us

Heavy metalloid music : the story of Simply Saucer

Locke, Jesse, 1983- author.
9781771613682 (Paper)




us

Reclaiming indigenous governance : reflections and insights from Australia, Canada, New Zealand, and the United States

9780816539970 (paperback)




us

Variable selection methods for model-based clustering

Michael Fop, Thomas Brendan Murphy.

Source: Statistics Surveys, Volume 12, 18--65.

Abstract:
Model-based clustering is a popular approach for clustering multivariate data which has seen applications in numerous fields. Nowadays, high-dimensional data are more and more common and the model-based clustering approach has adapted to deal with the increasing dimensionality. In particular, the development of variable selection techniques has received a lot of attention and research effort in recent years. Even for small size problems, variable selection has been advocated to facilitate the interpretation of the clustering results. This review provides a summary of the methods developed for variable selection in model-based clustering. Existing R packages implementing the different methods are indicated and illustrated in application to two data analysis examples.




us

Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain

Sean L. Simpson, F. DuBois Bowman, Paul J. Laurienti

Source: Statist. Surv., Volume 7, 1--36.

Abstract:
Complex functional brain network analyses have exploded over the last decade, gaining traction due to their profound clinical implications. The application of network science (an interdisciplinary offshoot of graph theory) has facilitated these analyses and enabled examining the brain as an integrated system that produces complex behaviors. While the field of statistics has been integral in advancing activation analyses and some connectivity analyses in functional neuroimaging research, it has yet to play a commensurate role in complex network analyses. Fusing novel statistical methods with network-based functional neuroimage analysis will engender powerful analytical tools that will aid in our understanding of normal brain function as well as alterations due to various brain disorders. Here we survey widely used statistical and network science tools for analyzing fMRI network data and discuss the challenges faced in filling some of the remaining methodological gaps. When applied and interpreted correctly, the fusion of network scientific and statistical methods has a chance to revolutionize the understanding of brain function.




us

Finite mixture models and model-based clustering

Volodymyr Melnykov, Ranjan Maitra

Source: Statist. Surv., Volume 4, 80--116.

Abstract:
Finite mixture models have a long history in statistics, having been used to model population heterogeneity, generalize distributional assumptions, and lately, for providing a convenient yet formal framework for clustering and classification. This paper provides a detailed review into mixture models and model-based clustering. Recent trends as well as open problems in the area are also discussed.




us

Generating Thermal Image Data Samples using 3D Facial Modelling Techniques and Deep Learning Methodologies. (arXiv:2005.01923v2 [cs.CV] UPDATED)

Methods for generating synthetic data have become of increasing importance to build large datasets required for Convolution Neural Networks (CNN) based deep learning techniques for a wide range of computer vision applications. In this work, we extend existing methodologies to show how 2D thermal facial data can be mapped to provide 3D facial models. For the proposed research work we have used tufts datasets for generating 3D varying face poses by using a single frontal face pose. The system works by refining the existing image quality by performing fusion based image preprocessing operations. The refined outputs have better contrast adjustments, decreased noise level and higher exposedness of the dark regions. It makes the facial landmarks and temperature patterns on the human face more discernible and visible when compared to original raw data. Different image quality metrics are used to compare the refined version of images with original images. In the next phase of the proposed study, the refined version of images is used to create 3D facial geometry structures by using Convolution Neural Networks (CNN). The generated outputs are then imported in blender software to finally extract the 3D thermal facial outputs of both males and females. The same technique is also used on our thermal face data acquired using prototype thermal camera (developed under Heliaus EU project) in an indoor lab environment which is then used for generating synthetic 3D face data along with varying yaw face angles and lastly facial depth map is generated.




us

Interpreting Rate-Distortion of Variational Autoencoder and Using Model Uncertainty for Anomaly Detection. (arXiv:2005.01889v2 [cs.LG] UPDATED)

Building a scalable machine learning system for unsupervised anomaly detection via representation learning is highly desirable. One of the prevalent methods is using a reconstruction error from variational autoencoder (VAE) via maximizing the evidence lower bound. We revisit VAE from the perspective of information theory to provide some theoretical foundations on using the reconstruction error, and finally arrive at a simpler and more effective model for anomaly detection. In addition, to enhance the effectiveness of detecting anomalies, we incorporate a practical model uncertainty measure into the metric. We show empirically the competitive performance of our approach on benchmark datasets.




us

How many modes can a constrained Gaussian mixture have?. (arXiv:2005.01580v2 [math.ST] UPDATED)

We show, by an explicit construction, that a mixture of univariate Gaussians with variance 1 and means in $[-A,A]$ can have $Omega(A^2)$ modes. This disproves a recent conjecture of Dytso, Yagli, Poor and Shamai [IEEE Trans. Inform. Theory, Apr. 2020], who showed that such a mixture can have at most $O(A^2)$ modes and surmised that the upper bound could be improved to $O(A)$. Our result holds even if an additional variance constraint is imposed on the mixing distribution. Extending the result to higher dimensions, we exhibit a mixture of Gaussians in $mathbb{R}^d$, with identity covariances and means inside $[-A,A]^d$, that has $Omega(A^{2d})$ modes.




us

Data-Space Inversion Using a Recurrent Autoencoder for Time-Series Parameterization. (arXiv:2005.00061v2 [stat.ML] UPDATED)

Data-space inversion (DSI) and related procedures represent a family of methods applicable for data assimilation in subsurface flow settings. These methods differ from model-based techniques in that they provide only posterior predictions for quantities (time series) of interest, not posterior models with calibrated parameters. DSI methods require a large number of flow simulations to first be performed on prior geological realizations. Given observed data, posterior predictions can then be generated directly. DSI operates in a Bayesian setting and provides posterior samples of the data vector. In this work we develop and evaluate a new approach for data parameterization in DSI. Parameterization reduces the number of variables to determine in the inversion, and it maintains the physical character of the data variables. The new parameterization uses a recurrent autoencoder (RAE) for dimension reduction, and a long-short-term memory (LSTM) network to represent flow-rate time series. The RAE-based parameterization is combined with an ensemble smoother with multiple data assimilation (ESMDA) for posterior generation. Results are presented for two- and three-phase flow in a 2D channelized system and a 3D multi-Gaussian model. The RAE procedure, along with existing DSI treatments, are assessed through comparison to reference rejection sampling (RS) results. The new DSI methodology is shown to consistently outperform existing approaches, in terms of statistical agreement with RS results. The method is also shown to accurately capture derived quantities, which are computed from variables considered directly in DSI. This requires correlation and covariance between variables to be properly captured, and accuracy in these relationships is demonstrated. The RAE-based parameterization developed here is clearly useful in DSI, and it may also find application in other subsurface flow problems.




us

Deep transfer learning for improving single-EEG arousal detection. (arXiv:2004.05111v2 [cs.CV] UPDATED)

Datasets in sleep science present challenges for machine learning algorithms due to differences in recording setups across clinics. We investigate two deep transfer learning strategies for overcoming the channel mismatch problem for cases where two datasets do not contain exactly the same setup leading to degraded performance in single-EEG models. Specifically, we train a baseline model on multivariate polysomnography data and subsequently replace the first two layers to prepare the architecture for single-channel electroencephalography data. Using a fine-tuning strategy, our model yields similar performance to the baseline model (F1=0.682 and F1=0.694, respectively), and was significantly better than a comparable single-channel model. Our results are promising for researchers working with small databases who wish to use deep learning models pre-trained on larger databases.




us

Capturing and Explaining Trajectory Singularities using Composite Signal Neural Networks. (arXiv:2003.10810v2 [cs.LG] UPDATED)

Spatial trajectories are ubiquitous and complex signals. Their analysis is crucial in many research fields, from urban planning to neuroscience. Several approaches have been proposed to cluster trajectories. They rely on hand-crafted features, which struggle to capture the spatio-temporal complexity of the signal, or on Artificial Neural Networks (ANNs) which can be more efficient but less interpretable. In this paper we present a novel ANN architecture designed to capture the spatio-temporal patterns characteristic of a set of trajectories, while taking into account the demographics of the navigators. Hence, our model extracts markers linked to both behaviour and demographics. We propose a composite signal analyser (CompSNN) combining three simple ANN modules. Each of these modules uses different signal representations of the trajectory while remaining interpretable. Our CompSNN performs significantly better than its modules taken in isolation and allows to visualise which parts of the signal were most useful to discriminate the trajectories.




us

A Distributionally Robust Area Under Curve Maximization Model. (arXiv:2002.07345v2 [math.OC] UPDATED)

Area under ROC curve (AUC) is a widely used performance measure for classification models. We propose two new distributionally robust AUC maximization models (DR-AUC) that rely on the Kantorovich metric and approximate the AUC with the hinge loss function. We consider the two cases with respectively fixed and variable support for the worst-case distribution. We use duality theory to reformulate the DR-AUC models and derive tractable convex optimization problems. The numerical experiments show that the proposed DR-AUC models -- benchmarked with the standard deterministic AUC and the support vector machine models - perform better in general and in particular improve the worst-case out-of-sample performance over the majority of the considered datasets, thereby showing their robustness. The results are particularly encouraging since our numerical experiments are conducted with training sets of small size which have been known to be conducive to low out-of-sample performance.




us

On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an experimental high-energy physics use case. (arXiv:2002.01427v3 [physics.data-an] UPDATED)

Beginning from a basic neural-network architecture, we test the potential benefits offered by a range of advanced techniques for machine learning, in particular deep learning, in the context of a typical classification problem encountered in the domain of high-energy physics, using a well-studied dataset: the 2014 Higgs ML Kaggle dataset. The advantages are evaluated in terms of both performance metrics and the time required to train and apply the resulting models. Techniques examined include domain-specific data-augmentation, learning rate and momentum scheduling, (advanced) ensembling in both model-space and weight-space, and alternative architectures and connection methods.

Following the investigation, we arrive at a model which achieves equal performance to the winning solution of the original Kaggle challenge, whilst being significantly quicker to train and apply, and being suitable for use with both GPU and CPU hardware setups. These reductions in timing and hardware requirements potentially allow the use of more powerful algorithms in HEP analyses, where models must be retrained frequently, sometimes at short notice, by small groups of researchers with limited hardware resources. Additionally, a new wrapper library for PyTorch called LUMINis presented, which incorporates all of the techniques studied.




us

DualSMC: Tunneling Differentiable Filtering and Planning under Continuous POMDPs. (arXiv:1909.13003v4 [cs.LG] UPDATED)

A major difficulty of solving continuous POMDPs is to infer the multi-modal distribution of the unobserved true states and to make the planning algorithm dependent on the perceived uncertainty. We cast POMDP filtering and planning problems as two closely related Sequential Monte Carlo (SMC) processes, one over the real states and the other over the future optimal trajectories, and combine the merits of these two parts in a new model named the DualSMC network. In particular, we first introduce an adversarial particle filter that leverages the adversarial relationship between its internal components. Based on the filtering results, we then propose a planning algorithm that extends the previous SMC planning approach [Piche et al., 2018] to continuous POMDPs with an uncertainty-dependent policy. Crucially, not only can DualSMC handle complex observations such as image input but also it remains highly interpretable. It is shown to be effective in three continuous POMDP domains: the floor positioning domain, the 3D light-dark navigation domain, and a modified Reacher domain.




us

Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model. (arXiv:1909.06155v2 [math.PR] UPDATED)

We study the problem of parameter estimation for a non-ergodic Gaussian Vasicek-type model defined as $dX_t=(mu+ heta X_t)dt+dG_t, tgeq0$ with unknown parameters $ heta>0$ and $muinR$, where $G$ is a Gaussian process. We provide least square-type estimators $widetilde{ heta}_T$ and $widetilde{mu}_T$ respectively for the drift parameters $ heta$ and $mu$ based on continuous-time observations ${X_t, tin[0,T]}$ as $T ightarrowinfty$.

Our aim is to derive some sufficient conditions on the driving Gaussian process $G$ in order to ensure that $widetilde{ heta}_T$ and $widetilde{mu}_T$ are strongly consistent, the limit distribution of $widetilde{ heta}_T$ is a Cauchy-type distribution and $widetilde{mu}_T$ is asymptotically normal. We apply our result to fractional Vasicek, subfractional Vasicek and bifractional Vasicek processes. In addition, this work extends the result of cite{EEO} studied in the case where $mu=0$.




us

Know Your Clients' behaviours: a cluster analysis of financial transactions. (arXiv:2005.03625v1 [econ.EM])

In Canada, financial advisors and dealers by provincial securities commissions, and those self-regulatory organizations charged with direct regulation over investment dealers and mutual fund dealers, respectively to collect and maintain Know Your Client (KYC) information, such as their age or risk tolerance, for investor accounts. With this information, investors, under their advisor's guidance, make decisions on their investments which are presumed to be beneficial to their investment goals. Our unique dataset is provided by a financial investment dealer with over 50,000 accounts for over 23,000 clients. We use a modified behavioural finance recency, frequency, monetary model for engineering features that quantify investor behaviours, and machine learning clustering algorithms to find groups of investors that behave similarly. We show that the KYC information collected does not explain client behaviours, whereas trade and transaction frequency and volume are most informative. We believe the results shown herein encourage financial regulators and advisors to use more advanced metrics to better understand and predict investor behaviours.




us

Predictive Modeling of ICU Healthcare-Associated Infections from Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling Approach. (arXiv:2005.03582v1 [cs.LG])

Early detection of patients vulnerable to infections acquired in the hospital environment is a challenge in current health systems given the impact that such infections have on patient mortality and healthcare costs. This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units by means of machine-learning methods. The aim is to support decision making addressed at reducing the incidence rate of infections. In this field, it is necessary to deal with the problem of building reliable classifiers from imbalanced datasets. We propose a clustering-based undersampling strategy to be used in combination with ensemble classifiers. A comparative study with data from 4616 patients was conducted in order to validate our proposal. We applied several single and ensemble classifiers both to the original dataset and to data preprocessed by means of different resampling methods. The results were analyzed by means of classic and recent metrics specifically designed for imbalanced data classification. They revealed that the proposal is more efficient in comparison with other approaches.




us

Estimating customer impatience in a service system with balking. (arXiv:2005.03576v1 [math.PR])

This paper studies a service system in which arriving customers are provided with information about the delay they will experience. Based on this information they decide to wait for service or to leave the system. The main objective is to estimate the customers' patience-level distribution and the corresponding potential arrival rate, using knowledge of the actual workload process only. We cast the system as a queueing model, so as to evaluate the corresponding likelihood function. Estimating the unknown parameters relying on a maximum likelihood procedure, we prove strong consistency and derive the asymptotic distribution of the estimation error. Several applications and extensions of the method are discussed. In particular, we indicate how our method generalizes to a multi-server setting. The performance of our approach is assessed through a series of numerical experiments. By fitting parameters of hyperexponential and generalized-hyperexponential distributions our method provides a robust estimation framework for any continuous patience-level distribution.




us

Diffusion Copulas: Identification and Estimation. (arXiv:2005.03513v1 [econ.EM])

We propose a new semiparametric approach for modelling nonlinear univariate diffusions, where the observed process is a nonparametric transformation of an underlying parametric diffusion (UPD). This modelling strategy yields a general class of semiparametric Markov diffusion models with parametric dynamic copulas and nonparametric marginal distributions. We provide primitive conditions for the identification of the UPD parameters together with the unknown transformations from discrete samples. Likelihood-based estimators of both parametric and nonparametric components are developed and we analyze the asymptotic properties of these. Kernel-based drift and diffusion estimators are also proposed and shown to be normally distributed in large samples. A simulation study investigates the finite sample performance of our estimators in the context of modelling US short-term interest rates. We also present a simple application of the proposed method for modelling the CBOE volatility index data.




us

Robust location estimators in regression models with covariates and responses missing at random. (arXiv:2005.03511v1 [stat.ME])

This paper deals with robust marginal estimation under a general regression model when missing data occur in the response and also in some of covariates. The target is a marginal location parameter which is given through an $M-$functional. To obtain robust Fisher--consistent estimators, properly defined marginal distribution function estimators are considered. These estimators avoid the bias due to missing values by assuming a missing at random condition. Three methods are considered to estimate the marginal distribution function which allows to obtain the $M-$location of interest: the well-known inverse probability weighting, a convolution--based method that makes use of the regression model and an augmented inverse probability weighting procedure that prevents against misspecification. The robust proposed estimators and the classical ones are compared through a numerical study under different missing models including clean and contaminated samples. We illustrate the estimators behaviour under a nonlinear model. A real data set is also analysed.




us

A stochastic user-operator assignment game for microtransit service evaluation: A case study of Kussbus in Luxembourg. (arXiv:2005.03465v1 [physics.soc-ph])

This paper proposes a stochastic variant of the stable matching model from Rasulkhani and Chow [1] which allows microtransit operators to evaluate their operation policy and resource allocations. The proposed model takes into account the stochastic nature of users' travel utility perception, resulting in a probabilistic stable operation cost allocation outcome to design ticket price and ridership forecasting. We applied the model for the operation policy evaluation of a microtransit service in Luxembourg and its border area. The methodology for the model parameters estimation and calibration is developed. The results provide useful insights for the operator and the government to improve the ridership of the service.




us

Transfer Learning for sEMG-based Hand Gesture Classification using Deep Learning in a Master-Slave Architecture. (arXiv:2005.03460v1 [eess.SP])

Recent advancements in diagnostic learning and development of gesture-based human machine interfaces have driven surface electromyography (sEMG) towards significant importance. Analysis of hand gestures requires an accurate assessment of sEMG signals. The proposed work presents a novel sequential master-slave architecture consisting of deep neural networks (DNNs) for classification of signs from the Indian sign language using signals recorded from multiple sEMG channels. The performance of the master-slave network is augmented by leveraging additional synthetic feature data generated by long short term memory networks. Performance of the proposed network is compared to that of a conventional DNN prior to and after the addition of synthetic data. Up to 14% improvement is observed in the conventional DNN and up to 9% improvement in master-slave network on addition of synthetic data with an average accuracy value of 93.5% asserting the suitability of the proposed approach.




us

Curious Hierarchical Actor-Critic Reinforcement Learning. (arXiv:2005.03420v1 [cs.LG])

Hierarchical abstraction and curiosity-driven exploration are two common paradigms in current reinforcement learning approaches to break down difficult problems into a sequence of simpler ones and to overcome reward sparsity. However, there is a lack of approaches that combine these paradigms, and it is currently unknown whether curiosity also helps to perform the hierarchical abstraction. As a novelty and scientific contribution, we tackle this issue and develop a method that combines hierarchical reinforcement learning with curiosity. Herein, we extend a contemporary hierarchical actor-critic approach with a forward model to develop a hierarchical notion of curiosity. We demonstrate in several continuous-space environments that curiosity approximately doubles the learning performance and success rates for most of the investigated benchmarking problems.




us

Distributional Robustness of K-class Estimators and the PULSE. (arXiv:2005.03353v1 [econ.EM])

In causal settings, such as instrumental variable settings, it is well known that estimators based on ordinary least squares (OLS) can yield biased and non-consistent estimates of the causal parameters. This is partially overcome by two-stage least squares (TSLS) estimators. These are, under weak assumptions, consistent but do not have desirable finite sample properties: in many models, for example, they do not have finite moments. The set of K-class estimators can be seen as a non-linear interpolation between OLS and TSLS and are known to have improved finite sample properties. Recently, in causal discovery, invariance properties such as the moment criterion which TSLS estimators leverage have been exploited for causal structure learning: e.g., in cases, where the causal parameter is not identifiable, some structure of the non-zero components may be identified, and coverage guarantees are available. Subsequently, anchor regression has been proposed to trade-off invariance and predictability. The resulting estimator is shown to have optimal predictive performance under bounded shift interventions. In this paper, we show that the concepts of anchor regression and K-class estimators are closely related. Establishing this connection comes with two benefits: (1) It enables us to prove robustness properties for existing K-class estimators when considering distributional shifts. And, (2), we propose a novel estimator in instrumental variable settings by minimizing the mean squared prediction error subject to the constraint that the estimator lies in an asymptotically valid confidence region of the causal parameter. We call this estimator PULSE (p-uncorrelated least squares estimator) and show that it can be computed efficiently, even though the underlying optimization problem is non-convex. We further prove that it is consistent.




us

Training and Classification using a Restricted Boltzmann Machine on the D-Wave 2000Q. (arXiv:2005.03247v1 [cs.LG])

Restricted Boltzmann Machine (RBM) is an energy based, undirected graphical model. It is commonly used for unsupervised and supervised machine learning. Typically, RBM is trained using contrastive divergence (CD). However, training with CD is slow and does not estimate exact gradient of log-likelihood cost function. In this work, the model expectation of gradient learning for RBM has been calculated using a quantum annealer (D-Wave 2000Q), which is much faster than Markov chain Monte Carlo (MCMC) used in CD. Training and classification results are compared with CD. The classification accuracy results indicate similar performance of both methods. Image reconstruction as well as log-likelihood calculations are used to compare the performance of quantum and classical algorithms for RBM training. It is shown that the samples obtained from quantum annealer can be used to train a RBM on a 64-bit `bars and stripes' data set with classification performance similar to a RBM trained with CD. Though training based on CD showed improved learning performance, training using a quantum annealer eliminates computationally expensive MCMC steps of CD.




us

Classification of pediatric pneumonia using chest X-rays by functional regression. (arXiv:2005.03243v1 [stat.AP])

An accurate and prompt diagnosis of pediatric pneumonia is imperative for successful treatment intervention. One approach to diagnose pneumonia cases is using radiographic data. In this article, we propose a novel parsimonious scalar-on-image classification model adopting the ideas of functional data analysis. Our main idea is to treat images as functional measurements and exploit underlying covariance structures to select basis functions; these bases are then used in approximating both image profiles and corresponding regression coefficient. We re-express the regression model into a standard generalized linear model where the functional principal component scores are treated as covariates. We apply the method to (1) classify pneumonia against healthy and viral against bacterial pneumonia patients, and (2) test the null effect about the association between images and responses. Extensive simulation studies show excellent numerical performance in terms of classification, hypothesis testing, and efficient computation.




us

Deep Learning Framework for Detecting Ground Deformation in the Built Environment using Satellite InSAR data. (arXiv:2005.03221v1 [cs.CV])

The large volumes of Sentinel-1 data produced over Europe are being used to develop pan-national ground motion services. However, simple analysis techniques like thresholding cannot detect and classify complex deformation signals reliably making providing usable information to a broad range of non-expert stakeholders a challenge. Here we explore the applicability of deep learning approaches by adapting a pre-trained convolutional neural network (CNN) to detect deformation in a national-scale velocity field. For our proof-of-concept, we focus on the UK where previously identified deformation is associated with coal-mining, ground water withdrawal, landslides and tunnelling. The sparsity of measurement points and the presence of spike noise make this a challenging application for deep learning networks, which involve calculations of the spatial convolution between images. Moreover, insufficient ground truth data exists to construct a balanced training data set, and the deformation signals are slower and more localised than in previous applications. We propose three enhancement methods to tackle these problems: i) spatial interpolation with modified matrix completion, ii) a synthetic training dataset based on the characteristics of real UK velocity map, and iii) enhanced over-wrapping techniques. Using velocity maps spanning 2015-2019, our framework detects several areas of coal mining subsidence, uplift due to dewatering, slate quarries, landslides and tunnel engineering works. The results demonstrate the potential applicability of the proposed framework to the development of automated ground motion analysis systems.




us

Efficient Characterization of Dynamic Response Variation Using Multi-Fidelity Data Fusion through Composite Neural Network. (arXiv:2005.03213v1 [stat.ML])

Uncertainties in a structure is inevitable, which generally lead to variation in dynamic response predictions. For a complex structure, brute force Monte Carlo simulation for response variation analysis is infeasible since one single run may already be computationally costly. Data driven meta-modeling approaches have thus been explored to facilitate efficient emulation and statistical inference. The performance of a meta-model hinges upon both the quality and quantity of training dataset. In actual practice, however, high-fidelity data acquired from high-dimensional finite element simulation or experiment are generally scarce, which poses significant challenge to meta-model establishment. In this research, we take advantage of the multi-level response prediction opportunity in structural dynamic analysis, i.e., acquiring rapidly a large amount of low-fidelity data from reduced-order modeling, and acquiring accurately a small amount of high-fidelity data from full-scale finite element analysis. Specifically, we formulate a composite neural network fusion approach that can fully utilize the multi-level, heterogeneous datasets obtained. It implicitly identifies the correlation of the low- and high-fidelity datasets, which yields improved accuracy when compared with the state-of-the-art. Comprehensive investigations using frequency response variation characterization as case example are carried out to demonstrate the performance.




us

Fair Algorithms for Hierarchical Agglomerative Clustering. (arXiv:2005.03197v1 [cs.LG])

Hierarchical Agglomerative Clustering (HAC) algorithms are extensively utilized in modern data science and machine learning, and seek to partition the dataset into clusters while generating a hierarchical relationship between the data samples themselves. HAC algorithms are employed in a number of applications, such as biology, natural language processing, and recommender systems. Thus, it is imperative to ensure that these algorithms are fair-- even if the dataset contains biases against certain protected groups, the cluster outputs generated should not be discriminatory against samples from any of these groups. However, recent work in clustering fairness has mostly focused on center-based clustering algorithms, such as k-median and k-means clustering. Therefore, in this paper, we propose fair algorithms for performing HAC that enforce fairness constraints 1) irrespective of the distance linkage criteria used, 2) generalize to any natural measures of clustering fairness for HAC, 3) work for multiple protected groups, and 4) have competitive running times to vanilla HAC. To the best of our knowledge, this is the first work that studies fairness for HAC algorithms. We also propose an algorithm with lower asymptotic time complexity than HAC algorithms that can rectify existing HAC outputs and make them subsequently fair as a result. Moreover, we carry out extensive experiments on multiple real-world UCI datasets to demonstrate the working of our algorithms.




us

MAZE: Data-Free Model Stealing Attack Using Zeroth-Order Gradient Estimation. (arXiv:2005.03161v1 [stat.ML])

Model Stealing (MS) attacks allow an adversary with black-box access to a Machine Learning model to replicate its functionality, compromising the confidentiality of the model. Such attacks train a clone model by using the predictions of the target model for different inputs. The effectiveness of such attacks relies heavily on the availability of data necessary to query the target model. Existing attacks either assume partial access to the dataset of the target model or availability of an alternate dataset with semantic similarities.

This paper proposes MAZE -- a data-free model stealing attack using zeroth-order gradient estimation. In contrast to prior works, MAZE does not require any data and instead creates synthetic data using a generative model. Inspired by recent works in data-free Knowledge Distillation (KD), we train the generative model using a disagreement objective to produce inputs that maximize disagreement between the clone and the target model. However, unlike the white-box setting of KD, where the gradient information is available, training a generator for model stealing requires performing black-box optimization, as it involves accessing the target model under attack. MAZE relies on zeroth-order gradient estimation to perform this optimization and enables a highly accurate MS attack.

Our evaluation with four datasets shows that MAZE provides a normalized clone accuracy in the range of 0.91x to 0.99x, and outperforms even the recent attacks that rely on partial data (JBDA, clone accuracy 0.13x to 0.69x) and surrogate data (KnockoffNets, clone accuracy 0.52x to 0.97x). We also study an extension of MAZE in the partial-data setting and develop MAZE-PD, which generates synthetic data closer to the target distribution. MAZE-PD further improves the clone accuracy (0.97x to 1.0x) and reduces the query required for the attack by 2x-24x.




us

Towards Frequency-Based Explanation for Robust CNN. (arXiv:2005.03141v1 [cs.LG])

Current explanation techniques towards a transparent Convolutional Neural Network (CNN) mainly focuses on building connections between the human-understandable input features with models' prediction, overlooking an alternative representation of the input, the frequency components decomposition. In this work, we present an analysis of the connection between the distribution of frequency components in the input dataset and the reasoning process the model learns from the data. We further provide quantification analysis about the contribution of different frequency components toward the model's prediction. We show that the vulnerability of the model against tiny distortions is a result of the model is relying on the high-frequency features, the target features of the adversarial (black and white-box) attackers, to make the prediction. We further show that if the model develops stronger association between the low-frequency component with true labels, the model is more robust, which is the explanation of why adversarially trained models are more robust against tiny distortions.




us

Bayesian Random-Effects Meta-Analysis Using the bayesmeta R Package

The random-effects or normal-normal hierarchical model is commonly utilized in a wide range of meta-analysis applications. A Bayesian approach to inference is very attractive in this context, especially when a meta-analysis is based only on few studies. The bayesmeta R package provides readily accessible tools to perform Bayesian meta-analyses and generate plots and summaries, without having to worry about computational details. It allows for flexible prior specification and instant access to the resulting posterior distributions, including prediction and shrinkage estimation, and facilitating for example quick sensitivity checks. The present paper introduces the underlying theory and showcases its usage.




us

Close encounters: a manuscripts workshop

A free manuscripts workshop for PhD students at Wellcome Collection, 01 June 2018 Engaging with an artefact from the past is often a powerful experience, eliciting emotional and sensory, as well as analytical, responses. Researchers in the library at Wellcome… Continue reading




us

Trusted computing and information security : 13th Chinese conference, CTCIS 2019, Shanghai, China, October 24-27, 2019

Chinese Conference on Trusted Computing and Information Security (13th : 2019 : Shanghai, China)
9789811534188 (eBook)




us

The interaction of food industry and environment

9780128175156 (electronic bk.)




us

The citrus genome

3030153088




us

The Genus citrus

9780128122174 (electronic bk.)




us

Sustainable digital communities : 15th International Conference, iConference 2020, Boras, Sweden, March 23–26, 2020, Proceedings

iConference (Conference) (15th : 2020 : Boras, Sweden)
9783030436872




us

Sustainable agriculture : advances in plant metabolome and microbiome

Parray, Javid Ahmad, author
9780128173749 (electronic bk.)




us

Sustainability of the food system : sovereignty, waste, and nutrients bioavailability

9780128182949 (electronic bk.)




us

Recent developments on genus Chaetomium

9783030316129 (electronic bk.)




us

Plant microbiomes for sustainable agriculture

9783030384531 (electronic bk.)




us

Passive and active measurement : 21st International Conference, PAM 2020, Eugene, Oregon, USA, March 30-31, 2020, Proceedings

PAM (Conference) (21st : 2020 : Eugene, Oregon)
9783030440817




us

Mixed plantations of eucalyptus and leguminous trees : soil, microbiology and ecosystem services

9783030323653 (electronic bk.)




us

Microbiological advancements for higher altitude agro-ecosystems and sustainability

9789811519024 (electronic bk.)




us

Microbial endophytes : prospects for sustainable agriculture

0128187255




us

Low-dose radiation effects on animals and ecosystems : long-term study on the Fukushima Nuclear Accident

9789811382185 (electronic bk.)




us

Ketamine : from abused drug to rapid-acting antidepressant

9789811529023




us

Integrated pest and disease management in greenhouse crops

9783030223045 electronic book




us

Implants in the aesthetic zone : a guide for treatment of the partially edentulous patient

9783319726014 (electronic bk.)