si A hierarchical Bayesian model for single-cell clustering using RNA-sequencing data By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Yiyi Liu, Joshua L. Warren, Hongyu Zhao. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1733--1752.Abstract: Understanding the heterogeneity of cells is an important biological question. The development of single-cell RNA-sequencing (scRNA-seq) technology provides high resolution data for such inquiry. A key challenge in scRNA-seq analysis is the high variability of measured RNA expression levels and frequent dropouts (missing values) due to limited input RNA compared to bulk RNA-seq measurement. Existing clustering methods do not perform well for these noisy and zero-inflated scRNA-seq data. In this manuscript we propose a Bayesian hierarchical model, called BasClu, to appropriately characterize important features of scRNA-seq data in order to more accurately cluster cells. We demonstrate the effectiveness of our method with extensive simulation studies and applications to three real scRNA-seq datasets. Full Article
si A Bayesian mark interaction model for analysis of tumor pathology images By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Qiwei Li, Xinlei Wang, Faming Liang, Guanghua Xiao. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1708--1732.Abstract: With the advance of imaging technology, digital pathology imaging of tumor tissue slides is becoming a routine clinical procedure for cancer diagnosis. This process produces massive imaging data that capture histological details in high resolution. Recent developments in deep-learning methods have enabled us to identify and classify individual cells from digital pathology images at large scale. Reliable statistical approaches to model the spatial pattern of cells can provide new insight into tumor progression and shed light on the biological mechanisms of cancer. We consider the problem of modeling spatial correlations among three commonly seen cells observed in tumor pathology images. A novel geostatistical marking model with interpretable underlying parameters is proposed in a Bayesian framework. We use auxiliary variable MCMC algorithms to sample from the posterior distribution with an intractable normalizing constant. We demonstrate how this model-based analysis can lead to sharper inferences than ordinary exploratory analyses, by means of application to three benchmark datasets and a case study on the pathology images of $188$ lung cancer patients. The case study shows that the spatial correlation between tumor and stromal cells predicts patient prognosis. This statistical methodology not only presents a new model for characterizing spatial correlations in a multitype spatial point pattern conditioning on the locations of the points, but also provides a new perspective for understanding the role of cell–cell interactions in cancer progression. Full Article
si Sequential decision model for inference and prediction on nonuniform hypergraphs with application to knot matching from computational forestry By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Seong-Hwan Jun, Samuel W. K. Wong, James V. Zidek, Alexandre Bouchard-Côté. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1678--1707.Abstract: In this paper, we consider the knot-matching problem arising in computational forestry. The knot-matching problem is an important problem that needs to be solved to advance the state of the art in automatic strength prediction of lumber. We show that this problem can be formulated as a quadripartite matching problem and develop a sequential decision model that admits efficient parameter estimation along with a sequential Monte Carlo sampler on graph matching that can be utilized for rapid sampling of graph matching. We demonstrate the effectiveness of our methods on 30 manually annotated boards and present findings from various simulation studies to provide further evidence supporting the efficacy of our methods. Full Article
si Network classification with applications to brain connectomics By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Jesús D. Arroyo Relión, Daniel Kessler, Elizaveta Levina, Stephan F. Taylor. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1648--1677.Abstract: While statistical analysis of a single network has received a lot of attention in recent years, with a focus on social networks, analysis of a sample of networks presents its own challenges which require a different set of analytic tools. Here we study the problem of classification of networks with labeled nodes, motivated by applications in neuroimaging. Brain networks are constructed from imaging data to represent functional connectivity between regions of the brain, and previous work has shown the potential of such networks to distinguish between various brain disorders, giving rise to a network classification problem. Existing approaches tend to either treat all edge weights as a long vector, ignoring the network structure, or focus on graph topology as represented by summary measures while ignoring the edge weights. Our goal is to design a classification method that uses both the individual edge information and the network structure of the data in a computationally efficient way, and that can produce a parsimonious and interpretable representation of differences in brain connectivity patterns between classes. We propose a graph classification method that uses edge weights as predictors but incorporates the network nature of the data via penalties that promote sparsity in the number of nodes, in addition to the usual sparsity penalties that encourage selection of edges. We implement the method via efficient convex optimization and provide a detailed analysis of data from two fMRI studies of schizophrenia. Full Article
si RCRnorm: An integrated system of random-coefficient hierarchical regression models for normalizing NanoString nCounter data By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Gaoxiang Jia, Xinlei Wang, Qiwei Li, Wei Lu, Ximing Tang, Ignacio Wistuba, Yang Xie. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1617--1647.Abstract: Formalin-fixed paraffin-embedded (FFPE) samples have great potential for biomarker discovery, retrospective studies and diagnosis or prognosis of diseases. Their application, however, is hindered by the unsatisfactory performance of traditional gene expression profiling techniques on damaged RNAs. NanoString nCounter platform is well suited for profiling of FFPE samples and measures gene expression with high sensitivity which may greatly facilitate realization of scientific and clinical values of FFPE samples. However, methodological development for normalization, a critical step when analyzing this type of data, is far behind. Existing methods designed for the platform use information from different types of internal controls separately and rely on an overly-simplified assumption that expression of housekeeping genes is constant across samples for global scaling. Thus, these methods are not optimized for the nCounter system, not mentioning that they were not developed for FFPE samples. We construct an integrated system of random-coefficient hierarchical regression models to capture main patterns and characteristics observed from NanoString data of FFPE samples and develop a Bayesian approach to estimate parameters and normalize gene expression across samples. Our method, labeled RCRnorm, incorporates information from all aspects of the experimental design and simultaneously removes biases from various sources. It eliminates the unrealistic assumption on housekeeping genes and offers great interpretability. Furthermore, it is applicable to freshly frozen or like samples that can be generally viewed as a reduced case of FFPE samples. Simulation and applications showed the superior performance of RCRnorm. Full Article
si Modeling seasonality and serial dependence of electricity price curves with warping functional autoregressive dynamics By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Ying Chen, J. S. Marron, Jiejie Zhang. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1590--1616.Abstract: Electricity prices are high dimensional, serially dependent and have seasonal variations. We propose a Warping Functional AutoRegressive (WFAR) model that simultaneously accounts for the cross time-dependence and seasonal variations of the large dimensional data. In particular, electricity price curves are obtained by smoothing over the $24$ discrete hourly prices on each day. In the functional domain, seasonal phase variations are separated from level amplitude changes in a warping process with the Fisher–Rao distance metric, and the aligned (season-adjusted) electricity price curves are modeled in the functional autoregression framework. In a real application, the WFAR model provides superior out-of-sample forecast accuracy in both a normal functioning market, Nord Pool, and an extreme situation, the California market. The forecast performance as well as the relative accuracy improvement are stable for different markets and different time periods. Full Article
si Distributional regression forests for probabilistic precipitation forecasting in complex terrain By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Lisa Schlosser, Torsten Hothorn, Reto Stauffer, Achim Zeileis. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1564--1589.Abstract: To obtain a probabilistic model for a dependent variable based on some set of explanatory variables, a distributional approach is often adopted where the parameters of the distribution are linked to regressors. In many classical models this only captures the location of the distribution but over the last decade there has been increasing interest in distributional regression approaches modeling all parameters including location, scale and shape. Notably, so-called nonhomogeneous Gaussian regression (NGR) models both mean and variance of a Gaussian response and is particularly popular in weather forecasting. Moreover, generalized additive models for location, scale and shape (GAMLSS) provide a framework where each distribution parameter is modeled separately capturing smooth linear or nonlinear effects. However, when variable selection is required and/or there are nonsmooth dependencies or interactions (especially unknown or of high-order), it is challenging to establish a good GAMLSS. A natural alternative in these situations would be the application of regression trees or random forests but, so far, no general distributional framework is available for these. Therefore, a framework for distributional regression trees and forests is proposed that blends regression trees and random forests with classical distributions from the GAMLSS framework as well as their censored or truncated counterparts. To illustrate these novel approaches in practice, they are employed to obtain probabilistic precipitation forecasts at numerous sites in a mountainous region (Tyrol, Austria) based on a large number of numerical weather prediction quantities. It is shown that the novel distributional regression forests automatically select variables and interactions, performing on par or often even better than GAMLSS specified either through prior meteorological knowledge or a computationally more demanding boosting approach. Full Article
si Network modelling of topological domains using Hi-C data By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Y. X. Rachel Wang, Purnamrita Sarkar, Oana Ursu, Anshul Kundaje, Peter J. Bickel. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1511--1536.Abstract: Chromosome conformation capture experiments such as Hi-C are used to map the three-dimensional spatial organization of genomes. One specific feature of the 3D organization is known as topologically associating domains (TADs), which are densely interacting, contiguous chromatin regions playing important roles in regulating gene expression. A few algorithms have been proposed to detect TADs. In particular, the structure of Hi-C data naturally inspires application of community detection methods. However, one of the drawbacks of community detection is that most methods take exchangeability of the nodes in the network for granted; whereas the nodes in this case, that is, the positions on the chromosomes, are not exchangeable. We propose a network model for detecting TADs using Hi-C data that takes into account this nonexchangeability. In addition, our model explicitly makes use of cell-type specific CTCF binding sites as biological covariates and can be used to identify conserved TADs across multiple cell types. The model leads to a likelihood objective that can be efficiently optimized via relaxation. We also prove that when suitably initialized, this model finds the underlying TAD structure with high probability. Using simulated data, we show the advantages of our method and the caveats of popular community detection methods, such as spectral clustering, in this application. Applying our method to real Hi-C data, we demonstrate the domains identified have desirable epigenetic features and compare them across different cell types. Full Article
si The classification permutation test: A flexible approach to testing for covariate imbalance in observational studies By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Johann Gagnon-Bartsch, Yotam Shem-Tov. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1464--1483.Abstract: The gold standard for identifying causal relationships is a randomized controlled experiment. In many applications in the social sciences and medicine, the researcher does not control the assignment mechanism and instead may rely upon natural experiments or matching methods as a substitute to experimental randomization. The standard testable implication of random assignment is covariate balance between the treated and control units. Covariate balance is commonly used to validate the claim of as good as random assignment. We propose a new nonparametric test of covariate balance. Our Classification Permutation Test (CPT) is based on a combination of classification methods (e.g., random forests) with Fisherian permutation inference. We revisit four real data examples and present Monte Carlo power simulations to demonstrate the applicability of the CPT relative to other nonparametric tests of equality of multivariate distributions. Full Article
si Imputation and post-selection inference in models with missing data: An application to colorectal cancer surveillance guidelines By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Lin Liu, Yuqi Qiu, Loki Natarajan, Karen Messer. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1370--1396.Abstract: It is common to encounter missing data among the potential predictor variables in the setting of model selection. For example, in a recent study we attempted to improve the US guidelines for risk stratification after screening colonoscopy ( Cancer Causes Control 27 (2016) 1175–1185), with the aim to help reduce both overuse and underuse of follow-on surveillance colonoscopy. The goal was to incorporate selected additional informative variables into a neoplasia risk-prediction model, going beyond the three currently established risk factors, using a large dataset pooled from seven different prospective studies in North America. Unfortunately, not all candidate variables were collected in all studies, so that one or more important potential predictors were missing on over half of the subjects. Thus, while variable selection was a main focus of the study, it was necessary to address the substantial amount of missing data. Multiple imputation can effectively address missing data, and there are also good approaches to incorporate the variable selection process into model-based confidence intervals. However, there is not consensus on appropriate methods of inference which address both issues simultaneously. Our goal here is to study the properties of model-based confidence intervals in the setting of imputation for missing data followed by variable selection. We use both simulation and theory to compare three approaches to such post-imputation-selection inference: a multiple-imputation approach based on Rubin’s Rules for variance estimation ( Comput. Statist. Data Anal. 71 (2014) 758–770); a single imputation-selection followed by bootstrap percentile confidence intervals; and a new bootstrap model-averaging approach presented here, following Efron ( J. Amer. Statist. Assoc. 109 (2014) 991–1007). We investigate relative strengths and weaknesses of each method. The “Rubin’s Rules” multiple imputation estimator can have severe undercoverage, and is not recommended. The imputation-selection estimator with bootstrap percentile confidence intervals works well. The bootstrap-model-averaged estimator, with the “Efron’s Rules” estimated variance, may be preferred if the true effect sizes are moderate. We apply these results to the colorectal neoplasia risk-prediction problem which motivated the present work. Full Article
si Introduction to papers on the modeling and analysis of network data—II By projecteuclid.org Published On :: Thu, 05 Aug 2010 15:41 EDT Stephen E. FienbergSource: Ann. Appl. Stat., Volume 4, Number 2, 533--534. Full Article
si Frequency domain theory for functional time series: Variance decomposition and an invariance principle By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Piotr Kokoszka, Neda Mohammadi Jouzdani. Source: Bernoulli, Volume 26, Number 3, 2383--2399.Abstract: This paper is concerned with frequency domain theory for functional time series, which are temporally dependent sequences of functions in a Hilbert space. We consider a variance decomposition, which is more suitable for such a data structure than the variance decomposition based on the Karhunen–Loéve expansion. The decomposition we study uses eigenvalues of spectral density operators, which are functional analogs of the spectral density of a stationary scalar time series. We propose estimators of the variance components and derive convergence rates for their mean square error as well as their asymptotic normality. The latter is derived from a frequency domain invariance principle for the estimators of the spectral density operators. This principle is established for a broad class of linear time series models. It is a main contribution of the paper. Full Article
si Bayesian linear regression for multivariate responses under group sparsity By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Bo Ning, Seonghyun Jeong, Subhashis Ghosal. Source: Bernoulli, Volume 26, Number 3, 2353--2382.Abstract: We study frequentist properties of a Bayesian high-dimensional multivariate linear regression model with correlated responses. The predictors are separated into many groups and the group structure is pre-determined. Two features of the model are unique: (i) group sparsity is imposed on the predictors; (ii) the covariance matrix is unknown and its dimensions can also be high. We choose a product of independent spike-and-slab priors on the regression coefficients and a new prior on the covariance matrix based on its eigendecomposition. Each spike-and-slab prior is a mixture of a point mass at zero and a multivariate density involving the $ell_{2,1}$-norm. We first obtain the posterior contraction rate, the bounds on the effective dimension of the model with high posterior probabilities. We then show that the multivariate regression coefficients can be recovered under certain compatibility conditions. Finally, we quantify the uncertainty for the regression coefficients with frequentist validity through a Bernstein–von Mises type theorem. The result leads to selection consistency for the Bayesian method. We derive the posterior contraction rate using the general theory by constructing a suitable test from the first principle using moment bounds for certain likelihood ratios. This leads to posterior concentration around the truth with respect to the average Rényi divergence of order $1/2$. This technique of obtaining the required tests for posterior contraction rate could be useful in many other problems. Full Article
si Convergence of persistence diagrams for topological crackle By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Takashi Owada, Omer Bobrowski. Source: Bernoulli, Volume 26, Number 3, 2275--2310.Abstract: In this paper, we study the persistent homology associated with topological crackle generated by distributions with an unbounded support. Persistent homology is a topological and algebraic structure that tracks the creation and destruction of topological cycles (generalizations of loops or holes) in different dimensions. Topological crackle is a term that refers to topological cycles generated by random points far away from the bulk of other points, when the support is unbounded. We establish weak convergence results for persistence diagrams – a point process representation for persistent homology, where each topological cycle is represented by its $({mathit{birth},mathit{death}})$ coordinates. In this work, we treat persistence diagrams as random closed sets, so that the resulting weak convergence is defined in terms of the Fell topology. Using this framework, we show that the limiting persistence diagrams can be divided into two parts. The first part is a deterministic limit containing a densely-growing number of persistence pairs with a shorter lifespan. The second part is a two-dimensional Poisson process, representing persistence pairs with a longer lifespan. Full Article
si On Sobolev tests of uniformity on the circle with an extension to the sphere By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Sreenivasa Rao Jammalamadaka, Simos Meintanis, Thomas Verdebout. Source: Bernoulli, Volume 26, Number 3, 2226--2252.Abstract: Circular and spherical data arise in many applications, especially in biology, Earth sciences and astronomy. In dealing with such data, one of the preliminary steps before any further inference, is to test if such data is isotropic, that is, uniformly distributed around the circle or the sphere. In view of its importance, there is a considerable literature on the topic. In the present work, we provide new tests of uniformity on the circle based on original asymptotic results. Our tests are motivated by the shape of locally and asymptotically maximin tests of uniformity against generalized von Mises distributions. We show that they are uniformly consistent. Empirical power comparisons with several competing procedures are presented via simulations. The new tests detect particularly well multimodal alternatives such as mixtures of von Mises distributions. A practically-oriented combination of the new tests with already existing Sobolev tests is proposed. An extension to testing uniformity on the sphere, along with some simulations, is included. The procedures are illustrated on a real dataset. Full Article
si Exponential integrability and exit times of diffusions on sub-Riemannian and metric measure spaces By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Anton Thalmaier, James Thompson. Source: Bernoulli, Volume 26, Number 3, 2202--2225.Abstract: In this article, we derive moment estimates, exponential integrability, concentration inequalities and exit times estimates for canonical diffusions firstly on sub-Riemannian limits of Riemannian foliations and secondly in the nonsmooth setting of $operatorname{RCD}^{*}(K,N)$ spaces. In each case, the necessary ingredients are Itô’s formula and a comparison theorem for the Laplacian, for which we refer to the recent literature. As an application, we derive pointwise Carmona-type estimates on eigenfunctions of Schrödinger operators. Full Article
si Scaling limits for super-replication with transient price impact By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Peter Bank, Yan Dolinsky. Source: Bernoulli, Volume 26, Number 3, 2176--2201.Abstract: We prove a scaling limit theorem for the super-replication cost of options in a Cox–Ross–Rubinstein binomial model with transient price impact. The correct scaling turns out to keep the market depth parameter constant while resilience over fixed periods of time grows in inverse proportion with the duration between trading times. For vanilla options, the scaling limit is found to coincide with the one obtained by PDE-methods in ( Math. Finance 22 (2012) 250–276) for models with purely temporary price impact. These models are a special case of our framework and so our probabilistic scaling limit argument allows one to expand the scope of the scaling limit result to path-dependent options. Full Article
si Noncommutative Lebesgue decomposition and contiguity with applications in quantum statistics By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Akio Fujiwara, Koichi Yamagata. Source: Bernoulli, Volume 26, Number 3, 2105--2142.Abstract: We herein develop a theory of contiguity in the quantum domain based upon a novel quantum analogue of the Lebesgue decomposition. The theory thus formulated is pertinent to the weak quantum local asymptotic normality introduced in the previous paper [Yamagata, Fujiwara, and Gill, Ann. Statist. 41 (2013) 2197–2217], yielding substantial enlargement of the scope of quantum statistics. Full Article
si Perfect sampling for Gibbs point processes using partial rejection sampling By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Sarat B. Moka, Dirk P. Kroese. Source: Bernoulli, Volume 26, Number 3, 2082--2104.Abstract: We present a perfect sampling algorithm for Gibbs point processes, based on the partial rejection sampling of Guo, Jerrum and Liu (In STOC’17 – Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (2017) 342–355 ACM). Our particular focus is on pairwise interaction processes, penetrable spheres mixture models and area-interaction processes, with a finite interaction range. For an interaction range $2r$ of the target process, the proposed algorithm can generate a perfect sample with $O(log(1/r))$ expected running time complexity, provided that the intensity of the points is not too high and $Theta(1/r^{d})$ parallel processor units are available. Full Article
si On sampling from a log-concave density using kinetic Langevin diffusions By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Arnak S. Dalalyan, Lionel Riou-Durand. Source: Bernoulli, Volume 26, Number 3, 1956--1988.Abstract: Langevin diffusion processes and their discretizations are often used for sampling from a target density. The most convenient framework for assessing the quality of such a sampling scheme corresponds to smooth and strongly log-concave densities defined on $mathbb{R}^{p}$. The present work focuses on this framework and studies the behavior of the Monte Carlo algorithm based on discretizations of the kinetic Langevin diffusion. We first prove the geometric mixing property of the kinetic Langevin diffusion with a mixing rate that is optimal in terms of its dependence on the condition number. We then use this result for obtaining improved guarantees of sampling using the kinetic Langevin Monte Carlo method, when the quality of sampling is measured by the Wasserstein distance. We also consider the situation where the Hessian of the log-density of the target distribution is Lipschitz-continuous. In this case, we introduce a new discretization of the kinetic Langevin diffusion and prove that this leads to a substantial improvement of the upper bound on the sampling error measured in Wasserstein distance. Full Article
si On the best constant in the martingale version of Fefferman’s inequality By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Adam Osękowski. Source: Bernoulli, Volume 26, Number 3, 1912--1926.Abstract: Let $X=(X_{t})_{tgeq 0}in H^{1}$ and $Y=(Y_{t})_{tgeq 0}in{mathrm{BMO}} $ be arbitrary continuous-path martingales. The paper contains the proof of the inequality egin{equation*}mathbb{E}int _{0}^{infty }iglvert dlangle X,Y angle_{t}igrvert leq sqrt{2}Vert XVert _{H^{1}}Vert YVert _{mathrm{BMO}_{2}},end{equation*} and the constant $sqrt{2}$ is shown to be the best possible. The proof rests on the construction of a certain special function, enjoying appropriate size and concavity conditions. Full Article
si Kernel and wavelet density estimators on manifolds and more general metric spaces By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Galatia Cleanthous, Athanasios G. Georgiadis, Gerard Kerkyacharian, Pencho Petrushev, Dominique Picard. Source: Bernoulli, Volume 26, Number 3, 1832--1862.Abstract: We consider the problem of estimating the density of observations taking values in classical or nonclassical spaces such as manifolds and more general metric spaces. Our setting is quite general but also sufficiently rich in allowing the development of smooth functional calculus with well localized spectral kernels, Besov regularity spaces, and wavelet type systems. Kernel and both linear and nonlinear wavelet density estimators are introduced and studied. Convergence rates for these estimators are established and discussed. Full Article
si Optimal functional supervised classification with separation condition By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Sébastien Gadat, Sébastien Gerchinovitz, Clément Marteau. Source: Bernoulli, Volume 26, Number 3, 1797--1831.Abstract: We consider the binary supervised classification problem with the Gaussian functional model introduced in ( Math. Methods Statist. 22 (2013) 213–225). Taking advantage of the Gaussian structure, we design a natural plug-in classifier and derive a family of upper bounds on its worst-case excess risk over Sobolev spaces. These bounds are parametrized by a separation distance quantifying the difficulty of the problem, and are proved to be optimal (up to logarithmic factors) through matching minimax lower bounds. Using the recent works of (In Advances in Neural Information Processing Systems (2014) 3437–3445 Curran Associates) and ( Ann. Statist. 44 (2016) 982–1009), we also derive a logarithmic lower bound showing that the popular $k$-nearest neighbors classifier is far from optimality in this specific functional setting. Full Article
si Local differential privacy: Elbow effect in optimal density estimation and adaptation over Besov ellipsoids By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Cristina Butucea, Amandine Dubois, Martin Kroll, Adrien Saumard. Source: Bernoulli, Volume 26, Number 3, 1727--1764.Abstract: We address the problem of non-parametric density estimation under the additional constraint that only privatised data are allowed to be published and available for inference. For this purpose, we adopt a recent generalisation of classical minimax theory to the framework of local $alpha$-differential privacy and provide a lower bound on the rate of convergence over Besov spaces $mathcal{B}^{s}_{pq}$ under mean integrated $mathbb{L}^{r}$-risk. This lower bound is deteriorated compared to the standard setup without privacy, and reveals a twofold elbow effect. In order to fulfill the privacy requirement, we suggest adding suitably scaled Laplace noise to empirical wavelet coefficients. Upper bounds within (at most) a logarithmic factor are derived under the assumption that $alpha$ stays bounded as $n$ increases: A linear but non-adaptive wavelet estimator is shown to attain the lower bound whenever $pgeq r$ but provides a slower rate of convergence otherwise. An adaptive non-linear wavelet estimator with appropriately chosen smoothing parameters and thresholding is shown to attain the lower bound within a logarithmic factor for all cases. Full Article
si On the eigenproblem for Gaussian bridges By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Pavel Chigansky, Marina Kleptsyna, Dmytro Marushkevych. Source: Bernoulli, Volume 26, Number 3, 1706--1726.Abstract: Spectral decomposition of the covariance operator is one of the main building blocks in the theory and applications of Gaussian processes. Unfortunately, it is notoriously hard to derive in a closed form. In this paper, we consider the eigenproblem for Gaussian bridges. Given a base process, its bridge is obtained by conditioning the trajectories to start and terminate at the given points. What can be said about the spectrum of a bridge, given the spectrum of its base process? We show how this question can be answered asymptotically for a family of processes, including the fractional Brownian motion. Full Article
si Sojourn time dimensions of fractional Brownian motion By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Ivan Nourdin, Giovanni Peccati, Stéphane Seuret. Source: Bernoulli, Volume 26, Number 3, 1619--1634.Abstract: We describe the size of the sets of sojourn times $E_{gamma }={tgeq 0:|B_{t}|leq t^{gamma }}$ associated with a fractional Brownian motion $B$ in terms of various large scale dimensions. Full Article
si Efficient estimation in single index models through smoothing splines By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Arun K. Kuchibhotla, Rohit K. Patra. Source: Bernoulli, Volume 26, Number 2, 1587--1618.Abstract: We consider estimation and inference in a single index regression model with an unknown but smooth link function. In contrast to the standard approach of using kernels or regression splines, we use smoothing splines to estimate the smooth link function. We develop a method to compute the penalized least squares estimators (PLSEs) of the parametric and the nonparametric components given independent and identically distributed (i.i.d.) data. We prove the consistency and find the rates of convergence of the estimators. We establish asymptotic normality under mild assumption and prove asymptotic efficiency of the parametric component under homoscedastic errors. A finite sample simulation corroborates our asymptotic theory. We also analyze a car mileage data set and a Ozone concentration data set. The identifiability and existence of the PLSEs are also investigated. Full Article
si On the probability distribution of the local times of diagonally operator-self-similar Gaussian fields with stationary increments By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Kamran Kalbasi, Thomas Mountford. Source: Bernoulli, Volume 26, Number 2, 1504--1534.Abstract: In this paper, we study the local times of vector-valued Gaussian fields that are ‘diagonally operator-self-similar’ and whose increments are stationary. Denoting the local time of such a Gaussian field around the spatial origin and over the temporal unit hypercube by $Z$, we show that there exists $lambdain(0,1)$ such that under some quite weak conditions, $lim_{n ightarrow+infty}frac{sqrt[n]{mathbb{E}(Z^{n})}}{n^{lambda}}$ and $lim_{x ightarrow+infty}frac{-logmathbb{P}(Z>x)}{x^{frac{1}{lambda}}}$ both exist and are strictly positive (possibly $+infty$). Moreover, we show that if the underlying Gaussian field is ‘strongly locally nondeterministic’, the above limits will be finite as well. These results are then applied to establish similar statements for the intersection local times of diagonally operator-self-similar Gaussian fields with stationary increments. Full Article
si The moduli of non-differentiability for Gaussian random fields with stationary increments By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Wensheng Wang, Zhonggen Su, Yimin Xiao. Source: Bernoulli, Volume 26, Number 2, 1410--1430.Abstract: We establish the exact moduli of non-differentiability of Gaussian random fields with stationary increments. As an application of the result, we prove that the uniform Hölder condition for the maximum local times of Gaussian random fields with stationary increments obtained in Xiao (1997) is optimal. These results are applicable to fractional Riesz–Bessel processes and stationary Gaussian random fields in the Matérn and Cauchy classes. Full Article
si Stratonovich stochastic differential equation with irregular coefficients: Girsanov’s example revisited By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Ilya Pavlyukevich, Georgiy Shevchenko. Source: Bernoulli, Volume 26, Number 2, 1381--1409.Abstract: In this paper, we study the Stratonovich stochastic differential equation $mathrm{d}X=|X|^{alpha }circ mathrm{d}B$, $alpha in (-1,1)$, which has been introduced by Cherstvy et al. ( New J. Phys. 15 (2013) 083039) in the context of analysis of anomalous diffusions in heterogeneous media. We determine its weak and strong solutions, which are homogeneous strong Markov processes spending zero time at $0$: for $alpha in (0,1)$, these solutions have the form egin{equation*}X_{t}^{ heta }=((1-alpha)B_{t}^{ heta })^{1/(1-alpha )},end{equation*} where $B^{ heta }$ is the $ heta $-skew Brownian motion driven by $B$ and starting at $frac{1}{1-alpha }(X_{0})^{1-alpha }$, $ heta in [-1,1]$, and $(x)^{gamma }=|x|^{gamma }operatorname{sign}x$; for $alpha in (-1,0]$, only the case $ heta =0$ is possible. The central part of the paper consists in the proof of the existence of a quadratic covariation $[f(B^{ heta }),B]$ for a locally square integrable function $f$ and is based on the time-reversion technique for Markovian diffusions. Full Article
si A new McKean–Vlasov stochastic interpretation of the parabolic–parabolic Keller–Segel model: The one-dimensional case By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Denis Talay, Milica Tomašević. Source: Bernoulli, Volume 26, Number 2, 1323--1353.Abstract: In this paper, we analyze a stochastic interpretation of the one-dimensional parabolic–parabolic Keller–Segel system without cut-off. It involves an original type of McKean–Vlasov interaction kernel. At the particle level, each particle interacts with all the past of each other particle by means of a time integrated functional involving a singular kernel. At the mean-field level studied here, the McKean–Vlasov limit process interacts with all the past time marginals of its probability distribution in a similarly singular way. We prove that the parabolic–parabolic Keller–Segel system in the whole Euclidean space and the corresponding McKean–Vlasov stochastic differential equation are well-posed for any values of the parameters of the model. Full Article
si Dynamic linear discriminant analysis in high dimensional space By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Binyan Jiang, Ziqi Chen, Chenlei Leng. Source: Bernoulli, Volume 26, Number 2, 1234--1268.Abstract: High-dimensional data that evolve dynamically feature predominantly in the modern data era. As a partial response to this, recent years have seen increasing emphasis to address the dimensionality challenge. However, the non-static nature of these datasets is largely ignored. This paper addresses both challenges by proposing a novel yet simple dynamic linear programming discriminant (DLPD) rule for binary classification. Different from the usual static linear discriminant analysis, the new method is able to capture the changing distributions of the underlying populations by modeling their means and covariances as smooth functions of covariates of interest. Under an approximate sparse condition, we show that the conditional misclassification rate of the DLPD rule converges to the Bayes risk in probability uniformly over the range of the variables used for modeling the dynamics, when the dimensionality is allowed to grow exponentially with the sample size. The minimax lower bound of the estimation of the Bayes risk is also established, implying that the misclassification rate of our proposed rule is minimax-rate optimal. The promising performance of the DLPD rule is illustrated via extensive simulation studies and the analysis of a breast cancer dataset. Full Article
si Consistent structure estimation of exponential-family random graph models with block structure By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Michael Schweinberger. Source: Bernoulli, Volume 26, Number 2, 1205--1233.Abstract: We consider the challenging problem of statistical inference for exponential-family random graph models based on a single observation of a random graph with complex dependence. To facilitate statistical inference, we consider random graphs with additional structure in the form of block structure. We have shown elsewhere that when the block structure is known, it facilitates consistency results for $M$-estimators of canonical and curved exponential-family random graph models with complex dependence, such as transitivity. In practice, the block structure is known in some applications (e.g., multilevel networks), but is unknown in others. When the block structure is unknown, the first and foremost question is whether it can be recovered with high probability based on a single observation of a random graph with complex dependence. The main consistency results of the paper show that it is possible to do so under weak dependence and smoothness conditions. These results confirm that exponential-family random graph models with block structure constitute a promising direction of statistical network analysis. Full Article
si Robust regression via mutivariate regression depth By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Chao Gao. Source: Bernoulli, Volume 26, Number 2, 1139--1170.Abstract: This paper studies robust regression in the settings of Huber’s $epsilon$-contamination models. We consider estimators that are maximizers of multivariate regression depth functions. These estimators are shown to achieve minimax rates in the settings of $epsilon$-contamination models for various regression problems including nonparametric regression, sparse linear regression, reduced rank regression, etc. We also discuss a general notion of depth function for linear operators that has potential applications in robust functional linear regression. Full Article
si A Bayesian nonparametric approach to log-concave density estimation By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Ester Mariucci, Kolyan Ray, Botond Szabó. Source: Bernoulli, Volume 26, Number 2, 1070--1097.Abstract: The estimation of a log-concave density on $mathbb{R}$ is a canonical problem in the area of shape-constrained nonparametric inference. We present a Bayesian nonparametric approach to this problem based on an exponentiated Dirichlet process mixture prior and show that the posterior distribution converges to the log-concave truth at the (near-) minimax rate in Hellinger distance. Our proof proceeds by establishing a general contraction result based on the log-concave maximum likelihood estimator that prevents the need for further metric entropy calculations. We further present computationally more feasible approximations and both an empirical and hierarchical Bayes approach. All priors are illustrated numerically via simulations. Full Article
si Stable processes conditioned to hit an interval continuously from the outside By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Leif Döring, Philip Weissmann. Source: Bernoulli, Volume 26, Number 2, 980--1015.Abstract: Conditioning stable Lévy processes on zero probability events recently became a tractable subject since several explicit formulas emerged from a deep analysis using the Lamperti transformations for self-similar Markov processes. In this article, we derive new harmonic functions and use them to explain how to condition stable processes to hit continuously a compact interval from the outside. Full Article
si Recurrence of multidimensional persistent random walks. Fourier and series criteria By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Peggy Cénac, Basile de Loynes, Yoann Offret, Arnaud Rousselle. Source: Bernoulli, Volume 26, Number 2, 858--892.Abstract: The recurrence and transience of persistent random walks built from variable length Markov chains are investigated. It turns out that these stochastic processes can be seen as Lévy walks for which the persistence times depend on some internal Markov chain: they admit Markov random walk skeletons. A recurrence versus transience dichotomy is highlighted. Assuming the positive recurrence of the driving chain, a sufficient Fourier criterion for the recurrence, close to the usual Chung–Fuchs one, is given and a series criterion is derived. The key tool is the Nagaev–Guivarc’h method. Finally, we focus on particular two-dimensional persistent random walks, including directionally reinforced random walks, for which necessary and sufficient Fourier and series criteria are obtained. Inspired by ( Adv. Math. 208 (2007) 680–698), we produce a genuine counterexample to the conjecture of ( Adv. Math. 117 (1996) 239–252). As for the one-dimensional case studied in ( J. Theoret. Probab. 31 (2018) 232–243), it is easier for a persistent random walk than its skeleton to be recurrent. However, such examples are much more difficult to exhibit in the higher dimensional context. These results are based on a surprisingly novel – to our knowledge – upper bound for the Lévy concentration function associated with symmetric distributions. Full Article
si On frequentist coverage errors of Bayesian credible sets in moderately high dimensions By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Keisuke Yano, Kengo Kato. Source: Bernoulli, Volume 26, Number 1, 616--641.Abstract: In this paper, we study frequentist coverage errors of Bayesian credible sets for an approximately linear regression model with (moderately) high dimensional regressors, where the dimension of the regressors may increase with but is smaller than the sample size. Specifically, we consider quasi-Bayesian inference on the slope vector under the quasi-likelihood with Gaussian error distribution. Under this setup, we derive finite sample bounds on frequentist coverage errors of Bayesian credible rectangles. Derivation of those bounds builds on a novel Berry–Esseen type bound on quasi-posterior distributions and recent results on high-dimensional CLT on hyperrectangles. We use this general result to quantify coverage errors of Castillo–Nickl and $L^{infty}$-credible bands for Gaussian white noise models, linear inverse problems, and (possibly non-Gaussian) nonparametric regression models. In particular, we show that Bayesian credible bands for those nonparametric models have coverage errors decaying polynomially fast in the sample size, implying advantages of Bayesian credible bands over confidence bands based on extreme value theory. Full Article
si Consistent semiparametric estimators for recurrent event times models with application to virtual age models By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Eric Beutner, Laurent Bordes, Laurent Doyen. Source: Bernoulli, Volume 26, Number 1, 557--586.Abstract: Virtual age models are very useful to analyse recurrent events. Among the strengths of these models is their ability to account for treatment (or intervention) effects after an event occurrence. Despite their flexibility for modeling recurrent events, the number of applications is limited. This seems to be a result of the fact that in the semiparametric setting all the existing results assume the virtual age function that describes the treatment (or intervention) effects to be known. This shortcoming can be overcome by considering semiparametric virtual age models with parametrically specified virtual age functions. Yet, fitting such a model is a difficult task. Indeed, it has recently been shown that for these models the standard profile likelihood method fails to lead to consistent estimators. Here we show that consistent estimators can be constructed by smoothing the profile log-likelihood function appropriately. We show that our general result can be applied to most of the relevant virtual age models of the literature. Our approach shows that empirical process techniques may be a worthwhile alternative to martingale methods for studying asymptotic properties of these inference methods. A simulation study is provided to illustrate our consistency results together with an application to real data. Full Article
si Operator-scaling Gaussian random fields via aggregation By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Yi Shen, Yizao Wang. Source: Bernoulli, Volume 26, Number 1, 500--530.Abstract: We propose an aggregated random-field model, and investigate the scaling limits of the aggregated partial-sum random fields. In this model, each copy in the aggregation is a $pm 1$-valued random field built from two correlated one-dimensional random walks, the law of each determined by a random persistence parameter. A flexible joint distribution of the two parameters is introduced, and given the parameters the two correlated random walks are conditionally independent. For the aggregated random field, when the persistence parameters are independent, the scaling limit is a fractional Brownian sheet. When the persistence parameters are tail-dependent, characterized in the framework of multivariate regular variation, the scaling limit is more delicate, and in particular depends on the growth rates of the underlying rectangular region along two directions: at different rates different operator-scaling Gaussian random fields appear as the region area tends to infinity. In particular, at the so-called critical speed, a large family of Gaussian random fields with long-range dependence arise in the limit. We also identify four different regimes at non-critical speed where fractional Brownian sheets arise in the limit. Full Article
si Multivariate count autoregression By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Konstantinos Fokianos, Bård Støve, Dag Tjøstheim, Paul Doukhan. Source: Bernoulli, Volume 26, Number 1, 471--499.Abstract: We are studying linear and log-linear models for multivariate count time series data with Poisson marginals. For studying the properties of such processes we develop a novel conceptual framework which is based on copulas. Earlier contributions impose the copula on the joint distribution of the vector of counts by employing a continuous extension methodology. Instead we introduce a copula function on a vector of associated continuous random variables. This construction avoids conceptual difficulties related to the joint distribution of counts yet it keeps the properties of the Poisson process marginally. Furthermore, this construction can be employed for modeling multivariate count time series with other marginal count distributions. We employ Markov chain theory and the notion of weak dependence to study ergodicity and stationarity of the models we consider. Suitable estimating equations are suggested for estimating unknown model parameters. The large sample properties of the resulting estimators are studied in detail. The work concludes with some simulations and a real data example. Full Article
si Subspace perspective on canonical correlation analysis: Dimension reduction and minimax rates By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Zhuang Ma, Xiaodong Li. Source: Bernoulli, Volume 26, Number 1, 432--470.Abstract: Canonical correlation analysis (CCA) is a fundamental statistical tool for exploring the correlation structure between two sets of random variables. In this paper, motivated by the recent success of applying CCA to learn low dimensional representations of high dimensional objects, we propose two losses based on the principal angles between the model spaces spanned by the sample canonical variates and their population correspondents, respectively. We further characterize the non-asymptotic error bounds for the estimation risks under the proposed error metrics, which reveal how the performance of sample CCA depends adaptively on key quantities including the dimensions, the sample size, the condition number of the covariance matrices and particularly the population canonical correlation coefficients. The optimality of our uniform upper bounds is also justified by lower-bound analysis based on stringent and localized parameter spaces. To the best of our knowledge, for the first time our paper separates $p_{1}$ and $p_{2}$ for the first order term in the upper bounds without assuming the residual correlations are zeros. More significantly, our paper derives $(1-lambda_{k}^{2})(1-lambda_{k+1}^{2})/(lambda_{k}-lambda_{k+1})^{2}$ for the first time in the non-asymptotic CCA estimation convergence rates, which is essential to understand the behavior of CCA when the leading canonical correlation coefficients are close to $1$. Full Article
si High dimensional deformed rectangular matrices with applications in matrix denoising By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Xiucai Ding. Source: Bernoulli, Volume 26, Number 1, 387--417.Abstract: We consider the recovery of a low rank $M imes N$ matrix $S$ from its noisy observation $ ilde{S}$ in the high dimensional framework when $M$ is comparable to $N$. We propose two efficient estimators for $S$ under two different regimes. Our analysis relies on the local asymptotics of the eigenstructure of large dimensional rectangular matrices with finite rank perturbation. We derive the convergent limits and rates for the singular values and vectors for such matrices. Full Article
si Prediction and estimation consistency of sparse multi-class penalized optimal scoring By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Irina Gaynanova. Source: Bernoulli, Volume 26, Number 1, 286--322.Abstract: Sparse linear discriminant analysis via penalized optimal scoring is a successful tool for classification in high-dimensional settings. While the variable selection consistency of sparse optimal scoring has been established, the corresponding prediction and estimation consistency results have been lacking. We bridge this gap by providing probabilistic bounds on out-of-sample prediction error and estimation error of multi-class penalized optimal scoring allowing for diverging number of classes. Full Article
si Needles and straw in a haystack: Robust confidence for possibly sparse sequences By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Eduard Belitser, Nurzhan Nurushev. Source: Bernoulli, Volume 26, Number 1, 191--225.Abstract: In the general signal$+$noise (allowing non-normal, non-independent observations) model, we construct an empirical Bayes posterior which we then use for uncertainty quantification for the unknown, possibly sparse, signal. We introduce a novel excessive bias restriction (EBR) condition, which gives rise to a new slicing of the entire space that is suitable for uncertainty quantification. Under EBR and some mild exchangeable exponential moment condition on the noise, we establish the local (oracle) optimality of the proposed confidence ball. Without EBR, we propose another confidence ball of full coverage, but its radius contains an additional $sigma n^{1/4}$-term. In passing, we also get the local optimal results for estimation , posterior contraction problems, and the problem of weak recovery of sparsity structure . Adaptive minimax results (also for the estimation and posterior contraction problems) over various sparsity classes follow from our local results. Full Article
si My dear sir / Gwen Waters. By www.catalog.slsa.sa.gov.au Published On :: Braddock, William, 1798-1869 -- Correspondence. Full Article
si From Westphalia to South Australia : the story of Franz Heinrich Ernst Siekmann / by Peter Brinkworth. By www.catalog.slsa.sa.gov.au Published On :: Siekmann, Francis Heinrich Ernst, 1830-1917. Full Article
si A family history Siglin to Siegele 1530 to 2019 : from Ditzingen, Germany over land and sea / Ian G. Siegele. By www.catalog.slsa.sa.gov.au Published On :: Germans -- South Australia. Full Article
si Economists Expect Huge Future Earnings Loss for Students Missing School Due to COVID-19 By marketbrief.edweek.org Published On :: Mon, 04 May 2020 14:47:10 +0000 Members of the future American workforce could see losses of earnings that add up to trillions of dollars, depending on how long coronavirus-related school closures persist. The post Economists Expect Huge Future Earnings Loss for Students Missing School Due to COVID-19 appeared first on Market Brief. Full Article Marketplace K-12 Academic Research Career / College Readiness COVID-19 Data Federal / State Policy Research/Evaluation
si Calif. Ed-Tech Consortium Seeks Media Repository Solutions; Saint Paul District Needs Background Check Services By marketbrief.edweek.org Published On :: Fri, 08 May 2020 13:52:21 +0000 Saint Paul schools are in the market for a vendor to provide background checks, while the Education Technology Joint Powers Authority is seeking media repositories. A Texas district wants quotes on technology for new campuses. The post Calif. Ed-Tech Consortium Seeks Media Repository Solutions; Saint Paul District Needs Background Check Services appeared first on Market Brief. Full Article Purchasing Alert Background Checks Media Repository Procurement / Purchasing / RFPs Software / Hardware