the next 3 months: O3 Mining Inc. • 3a These companies are clients for which a CIBC World Markets company has performed non-investment banking, securities-related services in the past 12 months: O3 Mining Inc. For important disclosure footnotes for companies mentioned in this report that are covered by CIBC World Markets Inc., click here: CIBC Disclaimers & Disclosures

Legal Disclaimer This report is issued by CIBC Capital Markets. CIBC Capital Markets is a trademark brand name under which Canadian Imperial Bank of Commerce (“CIBC”), its subsidiaries and affiliates (including, without limitation, CIBC World Markets Inc., CIBC World Markets Corp. and CIBC Capital Markets (Europe) S.A.) provide different products and services to our customers around the world. Products and/or services offered by CIBC include corporate lending services, foreign exchange, money market instruments, structured notes, interest rate products and OTC derivatives. CIBC’s Foreign Exchange Disclosure Statement relating to guidelines contained in the FX Global Code can be found at https://cibccm.com/en/disclosures/fx-disclosure-statement/. Other products and services, such as exchange-traded equity and equity options, fixed income securities and futures execution of Canadian securities, are offered through directly or indirectly held subsidiaries of CIBC as indicated below. CIBC World Markets Inc. is a member of the Canadian Investor Protection Fund and the Canadian Investment Regulatory Organization. In the United States, CIBC World Markets Corp. is a member of the Financial Industry Regulatory Authority and the Securities Investor Protection Fund. In Luxembourg. CIBC Capital Markets (Europe) S.A. (RCS Luxembourg: B236326) is authorised by the European Central Bank (the “ECB”) and supervised by the Luxembourg Financial Supervisory Authority (Commission de Surveillance du Secteur Financier) under the oversight of the ECB. CIBC Australia Ltd (AFSL No: 240603) is regulated by the Australian Securities and Investment Commission (“ASIC”). CIBC World Markets (Japan) Inc. is a member of the Japanese Securities Dealer Association. CIBC (TSX/NYSE: CM) is a bank chartered under the Bank Act (Canada) having its registered office in Toronto, Ontario, Canada, and regulated by the Office of the Superintendent of Financial Institutions. CIBC New York Branch is licensed and supervised by the New York State Department of Financial Services. In the United Kingdom, CIBC London Branch is authorised by the Prudential Regulation Authority and subject to regulation by the Financial Conduct Authority and limited regulation by the Prudential Regulation Authority. Canadian Imperial Bank of Commerce, Sydney Branch (ABN: 33 608 235 847) is an authorised foreign bank branch regulated by the Australian Prudential Regulation Authority (APRA). Canadian Imperial Bank of Commerce, Hong Kong Branch is a registered institution under the Securities and Futures Ordinance, Cap 571, and a limited liability foreign company registered with the Hong Kong Companies Registry. Canadian Imperial Bank of Commerce, Singapore Branch is a wholesale bank licensed and regulated by the Monetary Authority of Singapore. This report is issued and approved for distribution by (a) in Canada, CIBC World Markets Inc., a member of the Canadian Investment Regulatory Organization (“CIRO”), the Toronto Stock Exchange, the TSX Venture Exchange and a Member of the Canadian Investor Protection Fund and (b) in the United States either by (i) CIBC World Markets Inc. for distribution only to U.S. Major Institutional Investors (“MII”) (as such term is defined in SEC Rule 15a-6) or (ii) CIBC World Markets Corp., a member of the Financial Industry Regulatory Authority (“FINRA”). U.S. MIIs receiving this report from CIBC World Markets Inc. (the Canadian broker-dealer) are required to effect transactions (other than negotiating their terms) in securities discussed in the report through CIBC World Markets Corp. (the U.S. broker-dealer). CIBC World Markets Corp. accepts responsibility for the content of this research report.

Distribution to Institutional Customers Only Canada This report is provided, for informational purposes only, to institutional investor and retail clients of CIBC World Markets Inc. in Canada, and does not constitute an offer or solicitation to buy or sell any securities discussed herein in any jurisdiction where such offer or solicitation would be prohibited.

Legal Disclaimer (Continued) United States This report is provided, for informational purposes only, to Major US Institutional Investor clients of CIBC World Markets Corp. in the United States, and does not constitute an offer or solicitation to buy or sell any securities discussed herein in any jurisdiction where such offer or solicitation would be prohibited. United Kingdom The distribution of this report in the United Kingdom is being made only to, or directed only at, persons falling within one or more of the exemptions from the financial promotion regime in section 21 of the UK Financial Services and Markets Act 2000 (as amended) (“FSMA”) including, without limitation, to the following: • authorised firms under FSMA and certain other investment professionals falling within article 19 of the FSMA (Financial Promotion) Order 2005 (“FPO”) and directors, officers and employees acting for such entities in relation to investment; • high value entities falling within article 49 FPO and directors, officers and employees acting for such entities in relation to investment; and • persons who receive this presentation outside the United Kingdom. The distribution of this report to any other person in the United Kingdom is unauthorised and may contravene FSMA. No person falling outside such categories should treat this report as constituting a promotion to them or rely or act on it for any purposes whatsoever. This report is distributed solely to eligible counterparties or professional clients and not retail clients as defined in point (8) of Article 2 of Regulation (EU) No 2017/565 as it forms part of UK domestic law by virtue of the European Union (Withdrawal) Act 2018. All other jurisdictions This report is distributed solely to institutional clients and not retail clients as defined by the applicable securities legislation and regulation to which CIBC Capital Markets may be subject in any jurisdiction, and only in compliance with all applicable laws and regulations. The securities mentioned in this report may not be suitable for all types of investors. This report does not take into account the investment objectives, financial situation or specific needs of any particular client of CIBC World Markets. Recipients should consider this report as only a single factor in making an investment decision and should not rely solely on investment recommendations contained herein, if any, as a substitution for the exercise of independent judgment of the merits and risks of investments. The analyst writing the report is not a person or company with actual, implied or apparent authority to act on behalf of any issuer mentioned in the report. Before making an investment decision with respect to any security recommended in this report, the recipient should consider whether such recommendation is appropriate given the recipient's particular investment needs, objectives and financial circumstances. CIBC World Markets suggests that, prior to acting on any of the recommendations herein, Canadian retail clients of CIBC World Markets contact one of our client advisers in your jurisdiction to discuss your particular circumstances. Non-client recipients of this report who are not institutional investor clients of CIBC World Markets should consult with an independent financial advisor prior to making any investment decision based on this report or for any necessary explanation of its contents. CIBC World Markets will not treat non-client recipients as its clients solely by virtue of their receiving this report

Legal Disclaimer (Continued) Past performance is not a guarantee of future results, and no representation or warranty, express or implied, is made regarding future performance of any security mentioned in this report. The price of the securities mentioned in this report and the income they produce may fluctuate and/or be adversely affected by exchange rates, and investors may realize losses on investments in such securities, including the loss of investment principal. CIBC World Markets accepts no liability for any loss arising from the use of information contained in this report, except to the extent that liability may arise under specific statutes or regulations applicable to CIBC World Markets. Information, opinions and statistical data contained in this report were obtained or derived from sources believed to be reliable, but CIBC World Markets does not represent that any such information, opinion or statistical data is accurate or complete (with the exception of information contained in the Important Disclosures section of this report provided by CIBC World Markets or individual research analysts), and they should not be relied upon as such. All estimates, opinions and recommendations expressed herein constitute judgments as of the date of this report and are subject to change without notice. Nothing in this report constitutes legal, accounting or tax advice. Since the levels and bases of taxation can change, any reference in this report to the impact of taxation should not be construed as offering tax advice on the tax consequences of investments. As with any investment having potential tax implications, clients should consult with their own independent tax adviser. This report may provide addresses of, or contain hyperlinks to, Internet web sites. CIBC World Markets has not reviewed the linked Internet web site of any third party and takes no responsibility for the contents thereof. Each such address or hyperlink is provided solely for the recipient's convenience and information, and the content of linked third party web sites is not in any way incorporated into this document. Recipients who choose to access such third-party web sites or follow such hyperlinks do so at their own risk. Although each company issuing this report is a wholly owned subsidiary of CIBC, each is solely responsible for its contractual obligations and commitments, and any securities products offered or recommended to or purchased or sold in any client accounts (i) will not be insured by the Federal Deposit Insurance Corporation (“FDIC”), the Canada Deposit Insurance Corporation or other similar deposit insurance, (ii) will not be deposits or other obligations of CIBC, (iii) will not be endorsed or guaranteed by CIBC, and (iv) will be subject to investment risks, including possible loss of the principal invested. CIBC Capital Markets and the CIBC Logo Design are trademarks of CIBC, used under license. © 2024 CIBC World Markets Inc., CIBC World Markets Corp. and CIBC Capital Markets (Europe) S.A. All rights reserved. Unauthorised use, distribution, duplication or disclosure without the prior written permission of CIBC World Markets is prohibited by law and may result in prosecution.

( Companies Mentioned: TSXV:OIII;OTCQX:OIIIF, )




qua

Chesapeake Bay sees slight improvement in water quality

Chesapeake Bay Program — Press Release — October 31, 2024




qua

New way for bridges to withstand earthquakes: Support column design

Full Text:

Bridges make travel faster and more convenient, but, in an earthquake, these structures are subject to forces that can cause extensive damage and make them unsafe. Now civil and environmental engineer Petros Sideris of Texas A&M University is leading a National Science Foundation (NSF)-funded research project to investigate the performance of hybrid sliding-rocking (HSR) columns. HSR columns provide the same support as conventional bridge infrastructure columns but are more earthquake-resistant. HSR columns are a series of individual concrete segments held together by steel cables that allow for controlled sliding and rocking. This allows the columns to shift without damage, while post-tensioning strands ensure that at the end of an earthquake the columns are pushed back to their original position. Conventional bridges are cast-in-place monolithic concrete elements that are strong but inflexible. Structural damage in these bridge columns, typically caused by a natural disaster, often forces a bridge to close until repairs are completed. But bridges with HSR columns can withstand large earthquakes with minimal damage and require minor repairs, likely without bridge closures. Such infrastructure helps with post-disaster response and recovery and can save thousands in taxpayer dollars. In an earthquake, HSR columns provide "multiple advantages to the public," Sideris said. "By preventing bridge damage, we can maintain access to affected areas immediately after an event for response teams to be easily deployed, and help affected communities recover faster. In mitigating losses related to post-event bridge repairs and bridge closures, more funds can be potentially directed to supporting the recovery of the affected communities." According to Joy Pauschke, NSF program director for natural hazards engineering, "NSF invests in fundamental engineering research so that, in the future, the nation's infrastructure can be more resilient to earthquakes, hurricanes, and other forces of nature."

Image credit: Texas A&M University




qua

Robust Silver Deliveries Drive Record Quarterly Revenues and Growth

Silver Crown Royalties Inc. (SCRI:CBOE; SLCRF:OTCQX; QS0:FSE) announced record quarterly revenues in its financial results for the third quarter ending on September 30, 2024. Read more about the impressive growth in silver deliveries and how the company is strategically positioned for continued expansion.




qua

Public Health encourages air quality awareness

When it comes to air quality, many believe it's only an issue during the summer. Air quality remains a problem year round, with ozone being a concern in the summer and particulate matter posing a problem year round. Public Health is working with local officials to raise the importance of air quality awareness and what citizens can do to help improve air quality.




qua

Cable TV show profiling services of local governments, schools, quality of life, to premiere

�Catawba Communities,� a monthly show which will feature information about programs and services provided by local governments, school systems and associated agencies across Catawba County, will premiere on Charter Communications� Government Channel (Channel 3) on Tuesday, August 23, 2011, at 8:00 p.m.




qua

Earthquake survival tips from Catawba County Emergency Services

What if the August 23 earth tremors had been closer or stronger? Would you know what to do? Here are some tips from Catawba County Emergency Services.




qua

Electronics component manufacturer selects Conover as national headquarters

Smart Electric North America, LLC is opening its North American headquarters in Conover, NC at 1550 Deborah Herman Road SW. SENA plans to build market share by supplying quality components and finished goods to the top tier lighting companies in the US first; then abroad.




qua

Western Piedmont Council of Governments wins national honor for Western North Carolina Annual Air Quality Conference.

The Western Piedmont Council of Governments has won a national honor for the Western North Carolina Annual Air Quality Conference held at Lenoir-Rhyne University.




qua

U.S. Health Care Delivery System Needs Major Overhaul To Improve Quality and Safety

The nations health care industry has foundered in its ability to provide safe, high-quality care consistently to all Americans, says a new report from the Institute of Medicine of the National Academies. Reorganization and reform are urgently needed to fix what is now a disjointed and inefficient system.