mod Remodeling Project by Marcus Coker By www.flickr.com Published On :: Thu, 18 Sep 2014 21:36:53 -0700 Marcus of All Trades posted a photo: Full Article
mod Do Ohio High Schools Need To Take A Closer Look At "Pay-to-Play"Model? By radio.wosu.org Published On :: Fri, 26 Feb 2016 21:28:12 +0000 It can costs kids and parents several hundred dollars to play a single sport in high school. Could there be big changes to the "pay-to-play" system in Ohio? Full Article
mod Russia is losing space power status with the launch of Nauka module to ISS By english.pravda.ru Published On :: Thu, 22 Jul 2021 20:09:00 +0300 Russia is making pointless and even strange steps in and around space, and they are all the more sad because they cost the Russian budget a lot of money and deprive the nation of the space power status. Why the United States would like to work with Russia in space, but Russia would not The space race has been getting increasingly intense lately. Different countries declare their claims to the Moon. It appears that China is going to be the first to go there. The exploration or even the colonisation of Mars is next on the list. Space exploration by private corporations is in full swing: Full Article Science
mod First launch of Angara-A5 heavy-class rocket from Vostochny Cosmodrome aborted By english.pravda.ru Published On :: Tue, 09 Apr 2024 14:37:00 +0300 The first launch of the Angara-A5 heavy launch vehicle from the newly built launch complex at the Vostochny Cosmodrome was aborted two minutes before lift off. The rocket with the Orion upper stage and test payload was supposed to take off for the first time from Vostochny on Tuesday, April 9, at 12:00. The launch was postponed. The launch of the Angara rocket was postponed till Wednesday, April 10, Roscosmos chief Yuri Borisov said. Full Article Science
mod Designated Doctor Case-Based Webinar Series: Module 6 - Non – Musculoskeletal Traumatic Brain Injury By www.tdi.texas.gov Published On :: Wed, 16 Apr 2025 17:00:00 GMT Designated Doctor Case-Based Webinar Series: Module 6 - Non – Musculoskeletal Traumatic Brain Injury Full Article
mod Designated Doctor Case-Based Webinar Series: Module 5 - Non – Musculoskeletal MMI and IR By www.tdi.texas.gov Published On :: Mon, 14 Apr 2025 17:00:00 GMT Designated Doctor Case-Based Webinar Series: Module 5 - Non – Musculoskeletal MMI and IR Full Article
mod Designated Doctor Case-Based Webinar Series: Module 4 - Lower Extremity MMI and IR By www.tdi.texas.gov Published On :: Wed, 09 Apr 2025 17:00:00 GMT Designated Doctor Case-Based Webinar Series: Module 4 - Lower Extremity MMI and IR Full Article
mod Designated Doctor Case-Based Webinar Series: Module 3 - Upper Extremity MMI and IR By www.tdi.texas.gov Published On :: Mon, 07 Apr 2025 17:00:00 GMT Designated Doctor Case-Based Webinar Series: Module 3 - Upper Extremity MMI and IR Full Article
mod Designated Doctor Case-Based Webinar Series: Module 2 - Spine MMI and IR and Extent of Injury (EOI) By www.tdi.texas.gov Published On :: Wed, 02 Apr 2025 17:00:00 GMT Designated Doctor Case-Based Webinar Series: Module 2 - Spine MMI and IR and Extent of Injury (EOI) Full Article
mod Designated Doctor Case-Based Webinar Series: Module 1 - Maximum Medical Improvement By www.tdi.texas.gov Published On :: Mon, 31 Mar 2025 17:00:00 GMT Designated Doctor Case-Based Webinar Series: Module 1 - Maximum Medical Improvement Full Article
mod Rise in phishing attacks, as commodity campaigns and impersonation attacks escalate By www.retailtechnologyreview.com Published On :: Wed, 13 Nov 8120 17:28:37 +0000 Cybersecurity company, Egress, a KnowBe4 company, has launched its latest Phishing Threat Trends Report (October 2024), which examines the most recent phishing statistics and threat intelligence insights. Full Article Surveillance and Security Critical Issues Cyber Security
mod Strengthening the MSP portfolio: Navigating modern cybersecurity By www.retailtechnologyreview.com Published On :: By Marc Malafronte, director of sales, VIPRE Security Group.As cyberattacks increase in frequency and sophistication, businesses must prioritize cybersecurity as a critical investment area. Managed service providers (MSPs) are crucial in supporting organizations on their cybersecurity journey. Full Article Surveillance and Security Critical Issues Cyber Security
mod The Ergonomic Solutions Group’s new SpacePole Kiosk – A modular, configurable and customisable platform for a wide range of self-service applications By www.retailtechnologyreview.com Published On :: Tue, 13 Nov 4040 16:52:00 +0000 The Ergonomic Solutions Group, the designer and manufacturer of technology mounting solutions, has launched the SpacePole Kiosk – described as a multifunctional platform with maximum flexibility for a wide range of self-service applications including self-check-in/check-out, self-ordering, endless aisle, product display & advertising, ticketing, click & collect and many more. Full Article Kiosk Technology
mod Specialist recruiter enjoys successful Multimodal debut By www.retailtechnologyreview.com Published On :: Fri, 13 Nov 1440 17:20:53 -0001 A specialist logistics recruiter is celebrating, following its debut at industry trade show Multimodal. Innovate Freight Talent exhibited and also presented a key seminar on finding the best logistics talent for your business, at the UK’s leading supply chain conference and logistics expo at the NEC. Full Article Retail Supply Chain Exhibitions and Events
mod Penn GSE, the School District of Philadelphia, Foundations, Inc. and the Consortium for Policy Research in Education Partnering to Create an Innovative and Scalable College and Career Readiness Model for Students By www.newswise.com Published On :: Tue, 12 Nov 2024 11:30:27 EST The University of Pennsylvania Graduate School of Education (Penn GSE) has been awarded $3.5 million, part of a larger $8 million grant from Education Initiatives, to partner with the School District of Philadelphia (SDP) to launch The Academy at Penn, an innovative five-year, cohort-based college- and career-readiness model for high school students. Foundations, Inc. and the Consortium for Policy Research in Education (CPRE) were also awarded through the grant as part of the larger partnership. The close collaboration involves working together to design, implement, and evaluate the project. Full Article
mod Business Models and Lean Startup By www.newswise.com Published On :: Tue, 05 Nov 2024 09:25:59 EST Full Article
mod Space Agency to Develop Lunar Module to be Sent to Moon by 2032 By world.kbs.co.kr Published On :: Mon, 04 Nov 2024 17:44:41 +0900 [Science] : The Korea AeroSpace Administration and the Korea Aerospace Research Institute are set to proceed with the development of a lunar module after signing an agreement on the second phase of the nation’s moon exploration project. According to the state agency on Monday, some 530 billion won, or around 386 ...[more...] Full Article Science
mod Motel vs. Hotel: Differences in Overnight Accommodations By money.howstuffworks.com Published On :: Tue, 02 Apr 2024 16:37:12 -0400 Differentiating between most overnight accommodations can be simple, based on the building's location, layout, amenities and price, but several outliers blur the lines between these key differences. Full Article
mod First national-scale groundwater model in Great Britain developed - British Geological Survey By news.google.com Published On :: Tue, 14 May 2024 10:50:37 GMT First national-scale groundwater model in Great Britain developed British Geological Survey Full Article
mod Crystal structure of the incommensurate modulated high-pressure phase of the potassium guaninate monohydrate By journals.iucr.org Published On :: Incommensurate phase of potassium guaninate monohydrate is the first example of a modulation in purine derivatives and of a high-pressure incommensurate crystal structure to be solved for an organic compound. Full Article text
mod From `crystallographic accuracy' to `thermodynamic accuracy': a redetermination of the crystal structure of calcium atorvastatin trihydrate (Lipitor®) By journals.iucr.org Published On :: The crystal structure of calcium atorvastatin trihydrate was redetermined from previously published synchrotron powder diffraction data to give a much-improved agreement with two independent density-functional theory calculations. Full Article text
mod Seed layer formation by deposition of micro-crystallites on a revolving substrate: modeling of the effective linear elastic, piezoelectric, and dielectric coefficients By journals.iucr.org Published On :: The rotating substrate method of crystallite deposition is modeled, allowing computation of effective material coefficients of the layers resulting from the averaging. A worked numerical example particularized to 6mm ZnO is provided. Full Article text
mod From `crystallographic accuracy' to `thermodynamic accuracy': a redetermination of the crystal structure of calcium atorvastatin trihydrate (Lipitor®) By journals.iucr.org Published On :: 2024-10-08 With ever-improving quantum-mechanical computational methods, the accuracy requirements for experimental crystal structures increase. The crystal structure of calcium atorvastatin trihydrate, which has 56 degrees of freedom when determined with a real-space algorithm, was determined from powder diffraction data by Hodge et al. [Powder Diffr. (2020), 35, 136–143]. The crystal structure was a good fit to the experimental data, indicating that the electron density had been captured essentially correctly, but two independent quantum-mechanical calculations disagreed with the experimental structure and with each other. Using the same experimental data, the crystal structure was redetermined from scratch and it was shown that it can be reproduced within a root-mean-square Cartesian displacement of 0.1 Å by two independent quantum-mechanical calculations. The consequences for the calculated energies and solubilities are described. Full Article text
mod Crystal structure of the incommensurate modulated high-pressure phase of the potassium guaninate monohydrate By journals.iucr.org Published On :: 2024-10-08 The crystal structure of the incommensurate modulated phase of potassium guaninate monohydrate has been solved on the basis of high-pressure single-crystal X-ray diffraction data. The modulated structure was described as a `mosaic' sequence of three different local configurations of two neighbouring guaninate rings. In contrast to known examples of incommensurate modulated organic compounds, the modulation functions of all atoms are discontinuous. This is the first example of the experimental detection of an incommensurate modulated crystal structure that can be modelled using the special `soliton mode' modulation function proposed by Aramburu et al. [(1995), J. Phys. Condens. Matter, 7, 6187–6196]. Full Article text
mod Analytical models representing X-ray form factors of ions By journals.iucr.org Published On :: 2024-01-01 Parameters in analytical models for X-ray form factors of ions f0(s), based on the inverse Mott–Bethe formula involving a variable number of Gaussians, are determined for a wide range of published data sets {s, f0(s)}. The models reproduce the calculated form-factor values close to what is expected from a uniform statistical distribution with limits determined by their precision. For different ions associated with the same atom, the number of Gaussians in the models decreases with increasing net positive charge. Full Article text
mod Modelling dynamical 3D electron diffraction intensities. I. A scattering cluster algorithm By journals.iucr.org Published On :: 2024-01-25 Three-dimensional electron diffraction (3D-ED) is a powerful technique for crystallographic characterization of nanometre-sized crystals that are too small for X-ray diffraction. For accurate crystal structure refinement, however, it is important that the Bragg diffracted intensities are treated dynamically. Bloch wave simulations are often used in 3D-ED, but can be computationally expensive for large unit cell crystals due to the large number of diffracted beams. Proposed here is an alternative method, the `scattering cluster algorithm' (SCA), that replaces the eigen-decomposition operation in Bloch waves with a simpler matrix multiplication. The underlying principle of SCA is that the intensity of a given Bragg reflection is largely determined by intensity transfer (i.e. `scattering') from a cluster of neighbouring diffracted beams. However, the penalty for using matrix multiplication is that the sample must be divided into a series of thin slices and the diffracted beams calculated iteratively, similar to the multislice approach. Therefore, SCA is more suitable for thin specimens. The accuracy and speed of SCA are demonstrated on tri-isopropyl silane (TIPS) pentacene and rubrene, two exemplar organic materials with large unit cells. Full Article text
mod Modelling dynamical 3D electron diffraction intensities. II. The role of inelastic scattering By journals.iucr.org Published On :: 2024-01-25 The strong interaction of high-energy electrons with a crystal results in both dynamical elastic scattering and inelastic events, particularly phonon and plasmon excitation, which have relatively large cross sections. For accurate crystal structure refinement it is therefore important to uncover the impact of inelastic scattering on the Bragg beam intensities. Here a combined Bloch wave–Monte Carlo method is used to simulate phonon and plasmon scattering in crystals. The simulated thermal and plasmon diffuse scattering are consistent with experimental results. The simulations also confirm the empirical observation of a weaker unscattered beam intensity with increasing energy loss in the low-loss regime, while the Bragg-diffracted beam intensities do not change significantly. The beam intensities include the diffuse scattered background and have been normalized to adjust for the inelastic scattering cross section. It is speculated that the random azimuthal scattering angle during inelastic events transfers part of the unscattered beam intensity to the inner Bragg reflections. Inelastic scattering should not significantly influence crystal structure refinement, provided there are no artefacts from any background subtraction, since the relative intensity of the diffracted beams (which includes the diffuse scattering) remains approximately constant in the low energy loss regime. Full Article text
mod Automated selection of nanoparticle models for small-angle X-ray scattering data analysis using machine learning By journals.iucr.org Published On :: 2024-02-29 Small-angle X-ray scattering (SAXS) is widely used to analyze the shape and size of nanoparticles in solution. A multitude of models, describing the SAXS intensity resulting from nanoparticles of various shapes, have been developed by the scientific community and are used for data analysis. Choosing the optimal model is a crucial step in data analysis, which can be difficult and time-consuming, especially for non-expert users. An algorithm is proposed, based on machine learning, representation learning and SAXS-specific preprocessing methods, which instantly selects the nanoparticle model best suited to describe SAXS data. The different algorithms compared are trained and evaluated on a simulated database. This database includes 75 000 scattering spectra from nine nanoparticle models, and realistically simulates two distinct device configurations. It will be made freely available to serve as a basis of comparison for future work. Deploying a universal solution for automatic nanoparticle model selection is a challenge made more difficult by the diversity of SAXS instruments and their flexible settings. The poor transferability of classification rules learned on one device configuration to another is highlighted. It is shown that training on several device configurations enables the algorithm to be generalized, without degrading performance compared with configuration-specific training. Finally, the classification algorithm is evaluated on a real data set obtained by performing SAXS experiments on nanoparticles for each of the instrumental configurations, which have been characterized by transmission electron microscopy. This data set, although very limited, allows estimation of the transferability of the classification rules learned on simulated data to real data. Full Article text
mod Expression, purification and crystallization of the photosensory module of phytochrome B (phyB) from Sorghum bicolor By journals.iucr.org Published On :: 2024-02-20 Sorghum, a short-day tropical plant, has been adapted for temperate grain production, in particular through the selection of variants at the MATURITY loci (Ma1–Ma6) that reduce photoperiod sensitivity. Ma3 encodes phytochrome B (phyB), a red/far-red photochromic biliprotein photoreceptor. The multi-domain gene product, comprising 1178 amino acids, autocatalytically binds the phytochromobilin chromophore to form the photoactive holophytochrome (Sb.phyB). This study describes the development of an efficient heterologous overproduction system which allows the production of large quantities of various holoprotein constructs, along with purification and crystallization procedures. Crystals of the Pr (red-light-absorbing) forms of NPGP, PGP and PG (residues 1–655, 114–655 and 114–458, respectively), each C-terminally tagged with His6, were successfully produced. While NPGP crystals did not diffract, those of PGP and PG diffracted to 6 and 2.1 Å resolution, respectively. Moving the tag to the N-terminus and replacing phytochromobilin with phycocyanobilin as the ligand produced PG crystals that diffracted to 1.8 Å resolution. These results demonstrate that the diffraction quality of challenging protein crystals can be improved by removing flexible regions, shifting fusion tags and altering small-molecule ligands. Full Article text
mod Ternary structure of Plasmodium vivax N-myristoyltransferase with myristoyl-CoA and inhibitor IMP-0001173 By journals.iucr.org Published On :: 2024-09-18 Plasmodium vivax is a major cause of malaria, which poses an increased health burden on approximately one third of the world's population due to climate change. Primaquine, the preferred treatment for P. vivax malaria, is contraindicated in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, a common genetic cause of hemolytic anemia, that affects ∼2.5% of the world's population and ∼8% of the population in areas of the world where P. vivax malaria is endemic. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) conducted a structure–function analysis of P. vivax N-myristoyltransferase (PvNMT) as part of efforts to develop alternative malaria drugs. PvNMT catalyzes the attachment of myristate to the N-terminal glycine of many proteins, and this critical post-translational modification is required for the survival of P. vivax. The first step is the formation of a PvNMT–myristoyl–CoA binary complex that can bind to peptides. Understanding how inhibitors prevent protein binding will facilitate the development of PvNMT as a viable drug target. NMTs are secreted in all life stages of malarial parasites, making them attractive targets, unlike current antimalarials that are only effective during the plasmodial erythrocytic stages. The 2.3 Å resolution crystal structure of the ternary complex of PvNMT with myristoyl-CoA and a novel inhibitor is reported. One asymmetric unit contains two monomers. The structure reveals notable differences between the PvNMT and human enzymes and similarities to other plasmodial NMTs that can be exploited to develop new antimalarials. Full Article text
mod Animations, videos and 3D models for teaching space-group symmetry By journals.iucr.org Published On :: Animations, videos and 3D models have been designed to visualize the effects of symmetry operators on selected cases of crystal structures, pointing out the relationship with the diagrams published in International Tables for Crystallography, Vol. A. Full Article text
mod Towards expansion of the MATTS data bank with heavier elements: the influence of the wavefunction basis set on the multipole model derived from the wavefunction By journals.iucr.org Published On :: This study examines the quality of charge density obtained by fitting the multipole model to wavefunctions in different basis sets. The complex analysis reveals that changing the basis set quality from double- to triple-zeta can notably improve the charge density related properties of a multipole model. Full Article text
mod Modulating phase segregation during spin-casting of fullerene-based polymer solar-cell thin films upon minor addition of a high-boiling co-solvent By journals.iucr.org Published On :: Combined 100 ms resolved grazing-incidence small/wide-angle X-ray scattering and optical interferometry reveal that the additive diiodooctane can significantly double the solvent evaporation rate, thereby effectively suppressing the rapid spinodal decomposition process in the early stage of spin-coasting, favouring slow phase segregation kinetics with nucleation and growth. Full Article text
mod Optimal operation guidelines for direct recovery of high-purity precursor from spent lithium-ion batteries: hybrid operation model of population balance equation and data-driven classifier By journals.iucr.org Published On :: This study proposes an operation optimization framework for impurity-free recycling of spent lithium-ion batteries. Using a hybrid population balance equation integrated with a data-driven condition classifier, the study firstly identifies the optimal batch and semi-batch operation conditions that significantly reduce the operation time with 100% purity of product; detailed guidelines are given for industrial applications. Full Article text
mod Multimodal reconstruction of TbCo thin-film structure with Bayesian analysis of polarized neutron reflectivity By journals.iucr.org Published On :: For the first time, a multimodal reconstruction of a magnetic thin-film structure has been found using polarised neutron reflectivity. This has been achieved by implementing the Bayesian approach in combination with error correction based on the maximum likelihood method and instrument function optimization. Full Article text
mod Animations, videos and 3D models for teaching space-group symmetry By journals.iucr.org Published On :: 2024-10-16 A series of animations, videos and 3D models that were developed, filmed or built to teach the symmetry properties of crystals are described. At first, these resources were designed for graduate students taking a basic crystallography course, coming from different careers, at the National Autonomous University of Mexico. However, the COVID-19 pandemic had the effect of accelerating the generation of didactic material. Besides our experience with postgraduate students, we have noted that 3D models attract the attention of children, and therefore we believe that these models are particularly useful for teaching children about the assembled arrangements of crystal structures. Full Article text
mod Influence of device configuration and noise on a machine learning predictor for the selection of nanoparticle small-angle X-ray scattering models By journals.iucr.org Published On :: 2024-09-23 Small-angle X-ray scattering (SAXS) is a widely used method for nanoparticle characterization. A common approach to analysing nanoparticles in solution by SAXS involves fitting the curve using a parametric model that relates real-space parameters, such as nanoparticle size and electron density, to intensity values in reciprocal space. Selecting the optimal model is a crucial step in terms of analysis quality and can be time-consuming and complex. Several studies have proposed effective methods, based on machine learning, to automate the model selection step. Deploying these methods in software intended for both researchers and industry raises several issues. The diversity of SAXS instrumentation requires assessment of the robustness of these methods on data from various machine configurations, involving significant variations in the q-space ranges and highly variable signal-to-noise ratios (SNR) from one data set to another. In the case of laboratory instrumentation, data acquisition can be time-consuming and there is no universal criterion for defining an optimal acquisition time. This paper presents an approach that revisits the nanoparticle model selection method proposed by Monge et al. [Acta Cryst. (2024), A80, 202–212], evaluating and enhancing its robustness on data from device configurations not seen during training, by expanding the data set used for training. The influence of SNR on predictor robustness is then assessed, improved, and used to propose a stopping criterion for optimizing the trade-off between exposure time and data quality. Full Article text
mod A new modular framework for high-level application development at HEPS By journals.iucr.org Published On :: 2024-02-01 As a representative of the fourth-generation light sources, the High Energy Photon Source (HEPS) in Beijing, China, utilizes a multi-bend achromat lattice to obtain an approximately 100 times emittance reduction compared with third-generation light sources. New technologies bring new challenges to operate the storage ring. In order to meet the beam commissioning requirements of HEPS, a new framework for the development of high-level applications (HLAs) has been created. The key part of the new framework is a dual-layer physical module to facilitate the seamless fusion of physical simulation models with the real machine, allowing for fast switching between different simulation models to accommodate the various simulation scenarios. As a framework designed for development of physical applications, all variables are based on physical quantities. This allows physicists to analytically assess measurement parameters and optimize machine parameters in a more intuitive manner. To enhance both extensibility and adaptability, a modular design strategy is utilized, partitioning the entire framework into discrete modules in alignment with the requirements of HLA development. This strategy not only facilitates the independent development of each module but also minimizes inter-module coupling, thereby simplifying the maintenance and expansion of the entire framework. To simplify the development complexity, the design of the new framework is implemented using Python and is called Python-based Accelerator Physics Application Set (Pyapas). Taking advantage of Python's flexibility and robust library support, we are able to develop and iterate quickly, while also allowing for seamless integration with other scientific computing applications. HLAs for both the HEPS linac and booster have been successfully developed. During the beam commissioning process at the linac, Pyapas's ease of use and reliability have significantly reduced the time required for the beam commissioning operators. As a development framework for HLA designed for the new-generation light sources, Pyapas has the versatility to be employed with HEPS, as well as with other comparable light sources, due to its adaptability. Full Article text
mod Open-source electrochemical cell for in situ X-ray absorption spectroscopy in transmission and fluorescence modes By journals.iucr.org Published On :: 2024-02-02 X-ray spectroscopy is a valuable technique for the study of many materials systems. Characterizing reactions in situ and operando can reveal complex reaction kinetics, which is crucial to understanding active site composition and reaction mechanisms. In this project, the design, fabrication and testing of an open-source and easy-to-fabricate electrochemical cell for in situ electrochemistry compatible with X-ray absorption spectroscopy in both transmission and fluorescence modes are accomplished via windows with large opening angles on both the upstream and downstream sides of the cell. Using a hobbyist computer numerical control machine and free 3D CAD software, anyone can make a reliable electrochemical cell using this design. Onion-like carbon nanoparticles, with a 1:3 iron-to-cobalt ratio, were drop-coated onto carbon paper for testing in situ X-ray absorption spectroscopy. Cyclic voltammetry of the carbon paper showed the expected behavior, with no increased ohmic drop, even in sandwiched cells. Chronoamperometry was used to apply 0.4 V versus reversible hydrogen electrode, with and without 15 min of oxygen purging to ensure that the electrochemical cell does not provide any artefacts due to gas purging. The XANES and EXAFS spectra showed no differences with and without oxygen, as expected at 0.4 V, without any artefacts due to gas purging. The development of this open-source electrochemical cell design allows for improved collection of in situ X-ray absorption spectroscopy data and enables researchers to perform both transmission and fluorescence simultaneously. It additionally addresses key practical considerations including gas purging, reduced ionic resistance and leak prevention. Full Article text
mod ForMAX – a beamline for multiscale and multimodal structural characterization of hierarchical materials By journals.iucr.org Published On :: 2024-02-22 The ForMAX beamline at the MAX IV Laboratory provides multiscale and multimodal structural characterization of hierarchical materials in the nanometre to millimetre range by combining small- and wide-angle X-ray scattering with full-field microtomography. The modular design of the beamline is optimized for easy switching between different experimental modalities. The beamline has a special focus on the development of novel fibrous materials from forest resources, but it is also well suited for studies within, for example, food science and biomedical research. Full Article text
mod Quantifying bunch-mode influence on photon-counting detectors at SPring-8 By journals.iucr.org Published On :: 2024-02-16 Count-loss characteristics of photon-counting 2D detectors are demonstrated for eight bunch-modes at SPring-8 through Monte Carlo simulations. As an indicator, the effective maximum count rate was introduced to signify the X-ray intensity that the detector can count with a linearity of 1% or better after applying a count-loss correction in each bunch-mode. The effective maximum count rate is revealed to vary depending on the bunch-mode and the intrinsic dead time of the detectors, ranging from 0.012 to 0.916 Mcps (megacounts per second) for a 120 ns dead time, 0.009 to 0.807 Mcps for a 0.5 µs dead time and 0.020 to 0.273 Mcps for a 3 µs intrinsic detector dead time. Even with equal-interval bunch-modes at SPring-8, the effective maximum count rate does not exceed 1 Mcps pixel−1. In other words, to obtain data with a linearity better than 1%, the maximum intensity of X-rays entering the detector should be reduced to 1 Mcps pixel−1 or less, and, in some cases, even lower, depending on the bunch-mode. When applying count-loss correction using optimized dead times tailored to each bunch-mode, the effective maximum count rate exceeds the values above. However, differences in the effective maximum count rate due to bunch-modes persist. Users of photon-counting 2D detectors are encouraged to familiarize themselves with the count-loss characteristics dependent on bunch-mode, and to conduct experiments accordingly. In addition, when designing the time structure of bunch-modes at synchrotron radiation facilities, it is essential to take into account the impact on experiments using photon-counting 2D detectors. Full Article text
mod Modelling the power threshold and optimum thermal deformation of indirectly liquid-nitrogen cryo-cooled Si monochromators By journals.iucr.org Published On :: 2024-04-09 Maximizing the performance of crystal monochromators is a key aspect in the design of beamline optics for diffraction-limited synchrotron sources. Temperature and deformation of cryo-cooled crystals, illuminated by high-power beams of X-rays, can be estimated with a purely analytical model. The analysis is based on the thermal properties of cryo-cooled silicon crystals and the cooling geometry. Deformation amplitudes can be obtained, quickly and reliably. In this article the concept of threshold power conditions is introduced and defined analytically. The contribution of parameters such as liquid-nitrogen cooling efficiency, thermal contact conductance and interface contact area of the crystal with the cooling base is evaluated. The optimal crystal illumination and the base temperature are inferred, which help minimize the optics deformation. The model has been examined using finite-element analysis studies performed for several beamlines of the Diamond-II upgrade. Full Article text
mod At-wavelength metrology of an X-ray mirror using a downstream wavefront modulator By journals.iucr.org Published On :: 2024-04-08 At-wavelength metrology of X-ray optics plays a crucial role in evaluating the performance of optics under actual beamline operating conditions, enabling in situ diagnostics and optimization. Techniques utilizing a wavefront random modulator have gained increasing attention in recent years. However, accurately mapping the measured wavefront slope to a curved X-ray mirror surface when the modulator is downstream of the mirror has posed a challenge. To address this problem, an iterative method has been developed in this study. The results demonstrate a significant improvement compared with conventional approaches and agree with offline measurements obtained from optical metrology. We believe that the proposed method enhances the accuracy of at-wavelength metrology techniques, and empowers them to play a greater role in beamline operation and optics fabrication. Full Article text
mod A second crystalline modification of 2-{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-ylidene}hydrazinecarbothioamide By journals.iucr.org Published On :: 2023-11-30 A second crystalline modification of the title compound, C12H19N3S [common name: cis-jasmone thiosemicarbazone] was crystallized from tetrahydrofurane at room temperature. There is one crystallographic independent molecule in the asymmetric unit, showing disorder in the cis-jasmone chain [site-occupancy ratio = 0.590 (14):0.410 (14)]. The thiosemicarbazone entity is approximately planar, with the maximum deviation from the mean plane through the N/N/C/S/N atoms being 0.0463 (14) Å [r.m.s.d. = 0.0324 Å], while for the five-membered ring of the jasmone fragment, the maximum deviation from the mean plane through the carbon atoms amounts to 0.0465 (15) Å [r.m.s.d. = 0.0338 Å]. The molecule is not planar due to the dihedral angle between these two fragments, which is 8.93 (1)°, and due to the sp3-hybridized carbon atoms in the jasmone fragment chain. In the crystal, the molecules are connected by N—H⋯S and C—H⋯S interactions, with graph-set motifs R22(8) and R21(7), building mono-periodic hydrogen-bonded ribbons along [010]. A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are H⋯H (67.8%), H⋯S/S⋯H (15.0%), H⋯C/C⋯H (8.5%) and H⋯N/N⋯H (5.6%) [only non-disordered atoms and those with the highest s.o.f. were considered]. This work reports the second crystalline modification of the cis-jasmone thiosemicarbazone structure, the first one being published recently [Orsoni et al. (2020). Int. J. Mol. Sci. 21, 8681–8697] with the crystals obtained in ethanol at 273 K. Full Article text
mod Occupational modulation in the (3+1)-dimensional incommensurate structure of (2S,3S)-2-amino-3-hydroxy-3-methyl-4-phenoxybutanoic acid dihydrate By journals.iucr.org Published On :: 2024-08-08 The incommensurately modulated structure of (2S,3S)-2-amino-3-hydroxy-3-methyl-4-phenoxybutanoic acid dihydrate (C11H15NO4·2H2O or I·2H2O) is described in the (3+1)-dimensional superspace group P212121(0β0)000 (β = 0.357). The loss of the three-dimensional periodicity is ascribed to the occupational modulation of one positionally disordered solvent water molecule, where the two positions are related by a small translation [ca 0.666 (9) Å] and ∼168 (5)° rotation about one of its O—H bonds, with an average 0.624 (3):0.376 (3) occupancy ratio. The occupational modulation of this molecule arises due to the competition between the different hydrogen-bonding motifs associated with each position. The structure can be very well refined in the average approximation (all satellite reflections disregarded) in the space group P212121, with the water molecule refined as disordered over two positions in a 0.625 (16):0.375 (16) ratio. The refinement in the commensurate threefold supercell approximation in the space group P1121 is also of high quality, with the six corresponding water molecules exhibiting three different occupancy ratios averaging 0.635:0.365. Full Article text
mod Modes and model building in SHELXE By journals.iucr.org Published On :: 2024-01-01 Density modification is a standard step to provide a route for routine structure solution by any experimental phasing method, with single-wavelength or multi-wavelength anomalous diffraction being the most popular methods, as well as to extend fragments or incomplete models into a full solution. The effect of density modification on the starting maps from either source is illustrated in the case of SHELXE. The different modes in which the program can run are reviewed; these include less well known uses such as reading external phase values and weights or phase distributions encoded in Hendrickson–Lattman coefficients. Typically in SHELXE, initial phases are calculated from experimental data, from a partial model or map, or from a combination of both sources. The initial phase set is improved and extended by density modification and, if the resolution of the data and the type of structure permits, polyalanine tracing. As a feature to systematically eliminate model bias from phases derived from predicted models, the trace can be set to exclude the area occupied by the starting model. The trace now includes an extension into the gamma position or hydrophobic and aromatic side chains if a sequence is provided, which is performed in every tracing cycle. Once a correlation coefficient of over 30% between the structure factors calculated from such a trace and the native data indicates that the structure has been solved, the sequence is docked in all model-building cycles and side chains are fitted if the map supports it. The extensions to the tracing algorithm brought in to provide a complete model are discussed. The improvement in phasing performance is assessed using a set of tests. Full Article text
mod Structural determination and modeling of ciliary microtubules By journals.iucr.org Published On :: 2024-03-07 The axoneme, a microtubule-based array at the center of every cilium, has been the subject of structural investigations for decades, but only recent advances in cryo-EM and cryo-ET have allowed a molecular-level interpretation of the entire complex to be achieved. The unique properties of the nine doublet microtubules and central pair of singlet microtubules that form the axoneme, including the highly decorated tubulin lattice and the docking of massive axonemal complexes, provide opportunities and challenges for sample preparation, 3D reconstruction and atomic modeling. Here, the approaches used for cryo-EM and cryo-ET of axonemes are reviewed, while highlighting the unique opportunities provided by the latest generation of AI-guided tools that are transforming structural biology. Full Article text
mod Mononuclear binding and catalytic activity of europium(III) and gadolinium(III) at the active site of the model metalloenzyme phosphotriesterase By journals.iucr.org Published On :: 2024-03-21 Lanthanide ions have ideal chemical properties for catalysis, such as hard Lewis acidity, fast ligand-exchange kinetics, high coordination-number preferences and low geometric requirements for coordination. As a result, many small-molecule lanthanide catalysts have been described in the literature. Yet, despite the ability of enzymes to catalyse highly stereoselective reactions under gentle conditions, very few lanthanoenzymes have been investigated. In this work, the mononuclear binding of europium(III) and gadolinium(III) to the active site of a mutant of the model enzyme phosphotriesterase are described using X-ray crystallography at 1.78 and 1.61 Å resolution, respectively. It is also shown that despite coordinating a single non-natural metal cation, the PTE-R18 mutant is still able to maintain esterase activity. Full Article text
mod Post-translational modifications in the Protein Data Bank By journals.iucr.org Published On :: 2024-08-29 Proteins frequently undergo covalent modification at the post-translational level, which involves the covalent attachment of chemical groups onto amino acids. This can entail the singular or multiple addition of small groups, such as phosphorylation; long-chain modifications, such as glycosylation; small proteins, such as ubiquitination; as well as the interconversion of chemical groups, such as the formation of pyroglutamic acid. These post-translational modifications (PTMs) are essential for the normal functioning of cells, as they can alter the physicochemical properties of amino acids and therefore influence enzymatic activity, protein localization, protein–protein interactions and protein stability. Despite their inherent importance, accurately depicting PTMs in experimental studies of protein structures often poses a challenge. This review highlights the role of PTMs in protein structures, as well as the prevalence of PTMs in the Protein Data Bank, directing the reader to accurately built examples suitable for use as a modelling reference. Full Article text
mod Robust and automatic beamstop shadow outlier rejection: combining crystallographic statistics with modern clustering under a semi-supervised learning strategy By journals.iucr.org Published On :: 2024-10-01 During the automatic processing of crystallographic diffraction experiments, beamstop shadows are often unaccounted for or only partially masked. As a result of this, outlier reflection intensities are integrated, which is a known issue. Traditional statistical diagnostics have only limited effectiveness in identifying these outliers, here termed Not-Excluded-unMasked-Outliers (NEMOs). The diagnostic tool AUSPEX allows visual inspection of NEMOs, where they form a typical pattern: clusters at the low-resolution end of the AUSPEX plots of intensities or amplitudes versus resolution. To automate NEMO detection, a new algorithm was developed by combining data statistics with a density-based clustering method. This approach demonstrates a promising performance in detecting NEMOs in merged data sets without disrupting existing data-reduction pipelines. Re-refinement results indicate that excluding the identified NEMOs can effectively enhance the quality of subsequent structure-determination steps. This method offers a prospective automated means to assess the efficacy of a beamstop mask, as well as highlighting the potential of modern pattern-recognition techniques for automating outlier exclusion during data processing, facilitating future adaptation to evolving experimental strategies. Full Article text