so

Development of an advanced in-line multilayer deposition system at Diamond Light Source

A state-of-the-art multilayer deposition system with a 4200 mm-long linear substrate translator housed within an ultra-high vacuum chamber has been developed. This instrument is engineered to produce single and multilayer coatings, accommodating mirrors up to 2000 mm in length through the utilization of eight rectangular cathodes. To ensure the quality and reliability of the coatings, the system incorporates various diagnostic tools for in situ thickness uniformity and stress measurement. Furthermore, the system features an annealing process capable of heating up to 700°C within the load-lock chamber. The entire operation, including pump down, deposition and venting processes, is automated through user-friendly software. In addition, all essential log data, power of sputtering source, working pressure and motion positions are automatically stored for comprehensive data analysis. Preliminary commissioning results demonstrate excellent lateral film thickness uniformity, achieving 0.26% along the translation direction over 1500 mm in dynamic mode. The multilayer deposition system is poised for use in fabricating periodic, lateral-graded and depth-graded multilayers, specifically catering to the beamlines for diverse scientific applications at Diamond Light Source.




so

A distributed software system for integrating data-intensive imaging methods in a hard X-ray nanoprobe beamline at the SSRF

The development of hard X-ray nanoprobe techniques has given rise to a number of experimental methods, like nano-XAS, nano-XRD, nano-XRF, ptychography and tomography. Each method has its own unique data processing algorithms. With the increase in data acquisition rate, the large amount of generated data is now a big challenge to these algorithms. In this work, an intuitive, user-friendly software system is introduced to integrate and manage these algorithms; by taking advantage of the loosely coupled, component-based design approach of the system, the data processing speed of the imaging algorithm is enhanced through optimization of the parallelism efficiency. This study provides meaningful solutions to tackle complexity challenges faced in synchrotron data processing.




so

Electrochemical cell for synchrotron nuclear resonance techniques

Developing new materials for Li-ion and Na-ion batteries is a high priority in materials science. Such development always includes performance tests and scientific research. Synchrotron radiation techniques provide unique abilities to study batteries. Electrochemical cell design should be optimized for synchrotron studies without losing electrochemical performance. Such design should also be compatible with operando measurement, which is the most appropriate approach to study batteries and provides the most reliable results. The more experimental setups a cell can be adjusted for, the easier and faster the experiments are to carry out and the more reliable the results will be. This requires optimization of window materials and sizes, cell topology, pressure distribution on electrodes etc. to reach a higher efficiency of measurement without losing stability and reproducibility in electrochemical cycling. Here, we present a cell design optimized for nuclear resonance techniques, tested using nuclear forward scattering, synchrotron Mössbauer source and nuclear inelastic scattering.




so

meso-α,α-5,15-Bis(o-nicotinamido­phen­yl)-10,20-diphen­ylporphyrin n-hexane monosolvate

The structure of the title solvated porphyrin, C56H38N8O2·C6H14, is reported. Two porphyrin mol­ecules, one ordered and one disordered n-hexane solvate mol­ecules are present in its asymmetric unit. The porphyrin macrocycle shows a characteristic saddle-shaped distortion, and the maximum deviation from the mean plane for non-hydrogen atoms is 0.48 Å. N—H⋯N, N—H⋯O, and C—H⋯O hydrogen bonds, as well as π–π inter­actions, are observed in the crystal structure.




so

rac-Hy­droxy­isovaleric acid

The title compound (systematic name: rac-2-hydroxy-3-methylbutanoic acid), C5H10O3, is the constitutional isomer of α-hy­droxy­butanoic acid. In the crystal, hydrogen bonds involving the alcoholic hydroxyl group give rise to centrosymmetric dimers that are extended to sheets perpendicular to the crystallographic c axis.




so

Bis[2,6-bis­(benzimidazol-2-yl)pyridine-κ3N,N',N'']nickel(II) bis­(tri­fluoro­methane­sulfonate) diethyl ether monosolvate

In the title complex, [Ni(C19H13N5)2](CF3SO3)2·(CH3CH2)2O, the central NiII atom is sixfold coordinated by three nitro­gen atoms of each 2,6-bis­(2-benzimidazol­yl)pyridine ligand in a distorted octa­hedral geometry with two tri­fluoro­methane­sulfonate ions and a mol­ecule of diethyl ether completing the outer coordination sphere of the complex. Hydrogen bonding contributes to the organization of the asymmetric units in columns along the a axis generating a porous supra­molecular structure. The structure was refined as a two-component twin with a refined BASF value of 0.4104 (13).




so

Aqua­bis­(2,2'-bi­pyridine-κ2N,N')(isonicotinamide-κN)ruthenium(II) bis­(trifluoromethanesulfonate)

In the title complex, [Ru(C10H8N2)2(C6H6N2O)(H2O)](CF3SO3)2, the central RuII atom is sixfold coordinated by two bidentate 2,2'-bi­pyridine, an isonic­otinamide ligand, and a water mol­ecule in a distorted octa­hedral environment with tri­fluoro­methane­sulfonate ions completing the outer coordination sphere of the complex. Hydrogen bonding involving the water mol­ecule and weak π–π stacking inter­actions between the pyridyl rings in adjacent mol­ecules contribute to the alignment of the complexes in columns parallel to the c axis.




so

Ethidium benzoate methanol monosolvate

In the title salt solvate (systematic name: 8-amino-5-ethyl-6-phenyl­phenanthridin-5-ium benzoate methanol monosolvate), C21H20N3+·C6H5CO2−·CH3OH, two ethidium cations, C21H20N3+, dimerize about a twofold axis through π–π inter­actions [inter-centroid separation = 3.6137 (4) Å]. The benzoate anions are connected through hydrogen bonding with the –NH2 groups of the ethidium cations and the –OH group of the MeOH mol­ecule. The MeOH mol­ecule also accepts a hydrogen bond from the –NH2 group of the ethidium cation. The result is a one-dimensional hydrogen-bonded chain along the b-axis direction.




so

Bis[2,3-bis­(thio­phen-2-yl)pyrido[3,4-b]pyrazine]­silver(I) perchlorate methanol disolvate

The title compound, [Ag(C15H9N3S2)2]ClO4·2CH3OH, is monoclinic. The AgI atom is coordinated by pyrido N atoms and is two-coordinate; however, the AgI atom has nearby O atoms that can be assumed to be weakly bonded – one from the perchlorate anion and one from the methanol solvate molecule. One of the thienyl groups on a 2,3-bis­(thio­phen-2-yl)pyrido[3,4-b]pyrazine is flipped disordered and was refined to occupancies of 68.4 (6) and 31.6 (6)%.




so

mer-Bis(quinoline-2-carboxaldehyde 4-ethyl­thio­semicarbazonato)nickel(II) methanol 0.33-solvate 0.67-hydrate

In the title compound, [Ni(C13H13N4S)2]·0.33CH3OH·0.67H2O, the NiII atom is coordinated by two tridentate quinoline-2-carboxaldehyde 4-ethyl­thio­semi­car­ba­zonate ligands in a distorted octa­hedral shape. At 100 K, the crystal symmetry is monoclinic (space group P21/n). A mixture of water and methanol crystallizes with the title complex, and one of the ethyl groups in the coordinating ligands is disordered over two positions, with an occupancy ratio of 58:42. There is inter­molecular hydrogen bonding between the solvent mol­ecules and the amine and thiol­ate groups in the ligands. No other significant inter­actions are present in the crystal packing.




so

Poly[[{μ2-5-[(di­methyl­amino)(thioxo)meth­oxy]benzene-1,3-di­carboxyl­ato-κ4O1,O1':O3,O3'}(μ2-4,4'-di­pyridyl­amine-κ2N4:N4')cobalt(II)] di­methyl­formamide hemisolvate monohydrate]

In the crystal structure of the title compound, {[Co(C11H9NSO5)(C10H9N3)]0.5C3H7NO·H2O}n or {[Co(dmtb)(dpa)]·0.5DMF·H2O}n (dmtb2– = 5-[(di­meth­yl­amino)­thioxometh­oxy]-1,3-benzene­dicarboxyl­ate and dpa = 4,4'-di­pyridyl­amine), an assembly of periodic [Co(C11H9NSO5)(C10H9N3)]n layers extending parallel to the bc plane is present. Each layer is constituted by distorted [CoO4N2] octa­hedra, which are connected through the μ2-coordination modes of both dmtb2– and dpa ligands. Occupationally disordered water and di­meth­yl­formamide (DMF) solvent mol­ecules are located in the voids of the network to which they are connected through hydrogen-bonding inter­actions.




so

(2,5-Di­methyl­imidazole){N,N',N'',N'''-[porphyrin-5,10,15,20-tetra­yltetra­(2,1-phenyl­ene)]tetra­kis(pyridine-3-carboxamide)}manganese(II) chloro­benzene disolvate

In the title compound, [Mn(C68H44N12O4)(C5H8N2)]·2C6H5Cl, the central MnII ion is coordinated by four pyrrole N atoms of the porphyrin core in the basal sites and one N atom of the 2,5-di­methyl­imidazole ligand in the apical site. Two chloro­benzene solvent mol­ecules are also present in the asymmetric unit. Due to the apical imidazole ligand, the Mn atom is displaced out of the 24-atom porphyrin mean plane by 0.66 Å. The average Mn—Np (p = porphyrin) bond length is 2.143 (8) Å, and the axial Mn—NIm (Im = 2,5-di­methyl­imidazole) bond length is 2.171 (8) Å. The structure displays inter­molecular and intra­molecular N—H⋯O, N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonding. The crystal studied was refined as a two-component inversion twin.




so

Chlorido­[(1,2,5,6-η)-cyclo­octa-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-yl­idene)rhodium(I)

A new neutral triazole-based N-heterocyclic carbene rhodium(I) complex [RhCl(C8H12)(C8H15N3)], has been synthesized and structurally characterized. The complex crystallizes with two mol­ecules in the asymmetric unit. The central rhodium(I) atom has a distorted square-planar coordination environment, formed by a cyclo­octa-1,5-diene (COD) ligand, an N-heterocyclic carbene (NHC) ligand, and a chlorido ligand. The bond lengths are unexceptional. A weak inter­molecular non-standard hydrogen-bonding inter­action exists between the chlorido and NHC ligands.




so

(η6-Benzene)­chlorido­[(S)-2-(4-isopropyl-4,5-di­hydro­oxazol-2-yl)phenolato]ruthenium(II)

The title compound, [Ru(C12H14NO2)Cl(η6-C6H6)], exhibits a half-sandwich tripod stand structure and crystallizes in the ortho­rhom­bic space group P212121. The arene group is η6 π-coordinated to the Ru atom with a centroid-to-metal distance of 1.6590 (5) Å, with the (S)-2-(4-isopropyl-4,5-di­hydro­oxazol-2-yl)phenolate chelate ligand forming a bite angle of 86.88 (19)° through its N and phenolate O atoms. The pseudo-octa­hedral geometry assumed by the complex is completed by a chloride ligand. The coordination of the optically pure bidentate ligand induces metal centered chirality onto the complex with a Flack parameter of −0.056.




so

Diisobutyl­ammonium tri­phenyl(2-thiolato­acetato-κ2O,S)stannate(IV)

Crystals of the title salt, (C8H20N)[Sn(C6H5)3(C2H2O2S)], comprise diisobutyl­ammonium cations and mercapto­acetato­tri­phenyl­stannate(IV) anions. The bidentate binding mode of the mercapto­acetate ligand gives rise to a five-coordinated, ionic tri­phenyl­tin complex with a distorted cis-trigonal–bipyramidal geometry around the tin atom. In the crystal, charge-assisted ammonium-N—H⋯O(carboxyl­ate) hydrogen-bonding connects two cations and two anions into a four-ion aggregate. Two positions were resolved for one of the phenyl rings with the major component having a site occupancy factor of 0.60 (3).




so

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](1-ethyl-4-isobutyl-1,2,4-triazol-5-yl­idene)(tri­phenyl­phosphane)rhodium(I) tetra­fluorido­borate

A new, cationic N-heterocyclic carbene RhI complex with a tetra­fluorido­borate counter-anion, [Rh(C8H12)(C8H15N3)(C18H15P)]BF4, has been synthesized and structurally characterized. There are two independent ion pairs in the asymmetric unit. Each complex cation exhibits a distorted square-planar conformation around the RhI atom. Bond lengths and bond angles are as expected for an Rh–NHC complex. There are several close, non-standard C—H⋯F hydrogen-bonding inter­actions between the ions. One of the tetra­fluorido­borate anions shows statistical disorder of the F atoms.




so

μ-Chlorido-bis­{[1-benzyl-3-(2,4,6-tri­methyl­phen­yl)imidazol-2-yl­idene-κC]silver(I)} chloride 1,2-di­chloro­ethane hemisolvate

The title compound, [Ag2(C19H20N2)4]Cl·0.5C2H4Cl2, can be readily generated by treatment of (1-benzyl-3-(2,4,6-tri­methyl­phen­yl)imidazolium chloride with sodium bis­(tri­methyl­sil­yl)amide followed by silver chloride. The mol­ecular structure of the compound was confirmed using NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystal structure of the title compound at 110 K has monoclinic (P21/c) symmetry. The represented silver compound is of inter­est with respect to anti­bacterial properties and the structure displays a series of weak inter­molecular hydrogen-bonding inter­actions with the chloride counter-anion.




so

Bis[2-(isoquinolin-1-yl)phenyl-κ2N,C1](2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline-κ2N,N')iridium(III) hexa­fluorido­phosphate methanol monosolvate

The title compound, [Ir(C15H10N)2(C19H12N4)]PF6·CH3OH, crystallizes in the C2/c space group with one monocationic iridium complex, one hexa­fluorido­phosphate anion, and one methanol solvent mol­ecule of crystallization in the asymmetric unit, all in general positions. The anion and solvent are linked to the iridium complex cation via hydrogen bonding. All bond lengths and angles fall into expected ranges compared to similar compounds.




so

Δ-Bis[(S)-2-(4-isopropyl-4,5-di­hydro­oxazol-2-yl)phenolato-κ2N,O1](1,10-phenanthroline-κ2N,N')ruthenium(III) hexa­fluorido­phosphate

The title compound, [Ru(C12H14NO2)2(C12H8N2)]PF6 crystallizes in the tetra­gonal Sohnke space group P41212. The two bidentate chiral salicyloxazoline ligands and the phenanthroline co-ligand coordinate to the central RuIII atom through N,O and N,N atom pairs to form bite angles of 89.76 (15) and 79.0 (2)°, respectively. The octa­hedral coordination of the bidentate ligands leads to a propeller-like shape, which induces metal-centered chirality onto the complex, with a right-handed (Δ) absolute configuration [the Flack parameter value is −0.003 (14)]. Both the complex cation and the disordered PF6− counter-anion are located on twofold rotation axes. Apart from Coulombic forces, the crystal cohesion is ensured by non-classical C—H⋯O and C—H⋯F inter­actions.




so

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](1-ethyl-4-iso­butyl-1,2,4-triazol-5-yl­idene)(tri­phenyl­phosphane)iridium(I) tetra­fluorido­borate di­chloro­methane hemisolvate

A new triazole-based N-heterocyclic carbene IrI cationic complex with a tetra­fluorido­borate counter-anion and hemi-solvating di­chloro­methane, [Ir(C8H12)(C8H15N3)(C18H15P)]BF4·0.5CH2Cl2, has been synthesized and structurally characterized. There are two independent ion pairs in the asymmetric unit and one di­chloro­methane solvent mol­ecule per two ion pairs. The cationic complex exhibits a distorted square-planar conformation around the IrI atom, formed by a bidentate cyclo­octa-1,5,diene (COD) ligand, a tri­phenyl­phosphane ligand, and an N-heterocyclic carbene (NHC). There are several close non-standard H⋯F hydrogen-bonding inter­actions that orient the tetra­fluorido­borate anions with respect to the IrI complex mol­ecules. The complex shows promising catalytic activity in transfer hydrogenation reactions. The structure was refined as a non-merohedral twin, and one of the COD mol­ecules is statistically disordered.




so

(Z)-N-(2,6-Diiso­propyl­phen­yl)-1-[(2-meth­oxyphen­yl)amino]­methanimine oxide

The mol­ecular structure of the title compound, C20H26N2O2 reveals non-co-planarity between the central formamidine backbone and each of the outer meth­oxy- and i-propyl- substituted benzene rings with dihedral angles of 7.88 (15) and 81.17 (15)°, respectively, indicating significant twists in the mol­ecule. In the crystal, inter­molecular C—H⋯O inter­actions, forming an R34(30) graph set, occur within a two-dimensional layer that extends along the ac plane.




so

(Z)-N-(2,6-Di­methyl­phen­yl)-1-[(2-meth­oxy­phen­yl)amino]­methanimine oxide methanol monosolvate

In the title solvate, C16H18N2O2·CH4O, the dihedral angles between the formamidine backbone and the pendant 2-meth­oxy­phenyl and 2,6-di­methyl­phenyl groups are 14.84 (11) and 81.61 (12)°, respectively. In the crystal, the components are linked by C—H⋯O, O—H⋯O and C—H⋯ π hydrogen bonds, generating a supra­molecular chain that extends along the crystallographic a-axis direction.




so

meso-5,15-Bis[3-(iso­propyl­idenegalacto­pyran­oxy)phen­yl]-10,20-bis­(4-methyl­phen­yl)porphyrin

The crystal structure of a glycosyl­ated porphyrin (P_Gal2) system, C70H70N4O12, where two iso­propyl­idene protected galactose moieties are attached to the meso position of a substituted tetra­aryl porphyrin is reported. This structure reveals that the parent porphyrin is planar, with the galactose moieties positioned above and below the porphyrin macrocycle. This orientation likely prevents porphyrin–porphyrin H-type aggregation, potentially enhancing its efficiency as a photosensitizer in photodynamic therapy. Notable non-bonding C—H⋯O and C—H⋯π inter­actions among adjacent P_Gal2 systems are observed in this crystal network. Additionally, the tolyl groups of each porphyrin can engage in π–π inter­actions with the delocalized π-systems of neighboring porphyrins.




so

Using synchrotron high-resolution powder X-ray diffraction for the structure determination of a new cocrystal formed by two active principle ingredients

The crystal structure of a new 1:1 cocrystal of carbamazepine and S-naproxen (C15H12N2O·C14H14O3) was solved from powder X-ray diffraction (PXRD). The PXRD pattern was measured at the high-resolution beamline CRISTAL at synchrotron SOLEIL (France). The structure was solved using Monte Carlo simulated annealing, then refined with Rietveld refinement. The positions of the H atoms were obtained from density functional theory (DFT) ground-state calculations. The symmetry is ortho­rhom­bic with the space group P212121 (No. 19) and the following lattice parameters: a = 33.5486 (9), b = 26.4223 (6), c = 5.3651 (10) Å and V = 4755.83 (19) Å3.




so

Isostructural behaviour in ammonium and potassium salt forms of sulfonated azo dyes

The structures of five ammonium salt forms of mono­sulfonated azo dyes, derivatives of 4-(2-phenyldiazen-1-yl)benzenesulfonate, with the general formula [NH4][O3S(C6H4)NN(C6H3)RR']·XH2O [R = OH, NH2 or N(C2H4OH)2; R' = H or OH] are presented. All form simple layered structures with alternating hydro­phobic (organic) and hydro­philic (cation, solvent and polar groups) layers. To assess for isostructural behaviour of the ammonium cation with M+ ions, the packing of these structures is compared with literature examples. To aid this comparison, the corresponding structures of four potassium salt forms of the mono­sulfonated azo dyes are also presented herein. Of the five ammonium salts it is found that three have isostructural equivalents. In two cases this equivalent is a potassium salt form and in one case it is a rubidium salt form. The isostructurality of ion packing and of unit-cell symmetry and dimensions tolerates cases where the ammonium ions form somewhat different inter­action types with coformer species than do the potassium or rubidium ions. No sodium salt forms are found to be isostructural with any ammonium equivalent. However, similarities in the anion packing within a single hydro­phobic layer are found for a group that consists of the ammonium and rubidium salt forms of one azo anion species and the sodium and silver salt forms of a different azo species.




so

Structure and absolute configuration of natural fungal product beauveriolide I, isolated from Cordyceps javanica, determined by 3D electron diffraction

Beauveriolides, including the main beauveriolide I {systematic name: (3R,6S,9S,13S)-9-benzyl-13-[(2S)-hexan-2-yl]-6-methyl-3-(2-methyl­prop­yl)-1-oxa-4,7,10-tri­aza­cyclo­tridecane-2,5,8,11-tetrone, C27H41N3O5}, are a series of cyclo­depsipeptides that have shown promising results in the treatment of Alzheimer's disease and in the prevention of foam cell formation in atherosclerosis. Their crystal structure studies have been difficult due to their tiny crystal size and fibre-like morphology, until now. Recent developments in 3D electron diffraction methodology have made it possible to accurately study the crystal structures of submicron crystals by overcoming the problems of beam sensitivity and dynamical scattering. In this study, the absolute structure of beauveriolide I was determined by 3D electron diffraction. The cyclo­dep­si­peptide crystallizes in the space group I2 with lattice parameters a = 40.2744 (4), b = 5.0976 (5), c = 27.698 (4) Å and β = 105.729 (6)°. After dynamical refinement, its absolute structure was determined by comparing the R factors and calculating the z-scores of the two possible enanti­omorphs of beauveriolide I.




so

Absolute structure determination of Berkecoumarin by X-ray and electron diffraction

X-ray and electron diffraction methods independently identify the S-enanti­omer of Berkecoumarin [systematic name: (S)-8-hy­droxy-3-(2-hy­droxy­prop­yl)-6-meth­oxy-2H-chromen-2-one]. Isolated from Berkeley Pit Lake Penicillium sp., Berkecoumarin is a natural product with a light-atom com­position (C13H14O5) that challenges in-house absolute structure determination by anomalous scattering. This study further demonstrates the utility of dynamical refinement of electron-diffraction data for absolute structure determination.




so

Crystal structures, electron spin resonance, and thermogravimetric analysis of three mixed-valence copper cyanide polymers

The crystal structures of three mixed-valence copper cyanide alkanolamine polymers are presented, together with thermogravimetric analysis (TGA) and electron spin resonance (ESR) data. In all three structures, a CuII moiety on a crystallographic center of symmetry is coordinated by two alkanolamines and links two CuICN chains via cyanide bridging groups to form diperiodic sheets. The sheets are linked together by cuprophilic CuI–CuI inter­actions to form a three-dimensional network. In poly[bis­(μ-3-amino­propano­lato)tetra-μ-cyan­ido-dicopper(I)dicopper(II)], [Cu4(CN)4(C3H8NO)2]n, 1, propano­lamine bases have lost their hydroxyl H atoms and coordinate as chelates to two CuII atoms to form a dimeric CuII moiety bridged by the O atoms of the bases with CuII atoms in square-planar coordination. The ESR spectrum is very broad, indicating exchange between the two CuII centers. In poly[bis­(2-amino­pro­pan­ol)tetra-μ-cyanido-dicopper(I)copper(II)], [Cu3(CN)4(C3H9NO)2]n, 2, and poly[bis­(2-amino­ethanol)tetra-μ-cyanido-dicopper(I)copper(II)], [Cu3(CN)4(CH7NO)2]n, 3, a single CuII atom links the CuICN chains together via CN bridges. The chelating alkanolamines are not ionized, and the OH groups form rather long bonds in the axial positions of the octa­hedrally coordinated CuII atoms. The coordination geometries of CuII in 2 and 3 are almost identical, except that the Cu—O distances are longer in 2 than in 3, which may explain their somewhat different ESR spectra. Thermal decom­position in 2 and 3, but not in 1, begins with the loss of HCN(g), and this can be correlated with the presence of OH protons on the ligands in 2 and 3, which are not present in 1.




so

TAAM refinement on high-resolution experimental and simulated 3D ED/MicroED data for organic mol­ecules

3D electron diffraction (3D ED), or microcrystal electron diffraction (MicroED), has become an alternative technique for determining the high-resolution crystal structures of compounds from sub-micron-sized crystals. Here, we considered l-alanine, α-glycine and urea, which are known to form good-quality crystals, and collected high-resolution 3D ED data on our in-house TEM instrument. In this study, we present a comparison of independent atom model (IAM) and transferable aspherical atom model (TAAM) kinematical refinement against experimental and simulated data. TAAM refinement on both experimental and simulated data clearly improves the model fitting statistics (R factors and residual electrostatic potential) compared to IAM refinement. This shows that TAAM better represents the experimental electrostatic potential of organic crystals than IAM. Furthermore, we compared the geometrical parameters and atomic displacement parameters (ADPs) resulting from the experimental refinements with the simulated refinements, with the periodic density functional theory (DFT) calculations and with published X-ray and neutron crystal structures. The TAAM refinements on the 3D ED data did not improve the accuracy of the bond lengths between the non-H atoms. The experimental 3D ED data provided more accurate H-atom positions than the IAM refinements on the X-ray diffraction data. The IAM refinements against 3D ED data had a tendency to lead to slightly longer X—H bond lengths than TAAM, but the difference was statistically insignificant. Atomic displacement parameters were too large by tens of percent for l-alanine and α-glycine. Most probably, other unmodelled effects were causing this behaviour, such as radiation damage or dynamical scattering.




so

Crystal structure of the cytotoxic macrocyclic trichothecene Isororidin A

The highly cytotoxic macrocyclic trichothecene Isororidin A (C29H40O9) was isolated from the fungus Myrothesium verrucaria endophytic on the wild medicinal plant `Datura' (Datura stramonium L.) and was characterized by one- (1D) and two-dimensional (2D) NMR spectroscopy. The three-dimensional structure of Isororidin A has been confirmed by X-ray crystallography at 0.81 Å resolution from crystals grown in the ortho­rhom­bic space group P212121, with one mol­ecule per asymmetric unit. Isororidin A is the epimer of previously described (by X-ray crystallography) Roridin A at position C-13' of the macrocyclic ring.




so

3-[(Benzo-1,3-dioxol-5-yl)amino]-4-meth­oxy­cyclo­but-3-ene-1,2-dione: polymorphism and twinning of a precursor to an anti­mycobacterial squaramide

The title compound, 3-[(benzo-1,3-dioxol-5-yl)amino]-4-meth­oxy­cyclo­but-3-ene-1,2-dione, C12H9NO5 (3), is a precursor to an anti­mycobacterial squaramide. Block-shaped crystals of a monoclinic form (3-I, space group P21/c, Z = 8, Z' = 2) and needle-shaped crystals of a triclinic form (3-II, space group P-1, Z = 4, Z' = 2) were found to crystallize concomitantly. In both crystal forms, R22(10) dimers assemble through N—H⋯O=C hydrogen bonds. These dimers are formed from crystallographically unique mol­ecules in 3-I, but exhibit crystallographic Ci symmetry in 3-II. Twinning by pseudomerohedry was encountered in the crystals of 3-II. The conformations of 3 in the solid forms 3-I and 3-II are different from one another but are similar for the unique mol­ecules in each polymorph. Density functional theory (DFT) calculations on the free mol­ecule of 3 indicate that a nearly planar conformation is preferred.




so

Concerning the structures of Lewis base adducts of titanium(IV) hexa­fluoro­iso­pro­pox­ide

The reaction of titanium(IV) chloride with sodium hexa­fluoro­iso­pro­pox­ide, carried out in hexa­fluoro­iso­propanol, produces titanium(IV) hexa­fluoro­iso­pro­pox­ide, which is a liquid at room temperature. Recrystallization from coordinating solvents, such as aceto­nitrile or tetra­hydro­furan, results in the formation of bis-solvate com­plexes. These com­pounds are of inter­est as possible Ziegler–Natta polymerization catalysts. The aceto­nitrile com­plex had been structurally characterized previously and adopts a distorted octahedral structure in which the nitrile ligands adopt a cis configuration, with nitro­gen lone pairs coordinated to the metal. The low-melting tetra­hydro­furan com­plex has not provided crystals suitable for single-crystal X-ray analysis. However, the structure of chlorido­tris­(hexa­fluoro­isopropoxido-κO)bis­(tetra­hydro­furan-κO)titanium(IV), [Ti(C3HF6O)3Cl(C4H8O)2], has been obtained and adopts a distorted octa­hedral coordination geometry, with a facial arrangement of the alkoxide ligands and adjacent tetra­hydro­furan ligands, coordinated by way of metal–oxygen polar coordinate inter­actions.




so

Synthesis of organotin(IV) heterocycles containing a xanthenyl group by a Barbier approach via ultrasound activation: synthesis, crystal structure and Hirshfeld surface analysis

A series of organotin heterocycles of general formula [{Me2C(C6H3CH2)2O}SnR2] [R = methyl (Me, 4), n-butyl (n-Bu, 5), benzyl (Bn, 6) and phenyl (Ph, 7)] was easily synthesized by a Barbier-type reaction assisted by the sonochemical activation of metallic magnesium. The 119Sn{1H} NMR data for all four com­pounds confirm the presence of a central Sn atom in a four-coordinated environment in solution. Single-crystal X-ray diffraction studies for 17,17-dimethyl-7,7-di­phenyl-15-oxa-7-stanna­tetra­cyclo­[11.3.1.05,16.09,14]hepta­deca-1,3,5(16),9(14),10,12-hexa­­ene, [Sn(C6H5)2(C17H16O)], 7, at 100 and 295 K con­firmed the formation of a mono­nuclear eight-membered heterocycle, with a conformation depicted as boat–chair, resulting in a weak Sn⋯O inter­action. The Sn and O atoms are surrounded by hydro­phobic C—H bonds. A Hirshfeld surface analysis of 7 showed that the eight-membered heterocycles are linked by weak C—H⋯π, π–π and H⋯H noncovalent inter­actions. The pairwise inter­action energies showed that the cohesion between the heterocycles are mainly due to dispersion forces.




so

Formation of a di­iron–(μ-η1:η1-CN) com­plex from aceto­nitrile solution

The activation of C—C bonds by transition-metal com­plexes is of continuing inter­est and aceto­nitrile (MeCN) has attracted attention as a cyanide source with com­paratively low toxicity for organic cyanation reactions. A di­iron end-on μ-η1:η1-CN-bridged com­plex was obtained from a crystallization experiment of an open-chain iron–NHC com­plex, namely, μ-cyanido-κ2C:N-bis­{[(aceto­nitrile-κN)[3,3'-bis­(pyridin-2-yl)-1,1'-(methyl­idene)bis­(benzimidazol-2-yl­idene)]iron(II)} tris­(hexa­fluoro­phos­phate), [Fe2(CN)(C2H3N)2(C25H18N6)2](PF6)3. The cyanide appears to originate from the MeCN solvent by C—C bond cleavage or through carbon–hy­dro­gen oxidation.




so

The TR-icOS setup at the ESRF: time-resolved microsecond UV–Vis absorption spectroscopy on protein crystals

The technique of time-resolved macromolecular crystallography (TR-MX) has recently been rejuvenated at synchrotrons, resulting in the design of dedicated beamlines. Using pump–probe schemes, this should make the mechanistic study of photoactive proteins and other suitable systems possible with time resolutions down to microseconds. In order to identify relevant time delays, time-resolved spectroscopic experiments directly performed on protein crystals are often desirable. To this end, an instrument has been built at the icOS Lab (in crystallo Optical Spectroscopy Laboratory) at the European Synchrotron Radiation Facility using reflective focusing objectives with a tuneable nanosecond laser as a pump and a microsecond xenon flash lamp as a probe, called the TR-icOS (time-resolved icOS) setup. Using this instrument, pump–probe spectra can rapidly be recorded from single crystals with time delays ranging from a few microseconds to seconds and beyond. This can be repeated at various laser pulse energies to track the potential presence of artefacts arising from two-photon absorption, which amounts to a power titration of a photoreaction. This approach has been applied to monitor the rise and decay of the M state in the photocycle of crystallized bacteriorhodopsin and showed that the photocycle is increasingly altered with laser pulses of peak fluence greater than 100 mJ cm−2, providing experimental laser and delay parameters for a successful TR-MX experiment.




so

From femtoseconds to minutes: time-resolved macromolecular crystallography at XFELs and synchrotrons

Over the last decade, the development of time-resolved serial crystallography (TR-SX) at X-ray free-electron lasers (XFELs) and synchrotrons has allowed researchers to study phenomena occurring in proteins on the femtosecond-to-minute timescale, taking advantage of many technical and methodological breakthroughs. Protein crystals of various sizes are presented to the X-ray beam in either a static or a moving medium. Photoactive proteins were naturally the initial systems to be studied in TR-SX experiments using pump–probe schemes, where the pump is a pulse of visible light. Other reaction initiations through small-molecule diffusion are gaining momentum. Here, selected examples of XFEL and synchrotron time-resolved crystallography studies will be used to highlight the specificities of the various instruments and methods with respect to time resolution, and are compared with cryo-trapping studies.




so

STOPGAP: an open-source package for template matching, subtomogram alignment and classification

Cryo-electron tomography (cryo-ET) enables molecular-resolution 3D imaging of complex biological specimens such as viral particles, cellular sections and, in some cases, whole cells. This enables the structural characterization of molecules in their near-native environments, without the need for purification or separation, thereby preserving biological information such as conformational states and spatial relationships between different molecular species. Subtomogram averaging is an image-processing workflow that allows users to leverage cryo-ET data to identify and localize target molecules, determine high-resolution structures of repeating molecular species and classify different conformational states. Here, STOPGAP, an open-source package for subtomogram averaging that is designed to provide users with fine control over each of these steps, is described. In providing detailed descriptions of the image-processing algorithms that STOPGAP uses, this manuscript is also intended to serve as a technical resource to users as well as for further community-driven software development.




so

Introduction of the Capsules environment to support further growth of the SBGrid structural biology software collection

The expansive scientific software ecosystem, characterized by millions of titles across various platforms and formats, poses significant challenges in maintaining reproducibility and provenance in scientific research. The diversity of independently developed applications, evolving versions and heterogeneous components highlights the need for rigorous methodologies to navigate these complexities. In response to these challenges, the SBGrid team builds, installs and configures over 530 specialized software applications for use in the on-premises and cloud-based computing environments of SBGrid Consortium members. To address the intricacies of supporting this diverse application collection, the team has developed the Capsule Software Execution Environment, generally referred to as Capsules. Capsules rely on a collection of programmatically generated bash scripts that work together to isolate the runtime environment of one application from all other applications, thereby providing a transparent cross-platform solution without requiring specialized tools or elevated account privileges for researchers. Capsules facilitate modular, secure software distribution while maintaining a centralized, conflict-free environment. The SBGrid platform, which combines Capsules with the SBGrid collection of structural biology applications, aligns with FAIR goals by enhancing the findability, accessibility, interoperability and reusability of scientific software, ensuring seamless functionality across diverse computing environments. Its adaptability enables application beyond structural biology into other scientific fields.




so

Validation of electron-microscopy maps using solution small-angle X-ray scattering

The determination of the atomic resolution structure of biomacromolecules is essential for understanding details of their function. Traditionally, such a structure determination has been performed with crystallographic or nuclear resonance methods, but during the last decade, cryogenic transmission electron microscopy (cryo-TEM) has become an equally important tool. As the blotting and flash-freezing of the samples can induce conformational changes, external validation tools are required to ensure that the vitrified samples are representative of the solution. Although many validation tools have already been developed, most of them rely on fully resolved atomic models, which prevents early screening of the cryo-TEM maps. Here, a novel and automated method for performing such a validation utilizing small-angle X-ray scattering measurements, publicly available through the new software package AUSAXS, is introduced and implemented. The method has been tested on both simulated and experimental data, where it was shown to work remarkably well as a validation tool. The method provides a dummy atomic model derived from the EM map which best represents the solution structure.




so

Comparison of two crystal polymorphs of NowGFP reveals a new conformational state trapped by crystal packing

Crystal polymorphism serves as a strategy to study the conformational flexibility of proteins. However, the relationship between protein crystal packing and protein conformation often remains elusive. In this study, two distinct crystal forms of a green fluorescent protein variant, NowGFP, are compared: a previously identified monoclinic form (space group C2) and a newly discovered ortho­rhombic form (space group P212121). Comparative analysis reveals that both crystal forms exhibit nearly identical linear assemblies of NowGFP molecules interconnected through similar crystal contacts. However, a notable difference lies in the stacking of these assemblies: parallel in the monoclinic form and perpendicular in the orthorhombic form. This distinct mode of stacking leads to different crystal contacts and induces structural alteration in one of the two molecules within the asymmetric unit of the orthorhombic crystal form. This new conformational state captured by orthorhombic crystal packing exhibits two unique features: a conformational shift of the β-barrel scaffold and a restriction of pH-dependent shifts of the key residue Lys61, which is crucial for the pH-dependent spectral shift of this protein. These findings demonstrate a clear connection between crystal packing and alternative conformational states of proteins, providing insights into how structural variations influence the function of fluorescent proteins.




so

The role of alkyl chain length in the melt and solution crystallization of paliperidone aliphatic prodrugs

Fatty acid-derivative prodrugs have been utilized extensively to improve the physicochemical, biopharmaceutical and pharmacokinetic properties of active pharmaceutical ingredients. However, to our knowledge, the crystallization behavior of prodrugs modified with different fatty acids has not been explored. In the present work, a series of paliperidone aliphatic prodrugs with alkyl chain lengths ranging from C4 to C16 was investigated with respect to crystal structure, crystal morphology and crystallization kinetics. The paliperidone derivatives exhibited isostructural crystal packing, despite the different alkyl chain lengths, and crystallized with the dominant (100) face in both melt and solution. The rate of crystallization for paliperidone derivatives in the melt increases with alkyl chain length owing to greater molecular mobility. In contrast, the longer chains prolong the nucleation induction time and reduce the crystal growth kinetics in solution. The results show a correlation between difficulty of nucleation in solution and the interfacial energy. This work provides insight into the crystallization behavior of paliperidone aliphatic prodrugs and reveals that the role of alkyl chain length in the crystallization behavior has a strong dependence on the crystallization method.




so

STEM SerialED: achieving high-resolution data for ab initio structure determination of beam-sensitive nanocrystalline materials

Serial electron diffraction (SerialED), which applies a snapshot data acquisition strategy for each crystal, was introduced to tackle the problem of radiation damage in the structure determination of beam-sensitive materials by three-dimensional electron diffraction (3DED). The snapshot data acquisition in SerialED can be realized using both transmission and scanning transmission electron microscopes (TEM/STEM). However, the current SerialED workflow based on STEM setups requires special external devices and software, which limits broader adoption. Here, we present a simplified experimental implementation of STEM-based SerialED on Thermo Fisher Scientific STEMs using common proprietary software interfaced through Python scripts to automate data collection. Specifically, we utilize TEM Imaging and Analysis (TIA) scripting and TEM scripting to access the STEM functionalities of the microscope, and DigitalMicrograph scripting to control the camera for snapshot data acquisition. Data analysis adapts the existing workflow using the software CrystFEL, which was developed for serial X-ray crystallography. Our workflow for STEM SerialED can be used on any Gatan or Thermo Fisher Scientific camera. We apply this workflow to collect high-resolution STEM SerialED data from two aluminosilicate zeolites, zeolite Y and ZSM-25. We demonstrate, for the first time, ab initio structure determination through direct methods using STEM SerialED data. Zeolite Y is relatively stable under the electron beam, and STEM SerialED data extend to 0.60 Å. We show that the structural model obtained using STEM SerialED data merged from 358 crystals is nearly identical to that using continuous rotation electron diffraction data from one crystal. This demonstrates that accurate structures can be obtained from STEM SerialED. Zeolite ZSM-25 is very beam-sensitive and has a complex structure. We show that STEM SerialED greatly improves the data resolution of ZSM-25, compared with serial rotation electron diffraction (SerialRED), from 1.50 to 0.90 Å. This allows, for the first time, the use of standard phasing methods, such as direct methods, for the ab initio structure determination of ZSM-25.




so

C-SPAM: an open-source time-resolved specimen vitrification device with light-activated molecules

Molecular structures can be determined in vitro and in situ with cryo-electron microscopy (cryo-EM). Specimen preparation is a major obstacle in cryo-EM. Typical sample preparation is orders of magnitude slower than biological processes. Time-resolved cryo-EM (TR-cryo-EM) can capture short-lived states. Here, Cryo-EM sample preparation with light-activated molecules (C-SPAM) is presented, an open-source, photochemistry-coupled device for TR-cryo-EM that enables millisecond resolution and tunable timescales across broad biological applications.




so

Solving protein structures by combining structure prediction, molecular replacement and direct-methods-aided model completion

Highly accurate protein structure prediction can generate accurate models of protein and protein–protein complexes in X-ray crystallography. However, the question of how to make more effective use of predicted models for completing structure analysis, and which strategies should be employed for the more challenging cases such as multi-helical structures, multimeric structures and extremely large structures, both in the model preparation and in the completion steps, remains open for discussion. In this paper, a new strategy is proposed based on the framework of direct methods and dual-space iteration, which can greatly simplify the pre-processing steps of predicted models both in normal and in challenging cases. Following this strategy, full-length models or the conservative structural domains could be used directly as the starting model, and the phase error and the model bias between the starting model and the real structure would be modified in the direct-methods-based dual-space iteration. Many challenging cases (from CASP14) have been tested for the general applicability of this constructive strategy, and almost complete models have been generated with reasonable statistics. The hybrid strategy therefore provides a meaningful scheme for X-ray structure determination using a predicted model as the starting point.




so

What is isostructurality? Questions on the definition

Investigation of isostructurality leads to a deeper understanding of close-packing principles and contributes to the ability of crystal engineering. A given packing motif may tolerate small molecular changes within a limit. Slight alterations of a crystal packing arrangement are carried out in order to fine-tune the structural and macroscopic properties, keeping the balance of the spatial requirements and electrostatic effects of the altered molecules in the crystals, preserving their isostructurality. Even so, the definition of isostructurality is not explicit about several issues. Are the corresponding structures required to have the same stoichiometry, Z', symmetry elements and the same space group? Because it is not obvious in the definition, studies on structure analysis and software calculating various numerical descriptors developed for the quantitative comparison of the degree of similarity of isostructural crystals self-define their criteria. The extent of the difference between corresponding crystal structures referred to as isostructural is not limited. Should it be determined numerically? There is nothing in the definition about a demand for similar supramolecular arrangements in isostructural crystals. Should the similarity of supramolecular interactions be a criterion of isostructurality? The definition of isostructurality deserves reconsideration regarding symmetry, measure of similarity and formation of supramolecular interactions.




so

Droplet microfluidics for time-resolved serial crystallography

Serial crystallography requires large numbers of microcrystals and robust strategies to rapidly apply substrates to initiate reactions in time-resolved studies. Here, we report the use of droplet miniaturization for the controlled production of uniform crystals, providing an avenue for controlled substrate addition and synchronous reaction initiation. The approach was evaluated using two enzymatic systems, yielding 3 µm crystals of lysozyme and 2 µm crystals of Pdx1, an Arabidopsis enzyme involved in vitamin B6 biosynthesis. A seeding strategy was used to overcome the improbability of Pdx1 nucleation occurring with diminishing droplet volumes. Convection within droplets was exploited for rapid crystal mixing with ligands. Mixing times of <2 ms were achieved. Droplet microfluidics for crystal size engineering and rapid micromixing can be utilized to advance time-resolved serial crystallography.




so

Nanostructure and dynamics of N-truncated copper amyloid-β peptides from advanced X-ray absorption fine structure

An X-ray absorption spectroscopy (XAS) electrochemical cell was used to collect high-quality XAS measurements of N-truncated Cu:amyloid-β (Cu:Aβ) samples under near-physiological conditions. N-truncated Cu:Aβ peptide complexes contribute to oxidative stress and neurotoxicity in Alzheimer's patients' brains. However, the redox properties of copper in different Aβ peptide sequences are inconsistent. Therefore, the geometry of binding sites for the copper binding in Aβ4–8/12/16 was determined using novel advanced extended X-ray absorption fine structure (EXAFS) analysis. This enables these peptides to perform redox cycles in a manner that might produce toxicity in human brains. Fluorescence XAS measurements were corrected for systematic errors including defective-pixel data, monochromator glitches and dispersion of pixel spectra. Experimental uncertainties at each data point were measured explicitly from the point-wise variance of corrected pixel measurements. The copper-binding environments of Aβ4–8/12/16 were precisely determined by fitting XAS measurements with propagated experimental uncertainties, advanced analysis and hypothesis testing, providing a mechanism to pursue many similarly complex questions in bioscience. The low-temperature XAS measurements here determine that CuII is bound to the first amino acids in the high-affinity amino-terminal copper and nickel (ATCUN) binding motif with an oxygen in a tetragonal pyramid geometry in the Aβ4–8/12/16 peptides. Room-temperature XAS electrochemical-cell measurements observe metal reduction in the Aβ4–16 peptide. Robust investigations of XAS provide structural details of CuII binding with a very different bis-His motif and a water oxygen in a quasi-tetrahedral geometry. Oxidized XAS measurements of Aβ4–12/16 imply that both CuII and CuIII are accommodated in an ATCUN-like binding site. Hypotheses for these CuI, CuII and CuIII geometries were proven and disproven using the novel data and statistical analysis including F tests. Structural parameters were determined with an accuracy some tenfold better than literature claims of past work. A new protocol was also developed using EXAFS data analysis for monitoring radiation damage. This gives a template for advanced analysis of complex biosystems.




so

KINNTREX: a neural network to unveil protein mechanisms from time-resolved X-ray crystallography

Here, a machine-learning method based on a kinetically informed neural network (NN) is introduced. The proposed method is designed to analyze a time series of difference electron-density maps from a time-resolved X-ray crystallographic experiment. The method is named KINNTREX (kinetics-informed NN for time-resolved X-ray crystallography). To validate KINNTREX, multiple realistic scenarios were simulated with increasing levels of complexity. For the simulations, time-resolved X-ray data were generated that mimic data collected from the photocycle of the photoactive yellow protein. KINNTREX only requires the number of intermediates and approximate relaxation times (both obtained from a singular valued decomposition) and does not require an assumption of a candidate mechanism. It successfully predicts a consistent chemical kinetic mechanism, together with difference electron-density maps of the intermediates that appear during the reaction. These features make KINNTREX attractive for tackling a wide range of biomolecular questions. In addition, the versatility of KINNTREX can inspire more NN-based applications to time-resolved data from biological macromolecules obtained by other methods.




so

Linking solid-state phenomena via energy differences in `archetype crystal structures'

Categorization underlies understanding. Conceptualizing solid-state structures of organic molecules with `archetype crystal structures' bridges established categories of disorder, polymorphism and solid solutions and is herein extended to special position and high-Z' structures. The concept was developed in the context of disorder modelling [Dittrich, B. (2021). IUCrJ, 8, 305–318] and relies on adding quantum chemical energy differences between disorder components to other criteria as an explanation as to why disorder – and disappearing disorder – occurs in an average structure. Part of the concept is that disorder, as probed by diffraction, affects entire molecules, rather than just the parts of a molecule with differing conformations, and the finding that an R·T energy difference between disorder archetypes is usually not exceeded. An illustrative example combining disorder and special positions is the crystal structure of oestradiol hemihydrate analysed here, where its space-group/subgroup relationship is required to explain its disorder of hydrogen-bonded hydrogen atoms. In addition, we show how high-Z' structures can also be analysed energetically and understood via archetypes: high-Z' structures occur when an energy gain from combining different rather than overall alike conformations in a crystal significantly exceeds R·T, and this finding is discussed in the context of earlier explanations in the literature. Twinning is not related to archetype structures since it involves macroscopic domains of the same crystal structure. Archetype crystal structures are distinguished from crystal structure prediction trial structures in that an experimental reference structure is required for them. Categorization into archetype structures also has practical relevance, leading to a new practice of disorder modelling in experimental least-squares refinement alluded to in the above-mentioned publication.




so

Toward a quantitative description of solvation structure: a framework for differential solution scattering measurements

Appreciating that the role of the solute–solvent and other outer-sphere interactions is essential for understanding chemistry and chemical dynamics in solution, experimental approaches are needed to address the structural consequences of these interactions, complementing condensed-matter simulations and coarse-grained theories. High-energy X-ray scattering (HEXS) combined with pair distribution function analysis presents the opportunity to probe these structures directly and to develop quantitative, atomistic models of molecular systems in situ in the solution phase. However, at concentrations relevant to solution-phase chemistry, the total scattering signal is dominated by the bulk solvent, prompting researchers to adopt a differential approach to eliminate this unwanted background. Though similar approaches are well established in quantitative structural studies of macromolecules in solution by small- and wide-angle X-ray scattering (SAXS/WAXS), analogous studies in the HEXS regime—where sub-ångström spatial resolution is achieved—remain underdeveloped, in part due to the lack of a rigorous theoretical description of the experiment. To address this, herein we develop a framework for differential solution scattering experiments conducted at high energies, which includes concepts of the solvent-excluded volume introduced to describe SAXS/WAXS data, as well as concepts from the time-resolved X-ray scattering community. Our theory is supported by numerical simulations and experiment and paves the way for establishing quantitative methods to determine the atomic structures of small molecules in solution with resolution approaching that of crystallography.