cro

A survey of cross-validation procedures for model selection

Sylvain Arlot, Alain Celisse

Source: Statist. Surv., Volume 4, 40--79.

Abstract:
Used to estimate the risk of an estimator or to perform model selection, cross-validation is a widespread strategy because of its simplicity and its (apparent) universality. Many results exist on model selection performances of cross-validation procedures. This survey intends to relate these results to the most recent advances of model selection theory, with a particular emphasis on distinguishing empirical statements from rigorous theoretical results. As a conclusion, guidelines are provided for choosing the best cross-validation procedure according to the particular features of the problem in hand.




cro

Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis. (arXiv:2005.02535v1 [econ.EM] CROSS LISTED)

Arctic sea ice extent (SIE) in September 2019 ranked second-to-lowest in history and is trending downward. The understanding of how internal variability amplifies the effects of external $ ext{CO}_2$ forcing is still limited. We propose the VARCTIC, which is a Vector Autoregression (VAR) designed to capture and extrapolate Arctic feedback loops. VARs are dynamic simultaneous systems of equations, routinely estimated to predict and understand the interactions of multiple macroeconomic time series. Hence, the VARCTIC is a parsimonious compromise between fullblown climate models and purely statistical approaches that usually offer little explanation of the underlying mechanism. Our "business as usual" completely unconditional forecast has SIE hitting 0 in September by the 2060s. Impulse response functions reveal that anthropogenic $ ext{CO}_2$ emission shocks have a permanent effect on SIE - a property shared by no other shock. Further, we find Albedo- and Thickness-based feedbacks to be the main amplification channels through which $ ext{CO}_2$ anomalies impact SIE in the short/medium run. Conditional forecast analyses reveal that the future path of SIE crucially depends on the evolution of $ ext{CO}_2$ emissions, with outcomes ranging from recovering SIE to it reaching 0 in the 2050s. Finally, Albedo and Thickness feedbacks are shown to play an important role in accelerating the speed at which predicted SIE is heading towards 0.




cro

Short-term forecasts of COVID-19 spread across Indian states until 1 May 2020. (arXiv:2004.13538v2 [q-bio.PE] UPDATED)

The very first case of corona-virus illness was recorded on 30 January 2020, in India and the number of infected cases, including the death toll, continues to rise. In this paper, we present short-term forecasts of COVID-19 for 28 Indian states and five union territories using real-time data from 30 January to 21 April 2020. Applying Holt's second-order exponential smoothing method and autoregressive integrated moving average (ARIMA) model, we generate 10-day ahead forecasts of the likely number of infected cases and deaths in India for 22 April to 1 May 2020. Our results show that the number of cumulative cases in India will rise to 36335.63 [PI 95% (30884.56, 42918.87)], concurrently the number of deaths may increase to 1099.38 [PI 95% (959.77, 1553.76)] by 1 May 2020. Further, we have divided the country into severity zones based on the cumulative cases. According to this analysis, Maharashtra is likely to be the most affected states with around 9787.24 [PI 95% (6949.81, 13757.06)] cumulative cases by 1 May 2020. However, Kerala and Karnataka are likely to shift from the red zone (i.e. highly affected) to the lesser affected region. On the other hand, Gujarat and Madhya Pradesh will move to the red zone. These results mark the states where lockdown by 3 May 2020, can be loosened.




cro

Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A Multi-Agent Deep Reinforcement Learning Approach. (arXiv:2003.02157v2 [physics.soc-ph] UPDATED)

In recent years, multi-access edge computing (MEC) is a key enabler for handling the massive expansion of Internet of Things (IoT) applications and services. However, energy consumption of a MEC network depends on volatile tasks that induces risk for energy demand estimations. As an energy supplier, a microgrid can facilitate seamless energy supply. However, the risk associated with energy supply is also increased due to unpredictable energy generation from renewable and non-renewable sources. Especially, the risk of energy shortfall is involved with uncertainties in both energy consumption and generation. In this paper, we study a risk-aware energy scheduling problem for a microgrid-powered MEC network. First, we formulate an optimization problem considering the conditional value-at-risk (CVaR) measurement for both energy consumption and generation, where the objective is to minimize the loss of energy shortfall of the MEC networks and we show this problem is an NP-hard problem. Second, we analyze our formulated problem using a multi-agent stochastic game that ensures the joint policy Nash equilibrium, and show the convergence of the proposed model. Third, we derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based asynchronous advantage actor-critic (A3C) algorithm with shared neural networks. This method mitigates the curse of dimensionality of the state space and chooses the best policy among the agents for the proposed problem. Finally, the experimental results establish a significant performance gain by considering CVaR for high accuracy energy scheduling of the proposed model than both the single and random agent models.




cro

A stochastic user-operator assignment game for microtransit service evaluation: A case study of Kussbus in Luxembourg. (arXiv:2005.03465v1 [physics.soc-ph])

This paper proposes a stochastic variant of the stable matching model from Rasulkhani and Chow [1] which allows microtransit operators to evaluate their operation policy and resource allocations. The proposed model takes into account the stochastic nature of users' travel utility perception, resulting in a probabilistic stable operation cost allocation outcome to design ticket price and ridership forecasting. We applied the model for the operation policy evaluation of a microtransit service in Luxembourg and its border area. The methodology for the model parameters estimation and calibration is developed. The results provide useful insights for the operator and the government to improve the ridership of the service.




cro

Wood microbiology : decay and its prevention

Zabel, R. A. (Robert A.), author
9780128205730 (electronic bk.)




cro

Tumor microenvironments in organs : from the brain to the skin.

9783030362140 (electronic bk.)




cro

Tumor microenvironment : hematopoietic cells.

9783030357238 (electronic bk.)




cro

Tumor microenvironment : signaling pathways.

9783030355821 (electronic bk.)




cro

Tumor microenvironment : the main driver of metabolic adaptation

9783030340254 (electronic bk.)




cro

Sustainable agriculture : advances in plant metabolome and microbiome

Parray, Javid Ahmad, author
9780128173749 (electronic bk.)




cro

Racing for the surface : pathogenesis of implant infection and advanced antimicrobial strategies

9783030344757 (electronic bk.)




cro

Priming-mediated stress and cross-stress tolerance in crop plants

9780128178935 (electronic bk.)




cro

Plant microbiomes for sustainable agriculture

9783030384531 (electronic bk.)




cro

Plant microbe symbiosis

9783030362485 (electronic bk.)




cro

Plant microRNAs : shaping development and environmental responses

9783030357726 (electronic bk.)




cro

Molecular aspects of plant beneficial microbes in agriculture

9780128184707 (electronic bk.)




cro

Mixed plantations of eucalyptus and leguminous trees : soil, microbiology and ecosystem services

9783030323653 (electronic bk.)




cro

Microbiological advancements for higher altitude agro-ecosystems and sustainability

9789811519024 (electronic bk.)




cro

Microbial endophytes : functional biology and applications

9780128196540 (print)




cro

Microbial endophytes : prospects for sustainable agriculture

0128187255




cro

Microbial cyclic di-nucleotide signaling

9783030333089




cro

Microalgae biotechnology for food, health and high value products

9789811501692 (electronic bk.)




cro

Methylotrophs : microbiology, biochemistry and genetics

9781351074513 (electronic bk.)




cro

Lectin in host defense against microbial infections

9789811515804 (electronic bk.)




cro

Integrated pest and disease management in greenhouse crops

9783030223045 electronic book




cro

Health consequences of microbial interactions with hydrocarbons, oils, and lipids

9783319724737 (electronic bk.)




cro

Genomic designing of climate-smart vegetable crops

9783319974156 (electronic bk.)




cro

Current microbiological research in Africa : selected applications for sustainable environmental management

9783030352967 (electronic bk.)




cro

Cotton production and uses : agronomy, crop protection, and postharvest technologies

9789811514722




cro

Consequences of microbial interactions with hydrocarbons, oils, and lipids : biodegradation and bioremediation

9783319445359 (electronic bk.)




cro

Chickpea : crop wild relatives for enhancing genetic gains

9780128183007 (electronic bk.)




cro

Agronomic crops.

9789811500251 (electronic bk.)




cro

Advances in applied microbiology.

1282169459




cro

Advances in applied microbiology.

1282169416




cro

Cross validation for locally stationary processes

Stefan Richter, Rainer Dahlhaus.

Source: The Annals of Statistics, Volume 47, Number 4, 2145--2173.

Abstract:
We propose an adaptive bandwidth selector via cross validation for local M-estimators in locally stationary processes. We prove asymptotic optimality of the procedure under mild conditions on the underlying parameter curves. The results are applicable to a wide range of locally stationary processes such linear and nonlinear processes. A simulation study shows that the method works fairly well also in misspecified situations.




cro

Bayesian mixed effects models for zero-inflated compositions in microbiome data analysis

Boyu Ren, Sergio Bacallado, Stefano Favaro, Tommi Vatanen, Curtis Huttenhower, Lorenzo Trippa.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 494--517.

Abstract:
Detecting associations between microbial compositions and sample characteristics is one of the most important tasks in microbiome studies. Most of the existing methods apply univariate models to single microbial species separately, with adjustments for multiple hypothesis testing. We propose a Bayesian analysis for a generalized mixed effects linear model tailored to this application. The marginal prior on each microbial composition is a Dirichlet process, and dependence across compositions is induced through a linear combination of individual covariates, such as disease biomarkers or the subject’s age, and latent factors. The latent factors capture residual variability and their dimensionality is learned from the data in a fully Bayesian procedure. The proposed model is tested in data analyses and simulation studies with zero-inflated compositions. In these settings and within each sample, a large proportion of counts per microbial species are equal to zero. In our Bayesian model a priori the probability of compositions with absent microbial species is strictly positive. We propose an efficient algorithm to sample from the posterior and visualizations of model parameters which reveal associations between covariates and microbial compositions. We evaluate the proposed method in simulation studies, and then analyze a microbiome dataset for infants with type 1 diabetes which contains a large proportion of zeros in the sample-specific microbial compositions.




cro

A statistical analysis of noisy crowdsourced weather data

Arnab Chakraborty, Soumendra Nath Lahiri, Alyson Wilson.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 116--142.

Abstract:
Spatial prediction of weather elements like temperature, precipitation, and barometric pressure are generally based on satellite imagery or data collected at ground stations. None of these data provide information at a more granular or “hyperlocal” resolution. On the other hand, crowdsourced weather data, which are captured by sensors installed on mobile devices and gathered by weather-related mobile apps like WeatherSignal and AccuWeather, can serve as potential data sources for analyzing environmental processes at a hyperlocal resolution. However, due to the low quality of the sensors and the nonlaboratory environment, the quality of the observations in crowdsourced data is compromised. This paper describes methods to improve hyperlocal spatial prediction using this varying-quality, noisy crowdsourced information. We introduce a reliability metric, namely Veracity Score (VS), to assess the quality of the crowdsourced observations using a coarser, but high-quality, reference data. A VS-based methodology to analyze noisy spatial data is proposed and evaluated through extensive simulations. The merits of the proposed approach are illustrated through case studies analyzing crowdsourced daily average ambient temperature readings for one day in the contiguous United States.




cro

Modeling microbial abundances and dysbiosis with beta-binomial regression

Bryan D. Martin, Daniela Witten, Amy D. Willis.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 94--115.

Abstract:
Using a sample from a population to estimate the proportion of the population with a certain category label is a broadly important problem. In the context of microbiome studies, this problem arises when researchers wish to use a sample from a population of microbes to estimate the population proportion of a particular taxon, known as the taxon’s relative abundance . In this paper, we propose a beta-binomial model for this task. Like existing models, our model allows for a taxon’s relative abundance to be associated with covariates of interest. However, unlike existing models, our proposal also allows for the overdispersion in the taxon’s counts to be associated with covariates of interest. We exploit this model in order to propose tests not only for differential relative abundance, but also for differential variability. The latter is particularly valuable in light of speculation that dysbiosis , the perturbation from a normal microbiome that can occur in certain disease conditions, may manifest as a loss of stability, or increase in variability, of the counts associated with each taxon. We demonstrate the performance of our proposed model using a simulation study and an application to soil microbial data.




cro

A nonparametric spatial test to identify factors that shape a microbiome

Susheela P. Singh, Ana-Maria Staicu, Robert R. Dunn, Noah Fierer, Brian J. Reich.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2341--2362.

Abstract:
The advent of high-throughput sequencing technologies has made data from DNA material readily available, leading to a surge of microbiome-related research establishing links between markers of microbiome health and specific outcomes. However, to harness the power of microbial communities we must understand not only how they affect us, but also how they can be influenced to improve outcomes. This area has been dominated by methods that reduce community composition to summary metrics, which can fail to fully exploit the complexity of community data. Recently, methods have been developed to model the abundance of taxa in a community, but they can be computationally intensive and do not account for spatial effects underlying microbial settlement. These spatial effects are particularly relevant in the microbiome setting because we expect communities that are close together to be more similar than those that are far apart. In this paper, we propose a flexible Bayesian spike-and-slab variable selection model for presence-absence indicators that accounts for spatial dependence and cross-dependence between taxa while reducing dimensionality in both directions. We show by simulation that in the presence of spatial dependence, popular distance-based hypothesis testing methods fail to preserve their advertised size, and the proposed method improves variable selection. Finally, we present an application of our method to an indoor fungal community found within homes across the contiguous United States.




cro

Microsimulation model calibration using incremental mixture approximate Bayesian computation

Carolyn M. Rutter, Jonathan Ozik, Maria DeYoreo, Nicholson Collier.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2189--2212.

Abstract:
Microsimulation models (MSMs) are used to inform policy by predicting population-level outcomes under different scenarios. MSMs simulate individual-level event histories that mark the disease process (such as the development of cancer) and the effect of policy actions (such as screening) on these events. MSMs often have many unknown parameters; calibration is the process of searching the parameter space to select parameters that result in accurate MSM prediction of a wide range of targets. We develop Incremental Mixture Approximate Bayesian Computation (IMABC) for MSM calibration which results in a simulated sample from the posterior distribution of model parameters given calibration targets. IMABC begins with a rejection-based ABC step, drawing a sample of points from the prior distribution of model parameters and accepting points that result in simulated targets that are near observed targets. Next, the sample is iteratively updated by drawing additional points from a mixture of multivariate normal distributions and accepting points that result in accurate predictions. Posterior estimates are obtained by weighting the final set of accepted points to account for the adaptive sampling scheme. We demonstrate IMABC by calibrating CRC-SPIN 2.0, an updated version of a MSM for colorectal cancer (CRC) that has been used to inform national CRC screening guidelines.




cro

Fast dynamic nonparametric distribution tracking in electron microscopic data

Yanjun Qian, Jianhua Z. Huang, Chiwoo Park, Yu Ding.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1537--1563.

Abstract:
In situ transmission electron microscope (TEM) adds a promising instrument to the exploration of the nanoscale world, allowing motion pictures to be taken while nano objects are initiating, crystalizing and morphing into different sizes and shapes. To enable in-process control of nanocrystal production, this technology innovation hinges upon a solution addressing a statistical problem, which is the capability of online tracking a dynamic, time-varying probability distribution reflecting the nanocrystal growth. Because no known parametric density functions can adequately describe the evolving distribution, a nonparametric approach is inevitable. Towards this objective, we propose to incorporate the dynamic evolution of the normalized particle size distribution into a state space model, in which the density function is represented by a linear combination of B-splines and the spline coefficients are treated as states. The closed-form algorithm runs online updates faster than the frame rate of the in situ TEM video, making it suitable for in-process control purpose. Imposing the constraints of curve smoothness and temporal continuity improves the accuracy and robustness while tracking the probability distribution. We test our method on three published TEM videos. For all of them, the proposed method is able to outperform several alternative approaches.




cro

Bayesian Sparse Multivariate Regression with Asymmetric Nonlocal Priors for Microbiome Data Analysis

Kurtis Shuler, Marilou Sison-Mangus, Juhee Lee.

Source: Bayesian Analysis, Volume 15, Number 2, 559--578.

Abstract:
We propose a Bayesian sparse multivariate regression method to model the relationship between microbe abundance and environmental factors for microbiome data. We model abundance counts of operational taxonomic units (OTUs) with a negative binomial distribution and relate covariates to the counts through regression. Extending conventional nonlocal priors, we construct asymmetric nonlocal priors for regression coefficients to efficiently identify relevant covariates and their effect directions. We build a hierarchical model to facilitate pooling of information across OTUs that produces parsimonious results with improved accuracy. We present simulation studies that compare variable selection performance under the proposed model to those under Bayesian sparse regression models with asymmetric and symmetric local priors and two frequentist models. The simulations show the proposed model identifies important covariates and yields coefficient estimates with favorable accuracy compared with the alternatives. The proposed model is applied to analyze an ocean microbiome dataset collected over time to study the association of harmful algal bloom conditions with microbial communities.




cro

Statistical Molecule Counting in Super-Resolution Fluorescence Microscopy: Towards Quantitative Nanoscopy

Thomas Staudt, Timo Aspelmeier, Oskar Laitenberger, Claudia Geisler, Alexander Egner, Axel Munk.

Source: Statistical Science, Volume 35, Number 1, 92--111.

Abstract:
Super-resolution microscopy is rapidly gaining importance as an analytical tool in the life sciences. A compelling feature is the ability to label biological units of interest with fluorescent markers in (living) cells and to observe them with considerably higher resolution than conventional microscopy permits. The images obtained this way, however, lack an absolute intensity scale in terms of numbers of fluorophores observed. In this article, we discuss state of the art methods to count such fluorophores and statistical challenges that come along with it. In particular, we suggest a modeling scheme for time series generated by single-marker-switching (SMS) microscopy that makes it possible to quantify the number of markers in a statistically meaningful manner from the raw data. To this end, we model the entire process of photon generation in the fluorophore, their passage through the microscope, detection and photoelectron amplification in the camera, and extraction of time series from the microscopic images. At the heart of these modeling steps is a careful description of the fluorophore dynamics by a novel hidden Markov model that operates on two timescales (HTMM). Besides the fluorophore number, information about the kinetic transition rates of the fluorophore’s internal states is also inferred during estimation. We comment on computational issues that arise when applying our model to simulated or measured fluorescence traces and illustrate our methodology on simulated data.




cro

Gaussian Integrals and Rice Series in Crossing Distributions—to Compute the Distribution of Maxima and Other Features of Gaussian Processes

Georg Lindgren.

Source: Statistical Science, Volume 34, Number 1, 100--128.

Abstract:
We describe and compare how methods based on the classical Rice’s formula for the expected number, and higher moments, of level crossings by a Gaussian process stand up to contemporary numerical methods to accurately deal with crossing related characteristics of the sample paths. We illustrate the relative merits in accuracy and computing time of the Rice moment methods and the exact numerical method, developed since the late 1990s, on three groups of distribution problems, the maximum over a finite interval and the waiting time to first crossing, the length of excursions over a level, and the joint period/amplitude of oscillations. We also treat the notoriously difficult problem of dependence between successive zero crossing distances. The exact solution has been known since at least 2000, but it has remained largely unnoticed outside the ocean science community. Extensive simulation studies illustrate the accuracy of the numerical methods. As a historical introduction an attempt is made to illustrate the relation between Rice’s original formulation and arguments and the exact numerical methods.




cro

Gut Microbes and the Brain: Paradigm Shift in Neuroscience

Emeran A. Mayer
Nov 12, 2014; 34:15490-15496
Symposium




cro

Microglia Actively Remodel Adult Hippocampal Neurogenesis through the Phagocytosis Secretome

Irune Diaz-Aparicio
Feb 12, 2020; 40:1453-1482
Development Plasticity Repair




cro

The Representation of Semantic Information Across Human Cerebral Cortex During Listening Versus Reading Is Invariant to Stimulus Modality

Fatma Deniz
Sep 25, 2019; 39:7722-7736
BehavioralSystemsCognitive




cro

White Matter Microstructure in Transsexuals and Controls Investigated by Diffusion Tensor Imaging

Georg S. Kranz
Nov 12, 2014; 34:15466-15475
Systems/Circuits




cro

Sleep Loss Promotes Astrocytic Phagocytosis and Microglial Activation in Mouse Cerebral Cortex

Michele Bellesi
May 24, 2017; 37:5263-5273
Cellular