si

Nonconcave penalized estimation in sparse vector autoregression model

Xuening Zhu.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1413--1448.

Abstract:
High dimensional time series receive considerable attention recently, whose temporal and cross-sectional dependency could be captured by the vector autoregression (VAR) model. To tackle with the high dimensionality, penalization methods are widely employed. However, theoretically, the existing studies of the penalization methods mainly focus on $i.i.d$ data, therefore cannot quantify the effect of the dependence level on the convergence rate. In this work, we use the spectral properties of the time series to quantify the dependence and derive a nonasymptotic upper bound for the estimation errors. By focusing on the nonconcave penalization methods, we manage to establish the oracle properties of the penalized VAR model estimation by considering the effects of temporal and cross-sectional dependence. Extensive numerical studies are conducted to compare the finite sample performance using different penalization functions. Lastly, an air pollution data of mainland China is analyzed for illustration purpose.




si

A fast and consistent variable selection method for high-dimensional multivariate linear regression with a large number of explanatory variables

Ryoya Oda, Hirokazu Yanagihara.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1386--1412.

Abstract:
We put forward a variable selection method for selecting explanatory variables in a normality-assumed multivariate linear regression. It is cumbersome to calculate variable selection criteria for all subsets of explanatory variables when the number of explanatory variables is large. Therefore, we propose a fast and consistent variable selection method based on a generalized $C_{p}$ criterion. The consistency of the method is provided by a high-dimensional asymptotic framework such that the sample size and the sum of the dimensions of response vectors and explanatory vectors divided by the sample size tend to infinity and some positive constant which are less than one, respectively. Through numerical simulations, it is shown that the proposed method has a high probability of selecting the true subset of explanatory variables and is fast under a moderate sample size even when the number of dimensions is large.




si

Computing the degrees of freedom of rank-regularized estimators and cousins

Rahul Mazumder, Haolei Weng.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1348--1385.

Abstract:
Estimating a low rank matrix from its linear measurements is a problem of central importance in contemporary statistical analysis. The choice of tuning parameters for estimators remains an important challenge from a theoretical and practical perspective. To this end, Stein’s Unbiased Risk Estimate (SURE) framework provides a well-grounded statistical framework for degrees of freedom estimation. In this paper, we use the SURE framework to obtain degrees of freedom estimates for a general class of spectral regularized matrix estimators—our results generalize beyond the class of estimators that have been studied thus far. To this end, we use a result due to Shapiro (2002) pertaining to the differentiability of symmetric matrix valued functions, developed in the context of semidefinite optimization algorithms. We rigorously verify the applicability of Stein’s Lemma towards the derivation of degrees of freedom estimates; and also present new techniques based on Gaussian convolution to estimate the degrees of freedom of a class of spectral estimators, for which Stein’s Lemma does not directly apply.




si

Consistency and asymptotic normality of Latent Block Model estimators

Vincent Brault, Christine Keribin, Mahendra Mariadassou.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1234--1268.

Abstract:
The Latent Block Model (LBM) is a model-based method to cluster simultaneously the $d$ columns and $n$ rows of a data matrix. Parameter estimation in LBM is a difficult and multifaceted problem. Although various estimation strategies have been proposed and are now well understood empirically, theoretical guarantees about their asymptotic behavior is rather sparse and most results are limited to the binary setting. We prove here theoretical guarantees in the valued settings. We show that under some mild conditions on the parameter space, and in an asymptotic regime where $log (d)/n$ and $log (n)/d$ tend to $0$ when $n$ and $d$ tend to infinity, (1) the maximum-likelihood estimate of the complete model (with known labels) is consistent and (2) the log-likelihood ratios are equivalent under the complete and observed (with unknown labels) models. This equivalence allows us to transfer the asymptotic consistency, and under mild conditions, asymptotic normality, to the maximum likelihood estimate under the observed model. Moreover, the variational estimator is also consistent and, under the same conditions, asymptotically normal.




si

Testing goodness of fit for point processes via topological data analysis

Christophe A. N. Biscio, Nicolas Chenavier, Christian Hirsch, Anne Marie Svane.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1024--1074.

Abstract:
We introduce tests for the goodness of fit of point patterns via methods from topological data analysis. More precisely, the persistent Betti numbers give rise to a bivariate functional summary statistic for observed point patterns that is asymptotically Gaussian in large observation windows. We analyze the power of tests derived from this statistic on simulated point patterns and compare its performance with global envelope tests. Finally, we apply the tests to a point pattern from an application context in neuroscience. As the main methodological contribution, we derive sufficient conditions for a functional central limit theorem on bounded persistent Betti numbers of point processes with exponential decay of correlations.




si

Conditional density estimation with covariate measurement error

Xianzheng Huang, Haiming Zhou.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 970--1023.

Abstract:
We consider estimating the density of a response conditioning on an error-prone covariate. Motivated by two existing kernel density estimators in the absence of covariate measurement error, we propose a method to correct the existing estimators for measurement error. Asymptotic properties of the resultant estimators under different types of measurement error distributions are derived. Moreover, we adjust bandwidths readily available from existing bandwidth selection methods developed for error-free data to obtain bandwidths for the new estimators. Extensive simulation studies are carried out to compare the proposed estimators with naive estimators that ignore measurement error, which also provide empirical evidence for the effectiveness of the proposed bandwidth selection methods. A real-life data example is used to illustrate implementation of these methods under practical scenarios. An R package, lpme, is developed for implementing all considered methods, which we demonstrate via an R code example in Appendix B.2.




si

On the distribution, model selection properties and uniqueness of the Lasso estimator in low and high dimensions

Karl Ewald, Ulrike Schneider.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 944--969.

Abstract:
We derive expressions for the finite-sample distribution of the Lasso estimator in the context of a linear regression model in low as well as in high dimensions by exploiting the structure of the optimization problem defining the estimator. In low dimensions, we assume full rank of the regressor matrix and present expressions for the cumulative distribution function as well as the densities of the absolutely continuous parts of the estimator. Our results are presented for the case of normally distributed errors, but do not hinge on this assumption and can easily be generalized. Additionally, we establish an explicit formula for the correspondence between the Lasso and the least-squares estimator. We derive analogous results for the distribution in less explicit form in high dimensions where we make no assumptions on the regressor matrix at all. In this setting, we also investigate the model selection properties of the Lasso and show that possibly only a subset of models might be selected by the estimator, completely independently of the observed response vector. Finally, we present a condition for uniqueness of the estimator that is necessary as well as sufficient.




si

The bias of isotonic regression

Ran Dai, Hyebin Song, Rina Foygel Barber, Garvesh Raskutti.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 801--834.

Abstract:
We study the bias of the isotonic regression estimator. While there is extensive work characterizing the mean squared error of the isotonic regression estimator, relatively little is known about the bias. In this paper, we provide a sharp characterization, proving that the bias scales as $O(n^{-eta /3})$ up to log factors, where $1leq eta leq 2$ is the exponent corresponding to Hölder smoothness of the underlying mean. Importantly, this result only requires a strictly monotone mean and that the noise distribution has subexponential tails, without relying on symmetric noise or other restrictive assumptions.




si

Detection of sparse positive dependence

Ery Arias-Castro, Rong Huang, Nicolas Verzelen.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 702--730.

Abstract:
In a bivariate setting, we consider the problem of detecting a sparse contamination or mixture component, where the effect manifests itself as a positive dependence between the variables, which are otherwise independent in the main component. We first look at this problem in the context of a normal mixture model. In essence, the situation reduces to a univariate setting where the effect is a decrease in variance. In particular, a higher criticism test based on the pairwise differences is shown to achieve the detection boundary defined by the (oracle) likelihood ratio test. We then turn to a Gaussian copula model where the marginal distributions are unknown. Standard invariance considerations lead us to consider rank tests. In fact, a higher criticism test based on the pairwise rank differences achieves the detection boundary in the normal mixture model, although not in the very sparse regime. We do not know of any rank test that has any power in that regime.




si

The bias and skewness of M -estimators in regression

Christopher Withers, Saralees Nadarajah

Source: Electron. J. Statist., Volume 4, 1--14.

Abstract:
We consider M estimation of a regression model with a nuisance parameter and a vector of other parameters. The unknown distribution of the residuals is not assumed to be normal or symmetric. Simple and easily estimated formulas are given for the dominant terms of the bias and skewness of the parameter estimates. For the linear model these are proportional to the skewness of the ‘independent’ variables. For a nonlinear model, its linear component plays the role of these independent variables, and a second term must be added proportional to the covariance of its linear and quadratic components. For the least squares estimate with normal errors this term was derived by Box [1]. We also consider the effect of a large number of parameters, and the case of random independent variables.




si

A Statistical Learning Approach to Modal Regression

This paper studies the nonparametric modal regression problem systematically from a statistical learning viewpoint. Originally motivated by pursuing a theoretical understanding of the maximum correntropy criterion based regression (MCCR), our study reveals that MCCR with a tending-to-zero scale parameter is essentially modal regression. We show that the nonparametric modal regression problem can be approached via the classical empirical risk minimization. Some efforts are then made to develop a framework for analyzing and implementing modal regression. For instance, the modal regression function is described, the modal regression risk is defined explicitly and its Bayes rule is characterized; for the sake of computational tractability, the surrogate modal regression risk, which is termed as the generalization risk in our study, is introduced. On the theoretical side, the excess modal regression risk, the excess generalization risk, the function estimation error, and the relations among the above three quantities are studied rigorously. It turns out that under mild conditions, function estimation consistency and convergence may be pursued in modal regression as in vanilla regression protocols such as mean regression, median regression, and quantile regression. On the practical side, the implementation issues of modal regression including the computational algorithm and the selection of the tuning parameters are discussed. Numerical validations on modal regression are also conducted to verify our findings.




si

A Model of Fake Data in Data-driven Analysis

Data-driven analysis has been increasingly used in various decision making processes. With more sources, including reviews, news, and pictures, can now be used for data analysis, the authenticity of data sources is in doubt. While previous literature attempted to detect fake data piece by piece, in the current work, we try to capture the fake data sender's strategic behavior to detect the fake data source. Specifically, we model the tension between a data receiver who makes data-driven decisions and a fake data sender who benefits from misleading the receiver. We propose a potentially infinite horizon continuous time game-theoretic model with asymmetric information to capture the fact that the receiver does not initially know the existence of fake data and learns about it during the course of the game. We use point processes to model the data traffic, where each piece of data can occur at any discrete moment in a continuous time flow. We fully solve the model and employ numerical examples to illustrate the players' strategies and payoffs for insights. Specifically, our results show that maintaining some suspicion about the data sources and understanding that the sender can be strategic are very helpful to the data receiver. In addition, based on our model, we propose a methodology of detecting fake data that is complementary to the previous studies on this topic, which suggested various approaches on analyzing the data piece by piece. We show that after analyzing each piece of data, understanding a source by looking at the its whole history of pushing data can be helpful.




si

Online Sufficient Dimension Reduction Through Sliced Inverse Regression

Sliced inverse regression is an effective paradigm that achieves the goal of dimension reduction through replacing high dimensional covariates with a small number of linear combinations. It does not impose parametric assumptions on the dependence structure. More importantly, such a reduction of dimension is sufficient in that it does not cause loss of information. In this paper, we adapt the stationary sliced inverse regression to cope with the rapidly changing environments. We propose to implement sliced inverse regression in an online fashion. This online learner consists of two steps. In the first step we construct an online estimate for the kernel matrix; in the second step we propose two online algorithms, one is motivated by the perturbation method and the other is originated from the gradient descent optimization, to perform online singular value decomposition. The theoretical properties of this online learner are established. We demonstrate the numerical performance of this online learner through simulations and real world applications. All numerical studies confirm that this online learner performs as well as the batch learner.




si

Weighted Message Passing and Minimum Energy Flow for Heterogeneous Stochastic Block Models with Side Information

We study the misclassification error for community detection in general heterogeneous stochastic block models (SBM) with noisy or partial label information. We establish a connection between the misclassification rate and the notion of minimum energy on the local neighborhood of the SBM. We develop an optimally weighted message passing algorithm to reconstruct labels for SBM based on the minimum energy flow and the eigenvectors of a certain Markov transition matrix. The general SBM considered in this paper allows for unequal-size communities, degree heterogeneity, and different connection probabilities among blocks. We focus on how to optimally weigh the message passing to improve misclassification.




si

Neyman-Pearson classification: parametrics and sample size requirement

The Neyman-Pearson (NP) paradigm in binary classification seeks classifiers that achieve a minimal type II error while enforcing the prioritized type I error controlled under some user-specified level $alpha$. This paradigm serves naturally in applications such as severe disease diagnosis and spam detection, where people have clear priorities among the two error types. Recently, Tong, Feng, and Li (2018) proposed a nonparametric umbrella algorithm that adapts all scoring-type classification methods (e.g., logistic regression, support vector machines, random forest) to respect the given type I error (i.e., conditional probability of classifying a class $0$ observation as class $1$ under the 0-1 coding) upper bound $alpha$ with high probability, without specific distributional assumptions on the features and the responses. Universal the umbrella algorithm is, it demands an explicit minimum sample size requirement on class $0$, which is often the more scarce class, such as in rare disease diagnosis applications. In this work, we employ the parametric linear discriminant analysis (LDA) model and propose a new parametric thresholding algorithm, which does not need the minimum sample size requirements on class $0$ observations and thus is suitable for small sample applications such as rare disease diagnosis. Leveraging both the existing nonparametric and the newly proposed parametric thresholding rules, we propose four LDA-based NP classifiers, for both low- and high-dimensional settings. On the theoretical front, we prove NP oracle inequalities for one proposed classifier, where the rate for excess type II error benefits from the explicit parametric model assumption. Furthermore, as NP classifiers involve a sample splitting step of class $0$ observations, we construct a new adaptive sample splitting scheme that can be applied universally to NP classifiers, and this adaptive strategy reduces the type II error of these classifiers. The proposed NP classifiers are implemented in the R package nproc.




si

Generalized probabilistic principal component analysis of correlated data

Principal component analysis (PCA) is a well-established tool in machine learning and data processing. The principal axes in PCA were shown to be equivalent to the maximum marginal likelihood estimator of the factor loading matrix in a latent factor model for the observed data, assuming that the latent factors are independently distributed as standard normal distributions. However, the independence assumption may be unrealistic for many scenarios such as modeling multiple time series, spatial processes, and functional data, where the outcomes are correlated. In this paper, we introduce the generalized probabilistic principal component analysis (GPPCA) to study the latent factor model for multiple correlated outcomes, where each factor is modeled by a Gaussian process. Our method generalizes the previous probabilistic formulation of PCA (PPCA) by providing the closed-form maximum marginal likelihood estimator of the factor loadings and other parameters. Based on the explicit expression of the precision matrix in the marginal likelihood that we derived, the number of the computational operations is linear to the number of output variables. Furthermore, we also provide the closed-form expression of the marginal likelihood when other covariates are included in the mean structure. We highlight the advantage of GPPCA in terms of the practical relevance, estimation accuracy and computational convenience. Numerical studies of simulated and real data confirm the excellent finite-sample performance of the proposed approach.




si

On lp-Support Vector Machines and Multidimensional Kernels

In this paper, we extend the methodology developed for Support Vector Machines (SVM) using the $ell_2$-norm ($ell_2$-SVM) to the more general case of $ell_p$-norms with $p>1$ ($ell_p$-SVM). We derive second order cone formulations for the resulting dual and primal problems. The concept of kernel function, widely applied in $ell_2$-SVM, is extended to the more general case of $ell_p$-norms with $p>1$ by defining a new operator called multidimensional kernel. This object gives rise to reformulations of dual problems, in a transformed space of the original data, where the dependence on the original data always appear as homogeneous polynomials. We adapt known solution algorithms to efficiently solve the primal and dual resulting problems and some computational experiments on real-world datasets are presented showing rather good behavior in terms of the accuracy of $ell_p$-SVM with $p>1$.




si

Perturbation Bounds for Procrustes, Classical Scaling, and Trilateration, with Applications to Manifold Learning

One of the common tasks in unsupervised learning is dimensionality reduction, where the goal is to find meaningful low-dimensional structures hidden in high-dimensional data. Sometimes referred to as manifold learning, this problem is closely related to the problem of localization, which aims at embedding a weighted graph into a low-dimensional Euclidean space. Several methods have been proposed for localization, and also manifold learning. Nonetheless, the robustness property of most of them is little understood. In this paper, we obtain perturbation bounds for classical scaling and trilateration, which are then applied to derive performance bounds for Isomap, Landmark Isomap, and Maximum Variance Unfolding. A new perturbation bound for procrustes analysis plays a key role.




si

Expectation Propagation as a Way of Life: A Framework for Bayesian Inference on Partitioned Data

A common divide-and-conquer approach for Bayesian computation with big data is to partition the data, perform local inference for each piece separately, and combine the results to obtain a global posterior approximation. While being conceptually and computationally appealing, this method involves the problematic need to also split the prior for the local inferences; these weakened priors may not provide enough regularization for each separate computation, thus eliminating one of the key advantages of Bayesian methods. To resolve this dilemma while still retaining the generalizability of the underlying local inference method, we apply the idea of expectation propagation (EP) as a framework for distributed Bayesian inference. The central idea is to iteratively update approximations to the local likelihoods given the state of the other approximations and the prior. The present paper has two roles: we review the steps that are needed to keep EP algorithms numerically stable, and we suggest a general approach, inspired by EP, for approaching data partitioning problems in a way that achieves the computational benefits of parallelism while allowing each local update to make use of relevant information from the other sites. In addition, we demonstrate how the method can be applied in a hierarchical context to make use of partitioning of both data and parameters. The paper describes a general algorithmic framework, rather than a specific algorithm, and presents an example implementation for it.




si

High-Dimensional Interactions Detection with Sparse Principal Hessian Matrix

In statistical learning framework with regressions, interactions are the contributions to the response variable from the products of the explanatory variables. In high-dimensional problems, detecting interactions is challenging due to combinatorial complexity and limited data information. We consider detecting interactions by exploring their connections with the principal Hessian matrix. Specifically, we propose a one-step synthetic approach for estimating the principal Hessian matrix by a penalized M-estimator. An alternating direction method of multipliers (ADMM) is proposed to efficiently solve the encountered regularized optimization problem. Based on the sparse estimator, we detect the interactions by identifying its nonzero components. Our method directly targets at the interactions, and it requires no structural assumption on the hierarchy of the interactions effects. We show that our estimator is theoretically valid, computationally efficient, and practically useful for detecting the interactions in a broad spectrum of scenarios.




si

GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language Processing

We present GluonCV and GluonNLP, the deep learning toolkits for computer vision and natural language processing based on Apache MXNet (incubating). These toolkits provide state-of-the-art pre-trained models, training scripts, and training logs, to facilitate rapid prototyping and promote reproducible research. We also provide modular APIs with flexible building blocks to enable efficient customization. Leveraging the MXNet ecosystem, the deep learning models in GluonCV and GluonNLP can be deployed onto a variety of platforms with different programming languages. The Apache 2.0 license has been adopted by GluonCV and GluonNLP to allow for software distribution, modification, and usage.




si

Distributed Feature Screening via Componentwise Debiasing

Feature screening is a powerful tool in processing high-dimensional data. When the sample size N and the number of features p are both large, the implementation of classic screening methods can be numerically challenging. In this paper, we propose a distributed screening framework for big data setup. In the spirit of 'divide-and-conquer', the proposed framework expresses a correlation measure as a function of several component parameters, each of which can be distributively estimated using a natural U-statistic from data segments. With the component estimates aggregated, we obtain a final correlation estimate that can be readily used for screening features. This framework enables distributed storage and parallel computing and thus is computationally attractive. Due to the unbiased distributive estimation of the component parameters, the final aggregated estimate achieves a high accuracy that is insensitive to the number of data segments m. Under mild conditions, we show that the aggregated correlation estimator is as efficient as the centralized estimator in terms of the probability convergence bound and the mean squared error rate; the corresponding screening procedure enjoys sure screening property for a wide range of correlation measures. The promising performances of the new method are supported by extensive numerical examples.




si

Lower Bounds for Testing Graphical Models: Colorings and Antiferromagnetic Ising Models

We study the identity testing problem in the context of spin systems or undirected graphical models, where it takes the following form: given the parameter specification of the model $M$ and a sampling oracle for the distribution $mu_{M^*}$ of an unknown model $M^*$, can we efficiently determine if the two models $M$ and $M^*$ are the same? We consider identity testing for both soft-constraint and hard-constraint systems. In particular, we prove hardness results in two prototypical cases, the Ising model and proper colorings, and explore whether identity testing is any easier than structure learning. For the ferromagnetic (attractive) Ising model, Daskalakis et al. (2018) presented a polynomial-time algorithm for identity testing. We prove hardness results in the antiferromagnetic (repulsive) setting in the same regime of parameters where structure learning is known to require a super-polynomial number of samples. Specifically, for $n$-vertex graphs of maximum degree $d$, we prove that if $|eta| d = omega(log{n})$ (where $eta$ is the inverse temperature parameter), then there is no polynomial running time identity testing algorithm unless $RP=NP$. In the hard-constraint setting, we present hardness results for identity testing for proper colorings. Our results are based on the presumed hardness of #BIS, the problem of (approximately) counting independent sets in bipartite graphs.




si

Targeted Fused Ridge Estimation of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes

We consider the problem of jointly estimating multiple inverse covariance matrices from high-dimensional data consisting of distinct classes. An $ell_2$-penalized maximum likelihood approach is employed. The suggested approach is flexible and generic, incorporating several other $ell_2$-penalized estimators as special cases. In addition, the approach allows specification of target matrices through which prior knowledge may be incorporated and which can stabilize the estimation procedure in high-dimensional settings. The result is a targeted fused ridge estimator that is of use when the precision matrices of the constituent classes are believed to chiefly share the same structure while potentially differing in a number of locations of interest. It has many applications in (multi)factorial study designs. We focus on the graphical interpretation of precision matrices with the proposed estimator then serving as a basis for integrative or meta-analytic Gaussian graphical modeling. Situations are considered in which the classes are defined by data sets and subtypes of diseases. The performance of the proposed estimator in the graphical modeling setting is assessed through extensive simulation experiments. Its practical usability is illustrated by the differential network modeling of 12 large-scale gene expression data sets of diffuse large B-cell lymphoma subtypes. The estimator and its related procedures are incorporated into the R-package rags2ridges.




si

On the consistency of graph-based Bayesian semi-supervised learning and the scalability of sampling algorithms

This paper considers a Bayesian approach to graph-based semi-supervised learning. We show that if the graph parameters are suitably scaled, the graph-posteriors converge to a continuum limit as the size of the unlabeled data set grows. This consistency result has profound algorithmic implications: we prove that when consistency holds, carefully designed Markov chain Monte Carlo algorithms have a uniform spectral gap, independent of the number of unlabeled inputs. Numerical experiments illustrate and complement the theory.




si

The Maximum Separation Subspace in Sufficient Dimension Reduction with Categorical Response

Sufficient dimension reduction (SDR) is a very useful concept for exploratory analysis and data visualization in regression, especially when the number of covariates is large. Many SDR methods have been proposed for regression with a continuous response, where the central subspace (CS) is the target of estimation. Various conditions, such as the linearity condition and the constant covariance condition, are imposed so that these methods can estimate at least a portion of the CS. In this paper we study SDR for regression and discriminant analysis with categorical response. Motivated by the exploratory analysis and data visualization aspects of SDR, we propose a new geometric framework to reformulate the SDR problem in terms of manifold optimization and introduce a new concept called Maximum Separation Subspace (MASES). The MASES naturally preserves the “sufficiency” in SDR without imposing additional conditions on the predictor distribution, and directly inspires a semi-parametric estimator. Numerical studies show MASES exhibits superior performance as compared with competing SDR methods in specific settings.




si

Tensor Train Decomposition on TensorFlow (T3F)

Tensor Train decomposition is used across many branches of machine learning. We present T3F—a library for Tensor Train decomposition based on TensorFlow. T3F supports GPU execution, batch processing, automatic differentiation, and versatile functionality for the Riemannian optimization framework, which takes into account the underlying manifold structure to construct efficient optimization methods. The library makes it easier to implement machine learning papers that rely on the Tensor Train decomposition. T3F includes documentation, examples and 94% test coverage.




si

On the Complexity Analysis of the Primal Solutions for the Accelerated Randomized Dual Coordinate Ascent

Dual first-order methods are essential techniques for large-scale constrained convex optimization. However, when recovering the primal solutions, we need $T(epsilon^{-2})$ iterations to achieve an $epsilon$-optimal primal solution when we apply an algorithm to the non-strongly convex dual problem with $T(epsilon^{-1})$ iterations to achieve an $epsilon$-optimal dual solution, where $T(x)$ can be $x$ or $sqrt{x}$. In this paper, we prove that the iteration complexity of the primal solutions and dual solutions have the same $Oleft(frac{1}{sqrt{epsilon}} ight)$ order of magnitude for the accelerated randomized dual coordinate ascent. When the dual function further satisfies the quadratic functional growth condition, by restarting the algorithm at any period, we establish the linear iteration complexity for both the primal solutions and dual solutions even if the condition number is unknown. When applied to the regularized empirical risk minimization problem, we prove the iteration complexity of $Oleft(nlog n+sqrt{frac{n}{epsilon}} ight)$ in both primal space and dual space, where $n$ is the number of samples. Our result takes out the $left(log frac{1}{epsilon} ight)$ factor compared with the methods based on smoothing/regularization or Catalyst reduction. As far as we know, this is the first time that the optimal $Oleft(sqrt{frac{n}{epsilon}} ight)$ iteration complexity in the primal space is established for the dual coordinate ascent based stochastic algorithms. We also establish the accelerated linear complexity for some problems with nonsmooth loss, e.g., the least absolute deviation and SVM.




si

Noise Accumulation in High Dimensional Classification and Total Signal Index

Great attention has been paid to Big Data in recent years. Such data hold promise for scientific discoveries but also pose challenges to analyses. One potential challenge is noise accumulation. In this paper, we explore noise accumulation in high dimensional two-group classification. First, we revisit a previous assessment of noise accumulation with principal component analyses, which yields a different threshold for discriminative ability than originally identified. Then we extend our scope to its impact on classifiers developed with three common machine learning approaches---random forest, support vector machine, and boosted classification trees. We simulate four scenarios with differing amounts of signal strength to evaluate each method. After determining noise accumulation may affect the performance of these classifiers, we assess factors that impact it. We conduct simulations by varying sample size, signal strength, signal strength proportional to the number predictors, and signal magnitude with random forest classifiers. These simulations suggest that noise accumulation affects the discriminative ability of high-dimensional classifiers developed using common machine learning methods, which can be modified by sample size, signal strength, and signal magnitude. We developed the measure total signal index (TSI) to track the trends of total signal and noise accumulation.




si

Latent Simplex Position Model: High Dimensional Multi-view Clustering with Uncertainty Quantification

High dimensional data often contain multiple facets, and several clustering patterns can co-exist under different variable subspaces, also known as the views. While multi-view clustering algorithms were proposed, the uncertainty quantification remains difficult --- a particular challenge is in the high complexity of estimating the cluster assignment probability under each view, and sharing information among views. In this article, we propose an approximate Bayes approach --- treating the similarity matrices generated over the views as rough first-stage estimates for the co-assignment probabilities; in its Kullback-Leibler neighborhood, we obtain a refined low-rank matrix, formed by the pairwise product of simplex coordinates. Interestingly, each simplex coordinate directly encodes the cluster assignment uncertainty. For multi-view clustering, we let each view draw a parameterization from a few candidates, leading to dimension reduction. With high model flexibility, the estimation can be efficiently carried out as a continuous optimization problem, hence enjoys gradient-based computation. The theory establishes the connection of this model to a random partition distribution under multiple views. Compared to single-view clustering approaches, substantially more interpretable results are obtained when clustering brains from a human traumatic brain injury study, using high-dimensional gene expression data.




si

Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables

We consider the problem of learning causal models from observational data generated by linear non-Gaussian acyclic causal models with latent variables. Without considering the effect of latent variables, the inferred causal relationships among the observed variables are often wrong. Under faithfulness assumption, we propose a method to check whether there exists a causal path between any two observed variables. From this information, we can obtain the causal order among the observed variables. The next question is whether the causal effects can be uniquely identified as well. We show that causal effects among observed variables cannot be identified uniquely under mere assumptions of faithfulness and non-Gaussianity of exogenous noises. However, we are able to propose an efficient method that identifies the set of all possible causal effects that are compatible with the observational data. We present additional structural conditions on the causal graph under which causal effects among observed variables can be determined uniquely. Furthermore, we provide necessary and sufficient graphical conditions for unique identification of the number of variables in the system. Experiments on synthetic data and real-world data show the effectiveness of our proposed algorithm for learning causal models.




si

Switching Regression Models and Causal Inference in the Presence of Discrete Latent Variables

Given a response $Y$ and a vector $X = (X^1, dots, X^d)$ of $d$ predictors, we investigate the problem of inferring direct causes of $Y$ among the vector $X$. Models for $Y$ that use all of its causal covariates as predictors enjoy the property of being invariant across different environments or interventional settings. Given data from such environments, this property has been exploited for causal discovery. Here, we extend this inference principle to situations in which some (discrete-valued) direct causes of $ Y $ are unobserved. Such cases naturally give rise to switching regression models. We provide sufficient conditions for the existence, consistency and asymptotic normality of the MLE in linear switching regression models with Gaussian noise, and construct a test for the equality of such models. These results allow us to prove that the proposed causal discovery method obtains asymptotic false discovery control under mild conditions. We provide an algorithm, make available code, and test our method on simulated data. It is robust against model violations and outperforms state-of-the-art approaches. We further apply our method to a real data set, where we show that it does not only output causal predictors, but also a process-based clustering of data points, which could be of additional interest to practitioners.




si

pyts: A Python Package for Time Series Classification

pyts is an open-source Python package for time series classification. This versatile toolbox provides implementations of many algorithms published in the literature, preprocessing functionalities, and data set loading utilities. pyts relies on the standard scientific Python packages numpy, scipy, scikit-learn, joblib, and numba, and is distributed under the BSD-3-Clause license. Documentation contains installation instructions, a detailed user guide, a full API description, and concrete self-contained examples.




si

High-Dimensional Inference for Cluster-Based Graphical Models

Motivated by modern applications in which one constructs graphical models based on a very large number of features, this paper introduces a new class of cluster-based graphical models, in which variable clustering is applied as an initial step for reducing the dimension of the feature space. We employ model assisted clustering, in which the clusters contain features that are similar to the same unobserved latent variable. Two different cluster-based Gaussian graphical models are considered: the latent variable graph, corresponding to the graphical model associated with the unobserved latent variables, and the cluster-average graph, corresponding to the vector of features averaged over clusters. Our study reveals that likelihood based inference for the latent graph, not analyzed previously, is analytically intractable. Our main contribution is the development and analysis of alternative estimation and inference strategies, for the precision matrix of an unobservable latent vector Z. We replace the likelihood of the data by an appropriate class of empirical risk functions, that can be specialized to the latent graphical model and to the simpler, but under-analyzed, cluster-average graphical model. The estimators thus derived can be used for inference on the graph structure, for instance on edge strength or pattern recovery. Inference is based on the asymptotic limits of the entry-wise estimates of the precision matrices associated with the conditional independence graphs under consideration. While taking the uncertainty induced by the clustering step into account, we establish Berry-Esseen central limit theorems for the proposed estimators. It is noteworthy that, although the clusters are estimated adaptively from the data, the central limit theorems regarding the entries of the estimated graphs are proved under the same conditions one would use if the clusters were known in advance. As an illustration of the usage of these newly developed inferential tools, we show that they can be reliably used for recovery of the sparsity pattern of the graphs we study, under FDR control, which is verified via simulation studies and an fMRI data analysis. These experimental results confirm the theoretically established difference between the two graph structures. Furthermore, the data analysis suggests that the latent variable graph, corresponding to the unobserved cluster centers, can help provide more insight into the understanding of the brain connectivity networks relative to the simpler, average-based, graph.




si

Exact Guarantees on the Absence of Spurious Local Minima for Non-negative Rank-1 Robust Principal Component Analysis

This work is concerned with the non-negative rank-1 robust principal component analysis (RPCA), where the goal is to recover the dominant non-negative principal components of a data matrix precisely, where a number of measurements could be grossly corrupted with sparse and arbitrary large noise. Most of the known techniques for solving the RPCA rely on convex relaxation methods by lifting the problem to a higher dimension, which significantly increase the number of variables. As an alternative, the well-known Burer-Monteiro approach can be used to cast the RPCA as a non-convex and non-smooth $ell_1$ optimization problem with a significantly smaller number of variables. In this work, we show that the low-dimensional formulation of the symmetric and asymmetric positive rank-1 RPCA based on the Burer-Monteiro approach has benign landscape, i.e., 1) it does not have any spurious local solution, 2) has a unique global solution, and 3) its unique global solution coincides with the true components. An implication of this result is that simple local search algorithms are guaranteed to achieve a zero global optimality gap when directly applied to the low-dimensional formulation. Furthermore, we provide strong deterministic and probabilistic guarantees for the exact recovery of the true principal components. In particular, it is shown that a constant fraction of the measurements could be grossly corrupted and yet they would not create any spurious local solution.




si

Multiparameter Persistence Landscapes

An important problem in the field of Topological Data Analysis is defining topological summaries which can be combined with traditional data analytic tools. In recent work Bubenik introduced the persistence landscape, a stable representation of persistence diagrams amenable to statistical analysis and machine learning tools. In this paper we generalise the persistence landscape to multiparameter persistence modules providing a stable representation of the rank invariant. We show that multiparameter landscapes are stable with respect to the interleaving distance and persistence weighted Wasserstein distance, and that the collection of multiparameter landscapes faithfully represents the rank invariant. Finally we provide example calculations and statistical tests to demonstrate a range of potential applications and how one can interpret the landscapes associated to a multiparameter module.




si

Smoothed Nonparametric Derivative Estimation using Weighted Difference Quotients

Derivatives play an important role in bandwidth selection methods (e.g., plug-ins), data analysis and bias-corrected confidence intervals. Therefore, obtaining accurate derivative information is crucial. Although many derivative estimation methods exist, the majority require a fixed design assumption. In this paper, we propose an effective and fully data-driven framework to estimate the first and second order derivative in random design. We establish the asymptotic properties of the proposed derivative estimator, and also propose a fast selection method for the tuning parameters. The performance and flexibility of the method is illustrated via an extensive simulation study.




si

WONDER: Weighted One-shot Distributed Ridge Regression in High Dimensions

In many areas, practitioners need to analyze large data sets that challenge conventional single-machine computing. To scale up data analysis, distributed and parallel computing approaches are increasingly needed. Here we study a fundamental and highly important problem in this area: How to do ridge regression in a distributed computing environment? Ridge regression is an extremely popular method for supervised learning, and has several optimality properties, thus it is important to study. We study one-shot methods that construct weighted combinations of ridge regression estimators computed on each machine. By analyzing the mean squared error in a high-dimensional random-effects model where each predictor has a small effect, we discover several new phenomena. Infinite-worker limit: The distributed estimator works well for very large numbers of machines, a phenomenon we call 'infinite-worker limit'. Optimal weights: The optimal weights for combining local estimators sum to more than unity, due to the downward bias of ridge. Thus, all averaging methods are suboptimal. We also propose a new Weighted ONe-shot DistributEd Ridge regression algorithm (WONDER). We test WONDER in simulation studies and using the Million Song Dataset as an example. There it can save at least 100x in computation time, while nearly preserving test accuracy.




si

The weight function in the subtree kernel is decisive

Tree data are ubiquitous because they model a large variety of situations, e.g., the architecture of plants, the secondary structure of RNA, or the hierarchy of XML files. Nevertheless, the analysis of these non-Euclidean data is difficult per se. In this paper, we focus on the subtree kernel that is a convolution kernel for tree data introduced by Vishwanathan and Smola in the early 2000's. More precisely, we investigate the influence of the weight function from a theoretical perspective and in real data applications. We establish on a 2-classes stochastic model that the performance of the subtree kernel is improved when the weight of leaves vanishes, which motivates the definition of a new weight function, learned from the data and not fixed by the user as usually done. To this end, we define a unified framework for computing the subtree kernel from ordered or unordered trees, that is particularly suitable for tuning parameters. We show through eight real data classification problems the great efficiency of our approach, in particular for small data sets, which also states the high importance of the weight function. Finally, a visualization tool of the significant features is derived.




si

(1 + epsilon)-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets

Anomaly detection is not an easy problem since distribution of anomalous samples is unknown a priori. We explore a novel method that gives a trade-off possibility between one-class and two-class approaches, and leads to a better performance on anomaly detection problems with small or non-representative anomalous samples. The method is evaluated using several data sets and compared to a set of conventional one-class and two-class approaches.




si

High-dimensional Gaussian graphical models on network-linked data

Graphical models are commonly used to represent conditional dependence relationships between variables. There are multiple methods available for exploring them from high-dimensional data, but almost all of them rely on the assumption that the observations are independent and identically distributed. At the same time, observations connected by a network are becoming increasingly common, and tend to violate these assumptions. Here we develop a Gaussian graphical model for observations connected by a network with potentially different mean vectors, varying smoothly over the network. We propose an efficient estimation algorithm and demonstrate its effectiveness on both simulated and real data, obtaining meaningful and interpretable results on a statistics coauthorship network. We also prove that our method estimates both the inverse covariance matrix and the corresponding graph structure correctly under the assumption of network “cohesion”, which refers to the empirically observed phenomenon of network neighbors sharing similar traits.




si

Identifiability of Additive Noise Models Using Conditional Variances

This paper considers a new identifiability condition for additive noise models (ANMs) in which each variable is determined by an arbitrary Borel measurable function of its parents plus an independent error. It has been shown that ANMs are fully recoverable under some identifiability conditions, such as when all error variances are equal. However, this identifiable condition could be restrictive, and hence, this paper focuses on a relaxed identifiability condition that involves not only error variances, but also the influence of parents. This new class of identifiable ANMs does not put any constraints on the form of dependencies, or distributions of errors, and allows different error variances. It further provides a statistically consistent and computationally feasible structure learning algorithm for the identifiable ANMs based on the new identifiability condition. The proposed algorithm assumes that all relevant variables are observed, while it does not assume faithfulness or a sparse graph. Demonstrated through extensive simulated and real multivariate data is that the proposed algorithm successfully recovers directed acyclic graphs.




si

TIGER: using artificial intelligence to discover our collections

The State Library of NSW has almost 4 million digital files in its collection.




si

Reliability estimation in a multicomponent stress-strength model for Burr XII distribution under progressive censoring

Raj Kamal Maurya, Yogesh Mani Tripathi.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 345--369.

Abstract:
We consider estimation of the multicomponent stress-strength reliability under progressive Type II censoring under the assumption that stress and strength variables follow Burr XII distributions with a common shape parameter. Maximum likelihood estimates of the reliability are obtained along with asymptotic intervals when common shape parameter may be known or unknown. Bayes estimates are also derived under the squared error loss function using different approximation methods. Further, we obtain exact Bayes and uniformly minimum variance unbiased estimates of the reliability for the case common shape parameter is known. The highest posterior density intervals are also obtained. We perform Monte Carlo simulations to compare the performance of proposed estimates and present a discussion based on this study. Finally, two real data sets are analyzed for illustration purposes.




si

A Bayesian sparse finite mixture model for clustering data from a heterogeneous population

Erlandson F. Saraiva, Adriano K. Suzuki, Luís A. Milan.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 323--344.

Abstract:
In this paper, we introduce a Bayesian approach for clustering data using a sparse finite mixture model (SFMM). The SFMM is a finite mixture model with a large number of components $k$ previously fixed where many components can be empty. In this model, the number of components $k$ can be interpreted as the maximum number of distinct mixture components. Then, we explore the use of a prior distribution for the weights of the mixture model that take into account the possibility that the number of clusters $k_{mathbf{c}}$ (e.g., nonempty components) can be random and smaller than the number of components $k$ of the finite mixture model. In order to determine clusters we develop a MCMC algorithm denominated Split-Merge allocation sampler. In this algorithm, the split-merge strategy is data-driven and was inserted within the algorithm in order to increase the mixing of the Markov chain in relation to the number of clusters. The performance of the method is verified using simulated datasets and three real datasets. The first real data set is the benchmark galaxy data, while second and third are the publicly available data set on Enzyme and Acidity, respectively.




si

Bayesian modeling and prior sensitivity analysis for zero–one augmented beta regression models with an application to psychometric data

Danilo Covaes Nogarotto, Caio Lucidius Naberezny Azevedo, Jorge Luis Bazán.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 304--322.

Abstract:
The interest on the analysis of the zero–one augmented beta regression (ZOABR) model has been increasing over the last few years. In this work, we developed a Bayesian inference for the ZOABR model, providing some contributions, namely: we explored the use of Jeffreys-rule and independence Jeffreys prior for some of the parameters, performing a sensitivity study of prior choice, comparing the Bayesian estimates with the maximum likelihood ones and measuring the accuracy of the estimates under several scenarios of interest. The results indicate, in a general way, that: the Bayesian approach, under the Jeffreys-rule prior, was as accurate as the ML one. Also, different from other approaches, we use the predictive distribution of the response to implement Bayesian residuals. To further illustrate the advantages of our approach, we conduct an analysis of a real psychometric data set including a Bayesian residual analysis, where it is shown that misleading inference can be obtained when the data is transformed. That is, when the zeros and ones are transformed to suitable values and the usual beta regression model is considered, instead of the ZOABR model. Finally, future developments are discussed.




si

Adaptive two-treatment three-period crossover design for normal responses

Uttam Bandyopadhyay, Shirsendu Mukherjee, Atanu Biswas.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 291--303.

Abstract:
In adaptive crossover design, our goal is to allocate more patients to a promising treatment sequence. The present work contains a very simple three period crossover design for two competing treatments where the allocation in period 3 is done on the basis of the data obtained from the first two periods. Assuming normality of response variables we use a reliability functional for the choice between two treatments. We calculate the allocation proportions and their standard errors corresponding to the possible treatment combinations. We also derive some asymptotic results and provide solutions on related inferential problems. Moreover, the proposed procedure is compared with a possible competitor. Finally, we use a data set to illustrate the applicability of the proposed design.




si

Symmetrical and asymmetrical mixture autoregressive processes

Mohsen Maleki, Arezo Hajrajabi, Reinaldo B. Arellano-Valle.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 273--290.

Abstract:
In this paper, we study the finite mixtures of autoregressive processes assuming that the distribution of innovations (errors) belongs to the class of scale mixture of skew-normal (SMSN) distributions. The SMSN distributions allow a simultaneous modeling of the existence of outliers, heavy tails and asymmetries in the distribution of innovations. Therefore, a statistical methodology based on the SMSN family allows us to use a robust modeling on some non-linear time series with great flexibility, to accommodate skewness, heavy tails and heterogeneity simultaneously. The existence of convenient hierarchical representations of the SMSN distributions facilitates also the implementation of an ECME-type of algorithm to perform the likelihood inference in the considered model. Simulation studies and the application to a real data set are finally presented to illustrate the usefulness of the proposed model.




si

Random environment binomial thinning integer-valued autoregressive process with Poisson or geometric marginal

Zhengwei Liu, Qi Li, Fukang Zhu.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 251--272.

Abstract:
To predict time series of counts with small values and remarkable fluctuations, an available model is the $r$ states random environment process based on the negative binomial thinning operator and the geometric marginal. However, we argue that the aforementioned model may suffer from the following two drawbacks. First, under the condition of no prior information, the overdispersed property of the geometric distribution may cause the predictions fluctuate greatly. Second, because of the constraints on the model parameters, some estimated parameters are close to zero in real-data examples, which may not objectively reveal the correlation relationship. For the first drawback, an $r$ states random environment process based on the binomial thinning operator and the Poisson marginal is introduced. For the second drawback, we propose a generalized $r$ states random environment integer-valued autoregressive model based on the binomial thinning operator to model fluctuations of data. Yule–Walker and conditional maximum likelihood estimates are considered and their performances are assessed via simulation studies. Two real-data sets are conducted to illustrate the better performances of the proposed models compared with some existing models.




si

Agnostic tests can control the type I and type II errors simultaneously

Victor Coscrato, Rafael Izbicki, Rafael B. Stern.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 230--250.

Abstract:
Despite its common practice, statistical hypothesis testing presents challenges in interpretation. For instance, in the standard frequentist framework there is no control of the type II error. As a result, the non-rejection of the null hypothesis $(H_{0})$ cannot reasonably be interpreted as its acceptance. We propose that this dilemma can be overcome by using agnostic hypothesis tests, since they can control the type I and II errors simultaneously. In order to make this idea operational, we show how to obtain agnostic hypothesis in typical models. For instance, we show how to build (unbiased) uniformly most powerful agnostic tests and how to obtain agnostic tests from standard p-values. Also, we present conditions such that the above tests can be made logically coherent. Finally, we present examples of consistent agnostic hypothesis tests.