applications

Family Court consent orders and enforcement applications : a “how to” guide for presenting them in an acceptable form / presented by Verity Brown, Registrar FCA.




applications

Bail applications / presented by Marie Shaw, QC, Frank Moran Chambers.




applications

General guidance on dealing with probate applications and also difficult applications (probate and intestacy) and more / presented by Gaetano Aiello, Treloar & Treloar.




applications

Effets physiologiques et applications thérapeutiques de l'air comprimé / par J.A. Fontaine.

Paris : Germer-Bailliere, 1877.




applications

Modal clustering asymptotics with applications to bandwidth selection

Alessandro Casa, José E. Chacón, Giovanna Menardi.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 835--856.

Abstract:
Density-based clustering relies on the idea of linking groups to some specific features of the probability distribution underlying the data. The reference to a true, yet unknown, population structure allows framing the clustering problem in a standard inferential setting, where the concept of ideal population clustering is defined as the partition induced by the true density function. The nonparametric formulation of this approach, known as modal clustering, draws a correspondence between the groups and the domains of attraction of the density modes. Operationally, a nonparametric density estimate is required and a proper selection of the amount of smoothing, governing the shape of the density and hence possibly the modal structure, is crucial to identify the final partition. In this work, we address the issue of density estimation for modal clustering from an asymptotic perspective. A natural and easy to interpret metric to measure the distance between density-based partitions is discussed, its asymptotic approximation explored, and employed to study the problem of bandwidth selection for nonparametric modal clustering.




applications

Perturbation Bounds for Procrustes, Classical Scaling, and Trilateration, with Applications to Manifold Learning

One of the common tasks in unsupervised learning is dimensionality reduction, where the goal is to find meaningful low-dimensional structures hidden in high-dimensional data. Sometimes referred to as manifold learning, this problem is closely related to the problem of localization, which aims at embedding a weighted graph into a low-dimensional Euclidean space. Several methods have been proposed for localization, and also manifold learning. Nonetheless, the robustness property of most of them is little understood. In this paper, we obtain perturbation bounds for classical scaling and trilateration, which are then applied to derive performance bounds for Isomap, Landmark Isomap, and Maximum Variance Unfolding. A new perturbation bound for procrustes analysis plays a key role.




applications

A New Class of Time Dependent Latent Factor Models with Applications

In many applications, observed data are influenced by some combination of latent causes. For example, suppose sensors are placed inside a building to record responses such as temperature, humidity, power consumption and noise levels. These random, observed responses are typically affected by many unobserved, latent factors (or features) within the building such as the number of individuals, the turning on and off of electrical devices, power surges, etc. These latent factors are usually present for a contiguous period of time before disappearing; further, multiple factors could be present at a time. This paper develops new probabilistic methodology and inference methods for random object generation influenced by latent features exhibiting temporal persistence. Every datum is associated with subsets of a potentially infinite number of hidden, persistent features that account for temporal dynamics in an observation. The ensuing class of dynamic models constructed by adapting the Indian Buffet Process — a probability measure on the space of random, unbounded binary matrices — finds use in a variety of applications arising in operations, signal processing, biomedicine, marketing, image analysis, etc. Illustrations using synthetic and real data are provided.




applications

Provably robust estimation of modulo 1 samples of a smooth function with applications to phase unwrapping

Consider an unknown smooth function $f: [0,1]^d ightarrow mathbb{R}$, and assume we are given $n$ noisy mod 1 samples of $f$, i.e., $y_i = (f(x_i) + eta_i) mod 1$, for $x_i in [0,1]^d$, where $eta_i$ denotes the noise. Given the samples $(x_i,y_i)_{i=1}^{n}$, our goal is to recover smooth, robust estimates of the clean samples $f(x_i) mod 1$. We formulate a natural approach for solving this problem, which works with angular embeddings of the noisy mod 1 samples over the unit circle, inspired by the angular synchronization framework. This amounts to solving a smoothness regularized least-squares problem -- a quadratically constrained quadratic program (QCQP) -- where the variables are constrained to lie on the unit circle. Our proposed approach is based on solving its relaxation, which is a trust-region sub-problem and hence solvable efficiently. We provide theoretical guarantees demonstrating its robustness to noise for adversarial, as well as random Gaussian and Bernoulli noise models. To the best of our knowledge, these are the first such theoretical results for this problem. We demonstrate the robustness and efficiency of our proposed approach via extensive numerical simulations on synthetic data, along with a simple least-squares based solution for the unwrapping stage, that recovers the original samples of $f$ (up to a global shift). It is shown to perform well at high levels of noise, when taking as input the denoised modulo $1$ samples. Finally, we also consider two other approaches for denoising the modulo 1 samples that leverage tools from Riemannian optimization on manifolds, including a Burer-Monteiro approach for a semidefinite programming relaxation of our formulation. For the two-dimensional version of the problem, which has applications in synthetic aperture radar interferometry (InSAR), we are able to solve instances of real-world data with a million sample points in under 10 seconds, on a personal laptop.




applications

A note on the “L-logistic regression models: Prior sensitivity analysis, robustness to outliers and applications”

Saralees Nadarajah, Yuancheng Si.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 183--187.

Abstract:
Da Paz, Balakrishnan and Bazan [Braz. J. Probab. Stat. 33 (2019), 455–479] introduced the L-logistic distribution, studied its properties including estimation issues and illustrated a data application. This note derives a closed form expression for moment properties of the distribution. Some computational issues are discussed.




applications

L-Logistic regression models: Prior sensitivity analysis, robustness to outliers and applications

Rosineide F. da Paz, Narayanaswamy Balakrishnan, Jorge Luis Bazán.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 455--479.

Abstract:
Tadikamalla and Johnson [ Biometrika 69 (1982) 461–465] developed the $L_{B}$ distribution to variables with bounded support by considering a transformation of the standard Logistic distribution. In this manuscript, a convenient parametrization of this distribution is proposed in order to develop regression models. This distribution, referred to here as L-Logistic distribution, provides great flexibility and includes the uniform distribution as a particular case. Several properties of this distribution are studied, and a Bayesian approach is adopted for the parameter estimation. Simulation studies, considering prior sensitivity analysis, recovery of parameters and comparison of algorithms, and robustness to outliers are all discussed showing that the results are insensitive to the choice of priors, efficiency of the algorithm MCMC adopted, and robustness of the model when compared with the beta distribution. Applications to estimate the vulnerability to poverty and to explain the anxiety are performed. The results to applications show that the L-Logistic regression models provide a better fit than the corresponding beta regression models.




applications

A bimodal gamma distribution: Properties, regression model and applications. (arXiv:2004.12491v2 [stat.ME] UPDATED)

In this paper we propose a bimodal gamma distribution using a quadratic transformation based on the alpha-skew-normal model. We discuss several properties of this distribution such as mean, variance, moments, hazard rate and entropy measures. Further, we propose a new regression model with censored data based on the bimodal gamma distribution. This regression model can be very useful to the analysis of real data and could give more realistic fits than other special regression models. Monte Carlo simulations were performed to check the bias in the maximum likelihood estimation. The proposed models are applied to two real data sets found in literature.




applications

Sampling random graph homomorphisms and applications to network data analysis. (arXiv:1910.09483v2 [math.PR] UPDATED)

A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph $F$ into a large network $mathcal{G}$. We propose two complementary MCMC algorithms for sampling a random graph homomorphisms and establish bounds on their mixing times and concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neigborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut distance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also apply our framework for network clustering and classification problems using the Facebook100 dataset and Word Adjacency Networks of a set of classic novels.




applications

Nonparametric Estimation of the Fisher Information and Its Applications. (arXiv:2005.03622v1 [cs.IT])

This paper considers the problem of estimation of the Fisher information for location from a random sample of size $n$. First, an estimator proposed by Bhattacharya is revisited and improved convergence rates are derived. Second, a new estimator, termed a clipped estimator, is proposed. Superior upper bounds on the rates of convergence can be shown for the new estimator compared to the Bhattacharya estimator, albeit with different regularity conditions. Third, both of the estimators are evaluated for the practically relevant case of a random variable contaminated by Gaussian noise. Moreover, using Brown's identity, which relates the Fisher information and the minimum mean squared error (MMSE) in Gaussian noise, two corresponding consistent estimators for the MMSE are proposed. Simulation examples for the Bhattacharya estimator and the clipped estimator as well as the MMSE estimators are presented. The examples demonstrate that the clipped estimator can significantly reduce the required sample size to guarantee a specific confidence interval compared to the Bhattacharya estimator.




applications

Wine science : principles and applications

Jackson, Ron S., author.
9780128161180




applications

Phytoremediation : in-situ applications

9783030000998 (electronic bk.)




applications

Natural materials and products from insects : chemistry and applications

9783030366100 (electronic bk.)




applications

Nanobiomaterial engineering : concepts and their applications in biomedicine and diagnostics

9789813298408 (electronic bk.)




applications

Microbial endophytes : functional biology and applications

9780128196540 (print)




applications

Maxillofacial cone beam computed tomography : principles, techniques and clinical applications

9783319620619 (electronic bk.)




applications

Intelligent wavelet based techniques for advanced multimedia applications

Singh, Rajiv, author
9783030318734 (electronic bk.)




applications

Deep learning in medical image analysis : challenges and applications

9783030331283 (electronic bk.)




applications

Current microbiological research in Africa : selected applications for sustainable environmental management

9783030352967 (electronic bk.)




applications

Cellular internet of things : from massive deployments to critical 5G applications

Liberg, Olof, 1943- author.
9780081029039 (electronic bk.)




applications

Carotenoids : properties, processing and applications

9780128173145 (electronic bk.)




applications

A handbook of nuclear applications in humans' lives

Tabbakh, Farshid, author.
9781527544512 (electronic bk.)




applications

The two-to-infinity norm and singular subspace geometry with applications to high-dimensional statistics

Joshua Cape, Minh Tang, Carey E. Priebe.

Source: The Annals of Statistics, Volume 47, Number 5, 2405--2439.

Abstract:
The singular value matrix decomposition plays a ubiquitous role throughout statistics and related fields. Myriad applications including clustering, classification, and dimensionality reduction involve studying and exploiting the geometric structure of singular values and singular vectors. This paper provides a novel collection of technical and theoretical tools for studying the geometry of singular subspaces using the two-to-infinity norm. Motivated by preliminary deterministic Procrustes analysis, we consider a general matrix perturbation setting in which we derive a new Procrustean matrix decomposition. Together with flexible machinery developed for the two-to-infinity norm, this allows us to conduct a refined analysis of the induced perturbation geometry with respect to the underlying singular vectors even in the presence of singular value multiplicity. Our analysis yields singular vector entrywise perturbation bounds for a range of popular matrix noise models, each of which has a meaningful associated statistical inference task. In addition, we demonstrate how the two-to-infinity norm is the preferred norm in certain statistical settings. Specific applications discussed in this paper include covariance estimation, singular subspace recovery, and multiple graph inference. Both our Procrustean matrix decomposition and the technical machinery developed for the two-to-infinity norm may be of independent interest.




applications

Regression for copula-linked compound distributions with applications in modeling aggregate insurance claims

Peng Shi, Zifeng Zhao.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 357--380.

Abstract:
In actuarial research a task of particular interest and importance is to predict the loss cost for individual risks so that informative decisions are made in various insurance operations such as underwriting, ratemaking and capital management. The loss cost is typically viewed to follow a compound distribution where the summation of the severity variables is stopped by the frequency variable. A challenging issue in modeling such outcomes is to accommodate the potential dependence between the number of claims and the size of each individual claim. In this article we introduce a novel regression framework for compound distributions that uses a copula to accommodate the association between the frequency and the severity variables and, thus, allows for arbitrary dependence between the two components. We further show that the new model is very flexible and is easily modified to account for incomplete data due to censoring or truncation. The flexibility of the proposed model is illustrated using both simulated and real data sets. In the analysis of granular claims data from property insurance, we find substantive negative relationship between the number and the size of insurance claims. In addition, we demonstrate that ignoring the frequency-severity association could lead to biased decision-making in insurance operations.




applications

Bayesian indicator variable selection to incorporate hierarchical overlapping group structure in multi-omics applications

Li Zhu, Zhiguang Huo, Tianzhou Ma, Steffi Oesterreich, George C. Tseng.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2611--2636.

Abstract:
Variable selection is a pervasive problem in modern high-dimensional data analysis where the number of features often exceeds the sample size (a.k.a. small-n-large-p problem). Incorporation of group structure knowledge to improve variable selection has been widely studied. Here, we consider prior knowledge of a hierarchical overlapping group structure to improve variable selection in regression setting. In genomics applications, for instance, a biological pathway contains tens to hundreds of genes and a gene can be mapped to multiple experimentally measured features (such as its mRNA expression, copy number variation and methylation levels of possibly multiple sites). In addition to the hierarchical structure, the groups at the same level may overlap (e.g., two pathways can share common genes). Incorporating such hierarchical overlapping groups in traditional penalized regression setting remains a difficult optimization problem. Alternatively, we propose a Bayesian indicator model that can elegantly serve the purpose. We evaluate the model in simulations and two breast cancer examples, and demonstrate its superior performance over existing models. The result not only enhances prediction accuracy but also improves variable selection and model interpretation that lead to deeper biological insight of the disease.




applications

Network classification with applications to brain connectomics

Jesús D. Arroyo Relión, Daniel Kessler, Elizaveta Levina, Stephan F. Taylor.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1648--1677.

Abstract:
While statistical analysis of a single network has received a lot of attention in recent years, with a focus on social networks, analysis of a sample of networks presents its own challenges which require a different set of analytic tools. Here we study the problem of classification of networks with labeled nodes, motivated by applications in neuroimaging. Brain networks are constructed from imaging data to represent functional connectivity between regions of the brain, and previous work has shown the potential of such networks to distinguish between various brain disorders, giving rise to a network classification problem. Existing approaches tend to either treat all edge weights as a long vector, ignoring the network structure, or focus on graph topology as represented by summary measures while ignoring the edge weights. Our goal is to design a classification method that uses both the individual edge information and the network structure of the data in a computationally efficient way, and that can produce a parsimonious and interpretable representation of differences in brain connectivity patterns between classes. We propose a graph classification method that uses edge weights as predictors but incorporates the network nature of the data via penalties that promote sparsity in the number of nodes, in addition to the usual sparsity penalties that encourage selection of edges. We implement the method via efficient convex optimization and provide a detailed analysis of data from two fMRI studies of schizophrenia.




applications

Directional differentiability for supremum-type functionals: Statistical applications

Javier Cárcamo, Antonio Cuevas, Luis-Alberto Rodríguez.

Source: Bernoulli, Volume 26, Number 3, 2143--2175.

Abstract:
We show that various functionals related to the supremum of a real function defined on an arbitrary set or a measure space are Hadamard directionally differentiable. We specifically consider the supremum norm, the supremum, the infimum, and the amplitude of a function. The (usually non-linear) derivatives of these maps adopt simple expressions under suitable assumptions on the underlying space. As an application, we improve and extend to the multidimensional case the results in Raghavachari ( Ann. Statist. 1 (1973) 67–73) regarding the limiting distributions of Kolmogorov–Smirnov type statistics under the alternative hypothesis. Similar results are obtained for analogous statistics associated with copulas. We additionally solve an open problem about the Berk–Jones statistic proposed by Jager and Wellner (In A Festschrift for Herman Rubin (2004) 319–331 IMS). Finally, the asymptotic distribution of maximum mean discrepancies over Donsker classes of functions is derived.




applications

Noncommutative Lebesgue decomposition and contiguity with applications in quantum statistics

Akio Fujiwara, Koichi Yamagata.

Source: Bernoulli, Volume 26, Number 3, 2105--2142.

Abstract:
We herein develop a theory of contiguity in the quantum domain based upon a novel quantum analogue of the Lebesgue decomposition. The theory thus formulated is pertinent to the weak quantum local asymptotic normality introduced in the previous paper [Yamagata, Fujiwara, and Gill, Ann. Statist. 41 (2013) 2197–2217], yielding substantial enlargement of the scope of quantum statistics.




applications

Logarithmic Sobolev inequalities for finite spin systems and applications

Holger Sambale, Arthur Sinulis.

Source: Bernoulli, Volume 26, Number 3, 1863--1890.

Abstract:
We derive sufficient conditions for a probability measure on a finite product space (a spin system ) to satisfy a (modified) logarithmic Sobolev inequality. We establish these conditions for various examples, such as the (vertex-weighted) exponential random graph model, the random coloring and the hard-core model with fugacity. This leads to two separate branches of applications. The first branch is given by mixing time estimates of the Glauber dynamics. The proofs do not rely on coupling arguments, but instead use functional inequalities. As a byproduct, this also yields exponential decay of the relative entropy along the Glauber semigroup. Secondly, we investigate the concentration of measure phenomenon (particularly of higher order) for these spin systems. We show the effect of better concentration properties by centering not around the mean, but around a stochastic term in the exponential random graph model. From there, one can deduce a central limit theorem for the number of triangles from the CLT of the edge count. In the Erdős–Rényi model the first-order approximation leads to a quantification and a proof of a central limit theorem for subgraph counts.




applications

Robust modifications of U-statistics and applications to covariance estimation problems

Stanislav Minsker, Xiaohan Wei.

Source: Bernoulli, Volume 26, Number 1, 694--727.

Abstract:
Let $Y$ be a $d$-dimensional random vector with unknown mean $mu $ and covariance matrix $Sigma $. This paper is motivated by the problem of designing an estimator of $Sigma $ that admits exponential deviation bounds in the operator norm under minimal assumptions on the underlying distribution, such as existence of only 4th moments of the coordinates of $Y$. To address this problem, we propose robust modifications of the operator-valued U-statistics, obtain non-asymptotic guarantees for their performance, and demonstrate the implications of these results to the covariance estimation problem under various structural assumptions.




applications

A unified approach to coupling SDEs driven by Lévy noise and some applications

Mingjie Liang, René L. Schilling, Jian Wang.

Source: Bernoulli, Volume 26, Number 1, 664--693.

Abstract:
We present a general method to construct couplings of stochastic differential equations driven by Lévy noise in terms of coupling operators. This approach covers both coupling by reflection and refined basic coupling which are often discussed in the literature. As applications, we prove regularity results for the transition semigroups and obtain successful couplings for the solutions to stochastic differential equations driven by additive Lévy noise.




applications

High dimensional deformed rectangular matrices with applications in matrix denoising

Xiucai Ding.

Source: Bernoulli, Volume 26, Number 1, 387--417.

Abstract:
We consider the recovery of a low rank $M imes N$ matrix $S$ from its noisy observation $ ilde{S}$ in the high dimensional framework when $M$ is comparable to $N$. We propose two efficient estimators for $S$ under two different regimes. Our analysis relies on the local asymptotics of the eigenstructure of large dimensional rectangular matrices with finite rank perturbation. We derive the convergent limits and rates for the singular values and vectors for such matrices.




applications

Separable covariance arrays via the Tucker product, with applications to multivariate relational data

Peter D. Hoff

Source: Bayesian Anal., Volume 6, Number 2, 179--196.

Abstract:
Modern datasets are often in the form of matrices or arrays, potentially having correlations along each set of data indices. For example, data involving repeated measurements of several variables over time may exhibit temporal correlation as well as correlation among the variables. A possible model for matrix-valued data is the class of matrix normal distributions, which is parametrized by two covariance matrices, one for each index set of the data. In this article we discuss an extension of the matrix normal model to accommodate multidimensional data arrays, or tensors. We show how a particular array-matrix product can be used to generate the class of array normal distributions having separable covariance structure. We derive some properties of these covariance structures and the corresponding array normal distributions, and show how the array-matrix product can be used to define a semi-conjugate prior distribution and calculate the corresponding posterior distribution. We illustrate the methodology in an analysis of multivariate longitudinal network data which take the form of a four-way array.




applications

SOLIDWORKS Surface Tools for Industrial Applications

Need for Surface Surface Modelling is a method used to create and represent complex shapes with high curvature controls. Generally, surfaces are used as an alternative where a particular feature is difficult to create using solid modeling. It is helpful

Author information

E G S Computers India Private Limited, since 1993, has been in the forefront of delivering solutions
to customers in the areas of Product Design and Development with SOLIDWORKS 3D CAD,Remaining Life Calculations,
Validation using Finite Element Analysis, Customization of Engineering activities and Training in advanced engineering functions
relating to design and development.

EGS India - Authorized Reseller for SOLIDWORKS Solutions in India - Chennai, Coimbatore, Trichy, Madurai - Tamil Nadu, Pondicherry.
For any queries on SOLIDWORKS Solutions contact @ 9445424704 | mktg@egs.co.in
| Website - www.egsindia.com

The post SOLIDWORKS Surface Tools for Industrial Applications appeared first on SOLIDWORKS Tech Blog.




applications

Hypospadias and Residential Proximity to Pesticide Applications

Some studies suggest a contribution of environmental exposures such as pesticides to risk of hypospadias, whereas others do not. One of the challenges that has limited current knowledge is the lack of detailed exposure data.

This study examined a more detailed assessment of exposure to pesticides than previous studies. Exposure assignments, whether to groups of chemicals, specific chemicals, or a composite involving a number of chemicals, showed a general lack of association with hypospadias. (Read the full article)




applications

Downtown Development District Grant Applications Open

Projects in Dover, Georgetown, Harrington, Laurel, Milford, Seaford, Smyrna and Wilmington Eligible For Funding DOVER — The Delaware State Housing Authority is accepting applications through December 15 for large project grants through the Downtown Development District Program. The grants provide up to 20 percent rebates on qualified real property investments in one of the eight […]



  • Delaware State Housing Authority

applications

FY 2019 Grant Applications for Arts & Community-Based Organizations and Schools Now open

FISCAL YEAR 2019 GRANT APPLICATIONS FOR DELAWARE ARTS & COMMUNITY-BASED ORGANIZATIONS AND SCHOOLS NOW OPEN Wilmington, Del. (December 12, 2017) – The Delaware Division of the Arts has opened its annual online grant application process for grants for arts programming and projects taking place during fiscal year 2019 (September 2018 – August 2019). Applications are due […]




applications

Delaware Angel Investor Tax Credit Applications Now Available

Refundable tax credit to encourage job creation, innovation WILMINGTON, Del. – Qualified investors and high-tech small businesses can now make use of Delaware’s newest program aimed at encouraging job creation and innovation. The Delaware Division of Small Business began Thursday accepting certification applications for the Angel Investor Tax Credit (AITC) at www.business.delaware.gov/incentives. “We are excited […]




applications

FY 2020 Grant Applications for Arts & Community-Based Organizations and Schools Now Open

For arts programming and projects taking place during fiscal year 2020 (September 2019 – August 2020) Wilmington, Del. (December 13, 2018) – The Delaware Division of the Arts has opened its annual online application process for grants for arts programming and projects taking place during fiscal year 2020 (September 2019 – August 2020). Applications will be […]




applications

FY 2021 Grant Applications for Arts & Community-Based Organizations and Schools Now Open

For arts programming and projects taking place during fiscal year 2020 (September 2019 – August 2020) Wilmington, Del. (December 5, 2019) – The Delaware Division of the Arts has opened its annual online application process for grants for arts programming and projects taking place during fiscal year 2021 (September 2020 – August 2021). Applications will […]




applications

Young Farmers Program now accepting loan applications

Young Delaware farmers seeking to purchase land may be able to receive assistance through an innovative State of Delaware program. The Young Farmers Program is now accepting applications for its fourth round of funding, with applications due Nov. 30.



  • Department of Agriculture
  • News

applications

Applications now accepted for second round of urban agriculture and community garden micro-grants

Organizations wanting to launch or expand an urban agriculture or community garden project to benefit their neighborhood can apply for micro-grants from the Delaware Department of Agriculture.



  • Department of Agriculture

applications

Delaware Forestry Association annual meeting is March 22 in Bridgeville; Scholarship applications due by April 1.

The Delaware Forestry Association (DFA) will present its 2018 “Tree Farmer of the Year” award on Thursday, March 22, at its annual banquet and meeting at the Bridgeville Fire Hall, 311 Market Street, Bridgeville, Delaware 19933, (302) 337-7272. Tickets are $27 for adults, $13.50 for children ages 6 to 12, and free for children 6 and under. Reservations are kindly requested by March 16. The Delaware Forestry Association is also offering its annual $1000 scholarship to a student who chooses forestry or a related major at a two-year or four-year accredited college or university. Applications are due by April 1 and the winner will be notified by May 1.




applications

Americorps Request for Competitive and Formula Applications 2020 - 2021

Agency: HSS Closing Date: 5/18/2020




applications

Health Care Commission Seeks Applications from Delaware Health Care Providers for One-Time Mini-Grants Related to Payment Reform

NEW CASTLE (July 26, 2018) – As part of the State Innovation Model (SIM) initiative, the Delaware Health Care Commission is seeking applications from Delaware health care providers for one-time, value-based payment reform mini-grants to grow their capacity to integrate data, improve the coordination of patient care or increase their readiness to integrate into a […]




applications

DHSS Seeks Mini-Grant Applications from Small Primary Care Practices to Connect to Delaware Health Information Network

NEW CASTLE (October 9, 2019) – The Department of Health and Social Services (DHSS) is seeking applications from Delaware health care providers for one-time, health information exchange (HIE) support mini-grants to adopt the full range of health information exchange tools offered by the Delaware Health Information Network (DHIN). DHIN is Delaware’s Health Information Exchange (HIE) […]



  • Delaware Health and Social Services
  • News
  • Delaware Health Care Commission
  • Delaware Health Information Network
  • DHIN

applications

New System To Support Applications For Pandemic Unemployment Announced

Wilmington – Today, May 04, 2020, the Delaware Department of Labor is announcing the launch of a new unemployment insurance benefits system that will process claims for independent contractors, self-employed individuals, and others as detailed in the CARES Act. These individuals can file benefits claims for Pandemic Unemployment Assistance beginning the week of May 11, […]



  • Department of Labor
  • news