l

Pyrazine-bridged polymetallic copper–iridium clusters

Single crystals of the mol­ecular compound, {Cu20Ir6Cl8(C21H24N2)6(C4H4N2)3]·3.18CH3OH or [({Cu10Ir3}Cl4(IMes)3(pyrazine))2(pyrazine)]·3.18CH3OH [where IMes is 1,3-bis­(2,4,6-trimethylphen­yl)imidazol-2-yl­idene], with a unique heterometallic cluster have been prepared and the structure revealed using single-crystal X-ray diffraction. The mol­ecule is centrosymmetric with two {Cu10Ir3} cores bridged by a pyrazine ligand. The polymetallic cluster contains three stabilizing N-heterocyclic carbenes, four Cl ligands, and a non-bridging pyrazine ligand. Notably, the Cu—Ir core is arranged in an unusual shape containing 13 vertices, 22 faces, and 32 sides. The atoms within the trideca­metallic cluster are arranged in four planes, with 2, 4, 4, 3 metals in each plane. Ir atoms are present in alternate planes with an Ir atom featuring in the peripheral bimetallic plane, and two Ir atoms featuring on opposite sides of the non-adjacent tetra­metallic plane. The crystal contains two disordered methanol solvent mol­ecules with an additional region of non-modelled electron density corrected for using the SQUEEZE routine in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unmodelled methanol solvent mol­ecule(s).




l

Crystal structures of seven gold(III) complexes of the form LAuX3 (L = substituted pyridine, X = Cl or Br)

The structures of seven gold(III) halide derivatives of general formula LAuX3 (L = methyl­pyridines or di­methyl­pyridines, X = Cl or Br) are presented: tri­chlorido­(2-methyl­pyridine)­gold(III), [AuCl3(C6H7N)], 1 (as two polymorphs 1a and 1b); tri­bromido­(2-methyl­pyridine)­gold(III), [AuBr3(C6H7N)], 2; tri­bromido­(3-methyl­pyridine)­gold(III), [AuBr3(C6H7N)], 3; tri­bromido­(2,4-di­meth­yl­pyridine)­gold(III), [AuBr3(C7H9N)], 4; tri­chlorido­(3,5-di­methylpyridine)­gold(III), [AuCl3(C7H9N)], 5; tri­bromido­(3,5-di­methyl­pyridine)­gold(III), [AuBr3(C7H9N)], 6, and tri­chlorido­(2,6-di­methyl­pyridine)­gold(III), [AuCl3(C7H9N)], 7. Additionally, the structure of 8, the 1:1 adduct of 2 and 6, [AuBr3(C6H7N)]·[AuBr3(C7H9N)], is included. All the structures crystallize solvent-free, and all have Z' = 1 except for 5 and 7, which display crystallographic twofold rotation symmetry, and 4, which has Z' = 2. 1a and 2 are isotypic. The coordination geometry at the gold(III) atoms is, as expected, square-planar. Four of the crystals (1a, 1b, 2 and 8) were non-merohedral twins, and these structures were refined using the ‘HKLF 5’ method. The largest inter­planar angles between the pyridine ring and the coordination plane are observed for those structures with a 2-methyl substituent of the pyridine ring. The Au—N bonds are consistently longer trans to Br (average 2.059 Å) than trans to Cl (average 2.036 Å). In the crystal packing, a frequent feature is the offset-stacked and approximately rectangular dimeric moiety (Au—X)2, with anti­parallel Au—X bonds linked by Au⋯X contacts at the vacant positions axial to the coordination plane. The dimers are connected by further secondary inter­actions (Au⋯X or X⋯X contacts, `weak' C—H⋯X hydrogen bonds) to form chain, double chain (`ladder') or layer structures, and in several cases linked again in the third dimension. Only 1b and 7 contain no offset dimers; these structures instead involve C—H⋯Cl hydrogen bonds combined with Cl⋯Cl contacts (1b) or Cl⋯π contacts (7). The packing patterns of seven further complexes LAuX3 involving simple pyridines (taken from the Cambridge Structural Database) are compared with those of 1–8.




l

Synthesis, crystal structure and Hirshfeld surface of ethyl 2-[2-(methyl­sulfan­yl)-5-oxo-4,4-diphenyl-4,5-di­hydro-1H-imidazol-1-yl]acetate (thio­phenytoin derivative)

The di­hydro­imidazole ring in the title mol­ecule, C20H20N2O3S, is slightly distorted and the lone pair on the tri-coordinate nitro­gen atom is involved in intra-ring π bonding. The methyl­sulfanyl substituent lies nearly in the plane of the five-membered ring while the ester substituent is rotated well out of that plane. In the crystal, C—H⋯O hydrogen bonds form inversion dimers, which are connected along the a- and c-axis directions by additional C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. The major contributors to the Hirshfeld surface are C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S contacts at 20.5%, 14.7% and 4.9%, respectively.




l

[SnF(bipy)(H2O)]2[SnF6], a mixed-valent inorganic tin(II)–tin(IV) compound

In the title compound, bis­[aqua­(2,2'-bi­pyridine)­fluorido­tin(II)] hexa­fluorido­tin(IV), [SnF(C10H8N2)(H2O)]2[SnF6], an ionic mixed-valent tin(II)–tin(IV) compound, the bivalent tin atom is the center atom of the cation and the tetra­valent tin atom is the center atom of the anion. With respect to the first coordination sphere, the cation is monomeric, with the tin(II) atom having a fourfold seesaw coordination with a fluorine atom in an equatorial position, a water mol­ecule in an axial position and the two nitro­gen atoms of the chelating 2,2'-bi­pyridine ligand in the remaining axial and equatorial positions. The bond lengths and angles of this hypervalent first coordination sphere are described by 2c–2e and 3c–4e bonds, respectively, all of which are based on the orthogonal 5p orbitals of the tin atom. In the second coordination sphere, which is based on an additional, very long tin–fluorine bond that leads to dimerization of the cation, the tin atom is trapezoidal–pyramidally coordinated. The tetra­valent tin atom of the centrosymmetric anion has an octa­hedral coordination. The differences in its tin–fluorine bond lengths are attributed to hydrogen bonding, as the two of the four fluorine atoms are each involved in two hydrogen bonds, linking anions and cations together to form strands.




l

Synthesis, crystal structure and Hirshfeld surface analysis of [1-(4-bromo­phen­yl)-1H-1,2,3-triazol-4-yl]methyl 2-(4-nitro­phen­oxy)acetate

The title compound, C17H13BrN4O5, was synthesized by a Cu2Br2-catalysed Meldal–Sharpless reaction between 4-nitro­phen­oxy­acetic acid propargyl ether and para-bromo­phenyl­azide, and characterized by X-ray structure determination and 1H NMR spectroscopy. The mol­ecules, with a near-perpendicular orientation of the bromo­phenyl-triazole and nitro­phen­oxy­acetate fragments, are connected into a three-dimensional network by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds (confirmed by Hirshfeld surface analysis), π–π and Br–π inter­actions.




l

Synthesis and crystal structure of 1,3-bis­(acet­oxymeth­yl)-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­methyl}-2,4,6-tri­ethyl­benzene

In the crystal structure of the title compound, C26H36N2O4, the tripodal mol­ecule exists in a conformation in which the substituents attached to the central arene ring are arranged in an alternating order above and below the ring plane. The heterocyclic unit is inclined at an angle of 79.6 (1)° with respect to the plane of the benzene ring. In the crystal, the mol­ecules are connected via N—H⋯O bonds, forming infinite supra­molecular strands. Inter­strand association involves weak C—H⋯O and C—H⋯π inter­actions, with the pyridine ring acting as an acceptor in the latter case.




l

Synthesis and crystal structure of (2E)-1-[3,5-bis­(benz­yloxy)phen­yl]-3-(4-eth­oxy­phen­yl)prop-2-en-1-one

In the title compound, C31H28O4, the phenyl rings of the chalcone unit subtend a dihedral angle of 26.43 (10)°. The phenyl rings of the pendant benz­yloxy groups are orientated at 75.57 (13) and 75.70 (10)° with respect to their attached ring. In the crystal, weak C—H⋯O and C—H⋯π inter­actions link the mol­ecules. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis, which showed a breakdown into H⋯H (49.8%), H⋯C/C⋯H (33.8%) and H⋯O/O⋯H (13.6%) inter­actions with other types making negligible contributions.




l

Crystal structure of hexa­glycinium dodeca­iodo­triplumbate

The crystal structure of hexa­glycinium tetra-μ-iodido-octa­iodido­triplumbate, (C2H6NO2)6[Pb3I12] or (GlyH)6[Pb3I12], is reported. The compound crystallizes in the triclinic space group Poverline{1}. The [Pb3I12]6− anion is discrete and located around a special position: the central Pb ion located on the inversion center is holodirected, while the other two are hemidirected. The supra­molecular nature is mainly based on C—H⋯I, N—H⋯I, O—H⋯I and N—H⋯O hydrogen bonds. Dimeric cations of type (A+⋯A+) for the amino acid glycine are observed for the first time.




l

Crystal structure of bis­(β-alaninium) tetra­bromidoplumbate

The title compound, poly[bis­(β-alaninium) [[di­bromido­plumbate]-di-μ-di­bromido]] {(C2H8NO2)2[PbBr4]}n or (β-AlaH)2PbBr4, crystallizes in the monoclinic space group P21/n. The (PbBr4)2− anion is located on a general position and has a two-dimensional polymeric structure. The Pb center is holodirected. The supra­molecular network is mainly based on O—H⋯Br, N—H⋯Br and N—H⋯O hydrogen bonds.




l

Synthesis, crystal structure and Hirshfeld surface analysis of 1-[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-3-phenyl-1,2-di­hydro­quinoxalin-2(1H)-one

In the title mol­ecule, C25H29N5O, the di­hydro­quinoxaline unit is not quite planar (r.m.s. deviation = 0.030 Å) as there is a dihedral angle of 2.69 (3)° between the mean planes of the constituent rings and the mol­ecule adopts a hairpin conformation. In the crystal, the polar portions of the mol­ecules are associated through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and C=O⋯π(ring) inter­actions, forming thick layers parallel to the bc plane and with the n-octyl groups on the outside surfaces.




l

Crystal structure of (1,4,7,10,13,16-hexa­oxa­cycloocta­decane-κ6O)potassium-μ-oxalato-tri­phenylstannate(IV), the first reported 18-crown-6-stabilized potassium salt of tri­phenyl­oxalatostannate

The title complex, (1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane-1κ6O)(μ-oxalato-1κ2O1,O2:2κ2O1',O2')triphenyl-2κ3C-potassium(I)tin(IV), [KSn(C6H5)3(C2O4)(C12H24O6)] or K[18-Crown-6][(C6H5)3SnO4C2], was synthesized. The complex consists of a potassium cation coordinated to the six oxygen atoms of a crown ether mol­ecule and the two oxygen atoms of the oxalatotri­phenyl­stannate anion. It crystallizes in the monoclinic crystal system within the space group P21. The tin atom is coordinated by one chelating oxalate ligand and three phenyl groups, forming a cis-trigonal–bipyramidal geometry around the tin atom. The cations and anions form ion pairs, linked through carbonyl coordination to the potassium atoms. The crystal structure features C—H⋯O hydrogen bonds between the oxygen atoms of the oxalate group and the hydrogen atoms of the phenyl groups, resulting in an infinite chain structure extending along a-axis direction. The primary inter-chain inter­actions are van der Waals forces.




l

Puckering effects of 4-hy­droxy-l-proline isomers on the conformation of ornithine-free Gramicidin S

The cyclic peptide cyclo(Val-Leu-Leu-d-Phe-Pro)2 (peptide 1) was specifically designed for structural chemistry investigations, drawing inspiration from Gramicidin S (GS). Previous studies have shown that Pro residues within 1 adopt a down-puckering conformation of the pyrrolidine ring. By incorporating fluoride-Pro with 4-trans/cis-isomers into 1, an up-puckering conformation was successfully induced. In the current investigation, introducing hy­droxy­prolines with 4-trans/cis-isomer configurations (tHyp/cHyp) into 1 gave cyclo(Val-Leu-Leu-d-Phe-tHyp)2 methanol disolvate monohydrate, C62H94N10O12·2CH4O·H2O (4), and cyclo(Val-Leu-Leu-d-Phe-cHyp)2 monohydrate, C62H94N10O12·H2O (5), respectively. However, the puckering of 4 and 5 remained in the down conformation, regardless of the geometric position of the hydroxyl group. Although the backbone structure of 4 with trans-substitution was asymmetric, the asymmetric backbone of 5 with cis-substitution was unexpected. It is speculated that the anti­cipated influence of stress from the geometric positioning, which was expected to affect the puckering, may have been mitigated by inter­actions between the hydroxyl groups of hy­droxy­proline, the solvent mol­ecules, and peptides.




l

Crystal structure and Hirshfeld surface analysis of di­chlorido­[2-(3-cyclo­pentyl-1,2,4-triazol-5-yl-κN4)pyridine-κN]palladium(II) di­methyl­formamide monosolvate

This study presents the synthesis, characterization and Hirshfeld surface analysis of the title mononuclear complex, [PdCl2(C12H14N4)]·C3H7NO. The compound crystalizes in the P21/c space group of the monoclinic system. The asymmetric unit contains one neutral complex Pd(HLc-Pe)Cl2 [HLc-Pe is 2-(3-cyclo­pentyl-1,2,4-triazol-5-yl)pyridine] and one mol­ecule of DMF as a solvate. The Pd atom has a square-planar coordination. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the bc plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 41.4%. The contribution of the N⋯H/H⋯N and H⋯O/O⋯H inter­actions is somewhat smaller, amounting to 12.4% and 5%, respectively.




l

Synthesis, crystal structure and Hirshfeld surface analysis of [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]

The present study focuses on the synthesis and structural characterization of a novel dinuclear CuII complex, [tri­chlorido­copper(II)]-μ-chlorido-{bis­[2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]copper(II)} monohydrate, [Cu2Cl4(C10H12N2O2)2]·H2O or [Cu(H2L)2(μ-Cl)CuCl3]·H2O [H2L = 2-hy­droxy-N'-(propan-2-yl­idene)benzohydrazide]. The complex crystallizes in the monoclinic space group P21/n with one mol­ecule of water, which forms inter­actions with the ligands. The first copper ion is penta-coordinated to two benzohydrazine-derived ligands via two nitro­gen and two oxygen atoms, and one bridging chloride, which is also coordinated by the second copper ion alongside three terminal chlorines in a distorted tetra­hedral geometry. The arrangement around the first copper ion exhibits a distorted geometry inter­mediate between trigonal bipyramidal and square pyramidal. In the crystal, chains are formed via inter­molecular inter­actions along the a-axis direction, with subsequent layers constructed through hydrogen-bonding inter­actions parallel to the ac plane, and through slipped π–π stacking inter­actions parallel to the ab plane, resulting in a three-dimensional network. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis. Residual electron density from disordered methanol mol­ecules in the void space could not be reasonably modelled, thus a solvent mask was applied.




l

Crystal structure and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromo­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one

This study presents the synthesis, characterization and Hirshfeld surface analysis of 1-[6-bromo-2-(3-bromo­phen­yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one, C19H18Br2N2O. In the title compound, the pyrrolidine ring adopts a distorted envelope configuration. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonds, forming a three-dimensional network. In addition, pairs of mol­ecules along the c axis are connected by C—H⋯π inter­actions. According to a Hirshfeld surface study, H⋯H (36.9%), Br⋯H/H⋯Br (28.2%) and C⋯H/H⋯C (24.3%) inter­actions are the most significant contributors to the crystal packing.




l

Crystal structure of propane-1,3-diaminium squarate dihydrate

Propane-1,3-diaminium squarate dihydrate, C3H12N22+·C4O42−·2H2O, results from the proton-transfer reaction of propane-1,3-di­amine with squaric acid and subsequent crystallization from aqueous medium. The title compound crystallizes in the tetra­gonal crystal system (space group P4bm) with Z = 2. The squarate dianion belongs to the point group D4h and contains a crystallographic fourfold axis. The propane-1,3-diaminium dication exhibits a C2v-symmetric all-anti conformation and resides on a special position with mm2 site symmetry. The orientation of the propane-1,3-diaminium ions makes the crystal structure polar in the c-axis direction. The solid-state supra­molecular structure features a triperiodic network of strong hydrogen bonds of the N—H⋯O and O—H⋯O types.




l

Synthesis, crystal structure and Hirshfeld surface analysis of a new copper(II) complex based on diethyl 2,2'-(4H-1,2,4-triazole-3,5-di­yl)di­acetate

The title compound, bis­[μ-2,2'-(4H-1,2,4-triazole-3,5-di­yl)di­acetato]­bis­[di­aqua­copper(II)] dihydrate, [Cu2(C6H5N3O4)2(H2O)4]·2H2O, is a dinuclear octa­hedral CuII triazole-based complex. The central copper atoms are hexa-coordinated by two nitro­gen atoms in the equatorial positions, two equatorial oxygen atoms of two carboxyl­ate substituents in position 3 and 5 of the 1,2,4-triazole ring, and two axial oxygen atoms of two water mol­ecules. Two additional solvent water mol­ecules are linked to the title mol­ecule by O—H⋯N and O⋯H—O hydrogen bonds. The crystal structure is built up from the parallel packing of discrete supra­molecular chains running along the a-axis direction. Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H⋯O/O⋯H (53.5%), H⋯H (28.1%), O⋯O (6.3%) and H⋯C/C⋯H (6.2%) inter­actions. The crystal studied was twinned by a twofold rotation around [100].




l

Foreword to the AfCA collection: celebrating work published by African researchers in IUCr journals




l

Crystal structure, Hirshfeld surface analysis, DFT and the mol­ecular docking studies of 3-(2-chloro­acet­yl)-2,4,6,8-tetra­phenyl-3,7-di­azabicyclo­[3.3.1]nonan-9-one

In the title compound, C33H29ClN2O2, the two piperidine rings of the di­aza­bicyclo moiety adopt distorted-chair conformations. Inter­molecular C—H⋯π inter­actions are mainly responsible for the crystal packing. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis, revealing that H⋯H inter­actions contribute most to the crystal packing (52.3%). The mol­ecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–31 G(d,p) level and is compared with the experimentally determined mol­ecular structure in the solid state.




l

Three-dimensional alkaline earth metal–organic framework poly[[μ-aqua-aqua­bis­(μ3-carba­moyl­cyano­nitro­somethanido)barium] monohydrate] and its thermal decomposition

In the structure of the title salt, {[Ba(μ3-C3H2N3O2)2(μ-H2O)(H2O)]·H2O}n, the barium ion and all three oxygen atoms of the water mol­ecules reside on a mirror plane. The hydrogen atoms of the bridging water and the solvate water mol­ecules are arranged across a mirror plane whereas all atoms of the monodentate aqua ligand are situated on this mirror plane. The distorted ninefold coord­ination of the Ba ions is completed with four nitroso-, two carbonyl- and three aqua-O atoms at the distances of 2.763 (3)–2.961 (4) Å and it is best described as tricapped trigonal prism. The three-dimensional framework structure is formed by face-sharing of the trigonal prisms, via μ-nitroso- and μ-aqua-O atoms, and also by the bridging coordination of the anions via carbonyl-O atoms occupying two out of the three cap positions. The solvate water mol­ecules populate the crystal channels and facilitate a set of four directional hydrogen bonds. The principal Ba–carbamoyl­cyano­nitro­somethanido linkage reveals a rare example of the inherently polar binodal six- and three-coordinated bipartite topology (three-letter notation sit). It suggests that small resonance-stabilized cyano­nitroso anions can be utilized as bridging ligands for the supra­molecular synthesis of MOF solids. Such an outcome may be anti­cipated for a broader range of hard Lewis acidic alkaline earth metal ions, which perfectly match the coordination preferences of highly nucleophilic nitroso-O atoms. Thermal analysis reveals two-stage dehydration of the title compound (383 and 473 K) followed by decomposition with release of CO2, HCN and H2O at 558 K.




l

Crystal structure of a tris(2-amino­eth­yl)methane capped carbamoyl­methyl­phosphine oxide compound

The mol­ecular structure of the tripodal carbamoyl­methyl­phosphine oxide compound diethyl {[(5-[2-(di­eth­oxy­phosphor­yl)acetamido]-3-{2-[2-(di­eth­oxy­phos­phor­yl)acetamido]­eth­yl}pent­yl)carbamo­yl]meth­yl}phospho­nate, C25H52N3O12P3, features six intra­molecular hydrogen-bonding inter­actions. The phospho­nate groups have key bond lengths ranging from 1.4696 (12) to 1.4729 (12) Å (P=O), 1.5681 (11) to 1.5811 (12) Å (P—O) and 1.7881 (16) to 1.7936 (16) Å (P—C). Each amide group adopts a nearly perfect trans geometry, and the geometry around each phophorus atom resembles a slightly distorted tetra­hedron.




l

Crystal structure, Hirshfeld surface analysis, DFT optimized mol­ecular structure and the mol­ecular docking studies of 1-[2-(cyano­sulfan­yl)acet­yl]-3-methyl-2,6-bis­(4-methyl­phen­yl)piperidin-4-one

The two mol­ecules in the asymmetric unit of the title compound, C23H24N2O2S, have a structural overlap with an r.m.s. deviation of 0.82 Å. The piperidine rings adopt a distorted boat conformation. Intra- and inter­molecular C—H⋯O hydrogen bonds are responsible for the cohesion of the crystal packing. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis. The mol­ecular structure optimized by density functional theory (DFT) at the B3LYP/6–311++G(d,p)level is compared with the experimentally determined mol­ecular structure in the solid state.




l

Synthesis, crystal structure, and Hirshfeld surface analysis of 1,3-di­hydro-2H-benzimidazol-2-iminium 3-carb­oxy-4-hy­droxy­benzene­sulfonate

The asymmetric unit of the title salt, C7H8N3+·C7H5O6S−, comprises two 1,3-di­hydro-2H-benzimidazol-2-iminium cations and two 2-hy­droxy-5-sulfobenzoate anions (Z' = 2). In the crystal, the mol­ecules inter­act through N—H⋯O, O—H⋯O hydrogen bonds and C—O⋯π contacts. The hydrogen-bonding inter­actions lead to the formation of layers parallel to (overline{1}01). Hirshfeld surface analysis revealed that H⋯H contacts contribute to most of the crystal packing with 38.9%, followed by H⋯O contacts with 36.2%.




l

Synthesis, crystal structure and Hirshfeld surface analysis of 4'-cyano-[1,1'-biphen­yl]-4-yl 3-(benz­yloxy)benzoate

In the title compound, C27H19O3N, the dihedral angle between the aromatic rings of the biphenyl unit is 38.14 (2)° and the C—O—C—C torsion angle in the benz­yloxy benzene fragment is 179.1 (2)°. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions forming S(9) chains propagating along [010]. The most important contributions to the Hirshfeld surface arise from H⋯H (32.4%) and C⋯H/H⋯C (37.0%) contacts.




l

Crystal structure, Hirshfeld surface analysis, and calculations of inter­molecular inter­action energies and energy frameworks of 1-[(1-hexyl-1H-1,2,3-triazol-4-yl)meth­yl]-3-(1-methyl­ethen­yl)-benzimidazol-2-one

The benzimidazole moiety in the title mol­ecule, C19H25N5O, is almost planar and oriented nearly perpendicular to the triazole ring. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into a network structure. There are no π–π inter­actions present but two weak C—H⋯π(ring) inter­actions are observed. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (62.0%), H⋯C/C⋯H (16.1%), H⋯N/N⋯H (13.7%) and H⋯O/O⋯H (7.5%) inter­actions. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated via the dispersion energy contributions in the title compound.




l

Mol­ecular structure of tris­[(6-bromo­pyridin-2-yl)meth­yl]amine

Coordination compounds of polydentate nitro­gen ligands with metals are used extensively in research areas such as catalysis, and as models of complex active sites of enzymes in bioinorganic chemistry. Tris(2-pyridyl­meth­yl)amine (TPA) is a tripodal tetra­dentate ligand that is known to form coordination compounds with metals, including copper, iron and zinc. The related compound, tris­[(6-bromo­pyridin-2-yl)meth­yl]amine (TPABr3), C18H15Br3N4, which possesses a bromine atom on the 6-position of each of the three pyridyl moieties, is also known but has not been heavily investigated. The mol­ecular structure of TPABr3 as determined by X-ray diffraction is reported here. The TPABr3 molecule belongs to the triclinic, Poverline{1} space group and displays interesting intermolecular Br⋯Br interactions that provide a stabilizing influence within the molecule.




l

Color center creation by dipole stacking in crystals of 2-meth­oxy-5-nitro­aniline

This work describes the X-ray structure of orange–red crystals of 2-meth­oxy-5-nitro­aniline, C7H8N2O3. The compound displays concentration-dependent UV-Vis spectra, which is attributed to dipole-induced aggregation, and light absorption arising from an inter­molecular charge-transfer process that decreases in energy as the degree of aggregation increases. The crystals display π-stacking where the dipole moments align anti­parallel. Stacked mol­ecules inter­act with the next stack via hydrogen bonds, which is a state of maximum aggregation. Light absorption by charge transfer can be compared to colored inorganic semiconductors such as orange–red CdS, with a band gap of 2.0–2.5 eV.




l

Synthesis, characterization, and crystal structure of hexa­kis­(1-methyl-1H-imidazole-κN3)zinc(II) dinitrate

The synthesis of the title compound, [Zn(C4H6N2)6](NO3)2, is described. This complex consists of a central zinc metal ion surrounded by six 1-methyl­imidazole ligands, charge balanced by two nitrate anions. The complex crystallizes in the space group Poverline{3}. In the crystal, the nitrate ions are situated within the cavities created by the [Zn(N-Melm)6]2+ cations, serving as counter-ions. The three oxygen atoms of the nitrate ion engage in weak C—H⋯O inter­actions. In addition to single-crystal X-ray diffraction analysis, the complex was characterized using elemental analysis, 1H NMR, 13C NMR, and FTIR spectroscopy.




l

Coupling between 2-pyridyl­selenyl chloride and phenyl­seleno­cyanate: synthesis, crystal structure and non-covalent inter­actions

A new pyridine-fused seleno­diazo­lium salt, 3-(phenyl­selan­yl)[1,2,4]selena­diazolo[4,5-a]pyridin-4-ylium chloride di­chloro­methane 0.352-solvate, C12H9N2Se2+·Cl−·0.352CH2Cl2, was obtained from the reaction between 2-pyridyl­selenenyl chloride and phenyl­seleno­cyanate. Single-crystal structural analysis revealed the presence of C—H⋯N, C—H⋯Cl−, C—H⋯Se hydrogen bonds as well as chalcogen–chalcogen (Se⋯Se) and chalcogen–halogen (Se⋯Cl−) inter­actions. Non-covalent inter­actions were explored by DFT calculations followed by topological analysis of the electron density distribution (QTAIM analysis). The structure consists of pairs of seleno­diazo­lium moieties arranged in a head-to-tail fashion surrounding disordered di­chloro­methane mol­ecules. The assemblies are connected by C—H⋯Cl− and C—H⋯N hydrogen bonds, forming layers, which stack along the c-axis direction connected by bifurcated Se⋯Cl−⋯H—C inter­actions.




l

Crystal structure of bis­(μ2-5-nona­noylquinolin-8-olato)bis­[aqua­dichlorido­indium(III)]

Crystallization of 5-nona­noyl-8-hy­droxy­quinoline in the presence of InCl3 in aceto­nitrile yields a dinuclear InIII complex crystallizing in the space group Poverline{1}. In this complex, [In2(C18H22NO2)2Cl4(H2O)2], each indium ion is sixfold coordinated by two chloride ions, one water mol­ecule and two 8-quinolino­late ions. The crystal of the title complex is composed of two-dimensional supra­molecular aggregates, resulting from the linkage of the Owater—H⋯O=C and Owater—H⋯Cl hydrogen bonds as well as bifurcated Carene—H⋯Cl contacts.




l

Crystal structure and Hirshfeld surface analysis of (E)-N-(2-styrylphen­yl)benzene­sulfonamide

The crystal structure of the title compound C20H17NO2S features hydrogen-bonding and C—H⋯π inter­actions. Hirshfeld surface analysis revealed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions make a major contribution to the crystal packing. Docking studies were carried out to determine the binding affinity and inter­action profile of the title compound with EGFR kinase, a member of the ErbB family of receptor tyrosine kinases, which is crucial for processes such as cell proliferation and differentiation. The title compound shows a strong binding affinity with EGFR kinase, with the most favourable conformation having a binding energy of −8.27 kcal mol−1 and a predicted IC50 of 870.34 nM, indicating its potential as a promising candidate for targeted lung cancer therapy.




l

Crystal structures of the (η2:η2-cyclo­octa-1,5-diene)(η6-toluene)­iridium(I) cation and μ-chlorido-iridium(III) complexes of 2-(phosphinito)- and 2-(phosphinometh­yl)anthra­quinone ligands

When reacted in dry, degassed toluene, [Ir(COD)Cl]2 (COD = cyclo­octa-1,5-diene) and 2 equivalents of 2-(di-tert-butyl­phosphinito)anthra­quinone (tBuPOAQH) were found to form a unique tri-iridium compound consisting of one monoanionic dinuclear tri-μ-chlorido complex bearing one bidentate tBuPOAQ ligand per iridium, which was charge-balanced by an outer sphere [Ir(toluene)(COD)]+ ion, the structure of which has not previously been reported. This product, which is a toluene solvate, namely, (η2:η2-cyclo­octa-1,5-diene)(η6-toluene)­iridium(I) tri-μ-chlorido-bis­({3-[(di-tert-butyl­phosphan­yl)­oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(III)) toluene monosolvate, [Ir(C7H8)(C8H12)][Ir2H2(C22H24O3P)2Cl3]·C7H8 or [Ir(toluene)(COD)][Ir(κ-P,C-tBuPOAQ)(H)]2(μ-Cl)3]·toluene, formed as small orange platelets at room temperature, crystallizing in the triclinic space group Poverline{1}. The cation and anion are linked via weak C—H⋯O inter­actions. The stronger inter­molecular attractions are likely the offset parallel π–π inter­actions, which occur between the toluene ligands of pairs of inverted cations and between pairs of inverted anthra­quinone moieties, the latter of which are capped by toluene solvate mol­ecules, making for π-stacks of four mol­ecules each. The related ligand, 2-(di-tert-butyl­phosphinometh­yl)-anthra­quinone (tBuPCAQH), did not form crystals suitable for X-ray diffraction under analogous reaction conditions. However, when the reaction was conducted in chloro­form, yellow needles readily formed following addition of 1 atm of carbon monoxide. Diffraction studies revealed a neutral, dinuclear, di-μ-chlorido complex, di-μ-chlorido-bis­(carbon­yl{3-[(di-tert-butyl­phosphan­yl)­oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(I)), [Ir2H2(C23H26O2P)2Cl2(CO)2] or [Ir(κ-P,C-tBuPCAQ)(H)(CO)(μ-Cl)]2, Ir2C48H54Cl2O6P2, again crystallizing in space group Poverline{1}. Offset parallel π–π inter­actions between anthra­quinone groups of adjacent mol­ecules link the mol­ecules in one dimension.




l

Synthesis, crystal structure and Hirshfeld surface analysis of (2-amino-1-methyl­benzimidazole-κN3)aqua­bis­(4-oxopent-2-en-2-olato-κ2O,O')nickel(II) ethanol monosolvate

The mol­ecule of the title compound, [Ni(C5H7O2)2(C8H9N3)(H2O)]·C2H5OH, has triclinic (Poverline{1}) symmetry. This compound is of inter­est for its anti­microbial properties. The asymmetric unit comprises two independent complex mol­ecules, which are linked by N—H⋯O and O—H⋯O hydrogen bonds along [111]. Hirshfeld surface analysis indicates that 71.7% of inter­mol­ecular inter­actions come from H⋯H contacts, 17.7% from C⋯H/H⋯C contacts and 7.6% from O⋯H/H⋯O contacts, with the remaining contribution coming from N⋯H/H⋯N, C⋯N/N⋯C, C⋯C and O⋯O contacts.




l

Synthesis and crystal structure of poly[ethanol(μ-4-methyl­pyridine N-oxide)di-μ-thio­cyanato-cobalt(II)]

Reaction of 4-methyl­pyridine N-oxide and Co(NCS)2 in ethanol as solvent accidentally leads to the formation of single crystals of Co(NCS)2(4-methyl­pyridine N-oxide)(ethanol) or [Co(NCS)2(C6H7NO)(C2H6O)]n. The asymmetric unit of the title compound consists of one CoII cation, two crystallographically independent thio­cyanate anions, one 4-methyl­pyridine N-oxide coligand and one ethanol mol­ecule on general positions. The cobalt cations are sixfold coordinated by one terminal and two bridging thio­cyanate anions, two bridging 4-methyl­pyridine N-oxide coligands and one ethanol mol­ecule, with a slightly distorted octa­hedral geometry. The cobalt cations are linked by single μ-1,3(N,S)-bridging thio­cyanate anions into corrugated chains, that are further connected into layers by pairs of μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands. The layers are parallel to the bc plane and are separated by the methyl groups of the 4-methyl­pyridine N-oxide coligands. Within the layers, intra­layer hydrogen bonding is observed.




l

Crystal structures of seven mixed-valence gold compounds of the form [(R1R2R3PE)2AuI]+[AuIIIX4]− (R = tert-butyl or isopropyl, E = S or Se, and X = Cl or Br)

During our studies of the oxidation of gold(I) complexes of tri­alkyl­phosphane chalcogenides, general formula R1R2R3PEAuX, (R = tert-butyl or isopropyl, E = S or Se, X = Cl or Br) with PhICl2 or elemental bromine, we have isolated a set of seven mixed-valence by-products, the bis­(tri­alkyl­phosphane chalcogenido)gold(I) tetra­halogenidoaurates(III) [(R1R2R3PE)2Au]+[AuX4]−. These corres­pond to the addition of one halogen atom per gold atom of the AuI precursor. Com­pound 1, bis­(triiso­propyl­phosphane sulfide)­gold(I) tetra­chlorido­aur­ate(III), [Au(C9H21PS)2][AuCl4] or [(iPr3PS)2Au][AuCl4], crystallizes in space group P21/n with Z = 4; the gold(I) atoms of the two cations lie on twofold rotation axes, and the gold(III) atoms of the two anions lie on inversion centres. Compound 2, bis­(tert-butyl­diiso­propyl­phosphane sulfide)­gold(I) tetra­chlorido­aurate(III), [Au(C10H23PS)2][AuCl4] or [(tBuiPr2PS)2Au][AuCl4], crystallizes in space group P1 with Z = 4; the asymmetric unit contains two cations and two anions with no imposed symmetry. A least-squares fit of the two cations gave an r.m.s. deviation of 0.19 Å. Compound 3, bis­(tri-tert-butyl­phosphane sulfide)­gold(I) tetra­chlorido­aurate(III), [Au(C12H27PS)2][AuCl4] or [(tBu3PS)2Au][AuCl4], crystallizes in space group P1 with Z = 1; both gold atoms lie on inversion centres. Compound 4a, bis­(tert-butyl­diiso­propyl­phosphane sulfide)­gold(I) tetra­bromi­doaurate(III), [Au(C10H23PS)2][AuBr4] or [(tBuiPr2PS)2Au][AuBr4], crystallizes in space group P21/c with Z = 4; the cation lies on a general position, whereas the gold(III) atoms of the two anions lie on inversion centres. Compound 4b, bis­(tert-butyl­diiso­propyl­phosphane selenide)gold(I) tetra­bromido­aurate(III), [Au(C10H23PSe)2][AuBr4] or [(tBuiPr2PSe)2Au][AuBr4], is isotypic with 4a. Compound 5a, bis­(tri-tert-butyl­phosphane sulfide)­gold(I) tetra­bromido­aurate(III), [Au(C12H27PS)2][AuBr4] or [(tBu3PS)2Au][AuBr4], is isotypic with compound 4a. Compound 5a, bis­(tri-tert-butyl­phosphane sulfide)­gold(I) tetra­bromido­aurate(III), [Au(C12H27PS)2][AuBr4] or [(tBu3PS)2Au][AuBr4], crystallizes in space group P1 with Z = 1; both gold atoms lie on inversion centres. Compound 5b, bis­(tri-tert-butyl­phosphane selenide)gold(I) tetra­bromido­aurate(III), [Au(C12H27PSe)2][AuBr4] or [(tBu3PSe)2Au][AuBr4], is isotypic with 5a. All AuI atoms are linearly coordinated and all AuIII atoms exhibit a square-planar coordination environment. The ligands at the AuI atoms are anti­periplanar to each other across the S⋯S vectors. There are several short intra­molecular H⋯Au and H⋯E contacts. Average bond lengths (Å) are: P—S = 2.0322, P—Se = 2.1933, S—Au = 2.2915, and Se—Au = 2.4037. The complex three-dimensional packing of 1 involves two short C—Hmethine⋯Cl contacts (and some slightly longer contacts). For 2, four C—Hmethine⋯Cl inter­actions combine to produce zigzag chains of residues parallel to the c axis. Additionally, an S⋯Cl contact is observed that might qualify as a ‘chalcogen bond’. The packing of 3 is three-dimensional, but can be broken down into two layer structures, each involving an S⋯Cl and an H⋯Cl contact. For the bromido derivatives 4a/b and 5a/b, loose associations of the anions form part of the packing patterns. For all four compounds, these combine with an E⋯Br contact to form layers parallel to the ab plane.




l

Synthesis, non-spherical structure refinement and Hirshfeld surface analysis of racemic 2,2'-diisobut­oxy-1,1'-bi­naphthalene

In the racemic title compound, C28H30O2, the naphthyl ring systems subtend a dihedral angle of 68.59 (1)° and the mol­ecular conformation is consolidated by a pair of intra­molecular C—H⋯π contacts. The crystal packing features a weak C—H⋯π contact and van der Waals forces. A Hirshfeld surface analysis of the crystal structure reveals that the most significant contributions are from H⋯H (73.2%) and C⋯H/H⋯C (21.2%) contacts.




l

Crystal structure and Hirshfeld surface analysis of tri­chlorido­(1,10-phenanthroline-κ2N,N')phenyltin(IV)

The title compound, [Sn(C6H5)Cl3(C12H8N2)], which was obtained by the reaction between 1,10-phenanthroline and phenyl­tin trichloride in methanol, exhibits intra­molecular hydrogen-bonding inter­actions involving the chlorine and hydrogen atoms. Crystal cohesion is ensured by inter­molecular C—H⋯Cl hydrogen bonds, as well as Y—X⋯π and π-stacking inter­actions involving three different aromatic rings with centroid–centroid distances of 3.6605 (13), 3.9327 (14) and 3.6938 (12) Å]. Hirshfeld surface analysis and the associated two-dimensional fingerprint plots reveal significant contributions from H⋯H (30.7%), Cl⋯H/H⋯Cl (32.4%), and C⋯H/H⋯C (24.0%) contacts to the crystal packing while the C⋯C (6.2%), C⋯Cl/Cl⋯C (4.1%), and N⋯H/H⋯N (1.7%) inter­actions make smaller contributions.




l

Crystal structure and Hirshfeld surface analysis of {2-[bis­(pyridin-2-ylmeth­yl)amino]­ethane-1-thiol­ato}­chlorido­cadmium(II)

The title compound, [Cd(C14H16N3S)Cl] or [CdLCl] (1), where LH = 2-[bis­(pyridin-2-ylmeth­yl)amino]­ethane-1-thiol, was prepared and structurally characterized. The Cd2+ complex crystallizes in P21/c with a distorted trigonal–bipyramidal metal coordination geometry. Supra­molecular inter­actions in 1 include parallel offset face-to-face inter­actions between inversion-related pyridyl rings and potential hydrogen bonds with chlorine or sulfur as the acceptor. Additional cooperative pyrid­yl–pyridyl inter­actions with roughly 45° tilt angles and centroid–centroid distances of less than 5.5 Å likely also contribute to the overall solid-state stability. Hirshfeld surface analysis indicates that H⋯H (51.2%), Cl⋯H/H⋯Cl (13.9%), C⋯H/H⋯C (12.3%) and S⋯H/H⋯S (11.8%) inter­actions are dominant in the solid state.




l

Synthesis and crystal structure of poly[[μ-chlorido-μ-(2,3-di­methyl­pyrazine)-copper(I)] ethanol hemisolvate], which shows a new isomeric CuCl(2,3-di­methyl­pyrazine) network

Reaction of copper(I)chloride with 2,3-di­methyl­pyrazine in ethanol leads to the formation of the title compound, poly[[μ-chlorido-μ-(2,3-di­methyl­pyrazine)-copper(I)] ethanol hemisolvate], {[CuCl(C6H8N2)]·0.5C2H5OH}n or CuCl(2,3-di­methyl­pyrazine) ethanol hemisolvate. Its asymmetric unit consists of two crystallographically independent copper cations, two chloride anions and two 2,3-di­methyl­pyrazine ligands as well as one ethanol solvate mol­ecule in general positions. The ethanol mol­ecule is disordered and was refined using a split model. The methyl H atoms of the 2,3-di­methyl­pyrazine ligands are also disordered and were refined in two orientations rotated by 60° relative to each other. In the crystal structure, each copper cation is tetra­hedrally coordinated by two N atoms of two bridging 2,3-di­methyl­pyrazine ligands and two μ-1,1-bridg­ing chloride anions. Each of the two copper cations are linked by pairs of bridging chloride anions into dinuclear units that are further linked into layers via bridging 2,3-di­methyl­pyrazine coligands. These layers are stacked in such a way that channels are formed in which the disordered solvent mol­ecules are located. The topology of this network is completely different from that observed in the two polymorphic modifications of CuCl(2,3-di­methyl­pyrazine) reported in the literature [Jess & Näther (2006). Inorg. Chem. 45, 7446–7454]. Powder X-ray diffraction measurements reveal that the title compound is unstable and transforms immediately into an unknown crystalline phase.




l

Synthesis, crystal structure and Hirshfeld surface analysis of sulfamethoxazolium methyl­sulfate monohydrate

The mol­ecular salt sulfamethoxazolium {or 4-[(5-methyl-1,2-oxazol-3-yl)sulf­amo­yl]anilinium methyl sulfate monohydrate}, C10H12N3O3S+·CH3O4S−·H2O, was prepared by the reaction of sulfamethoxazole and H2SO4 in methanol and crystallized from methanol–ether–water. Protonation takes place at the nitro­gen atom of the primary amino group. In the crystal, N—H⋯O hydrogen bonds (water and methyl­sulfate anion) and inter­molecular N—H⋯N inter­actions involving the sulfonamide and isoxazole nitro­gen atoms, link the components into a tri-dimensional network, additional cohesion being provided by face-to-face π–π inter­actions between the phenyl rings of adjacent mol­ecules. A Hirshfeld surface analysis was used to verify the contributions of the different inter­molecular inter­actions, showing that the three most important contributions for the crystal packing are from H⋯O (54.1%), H⋯H (29.2%) and H⋯N (5.0%) inter­actions.




l

8-Hy­droxy­quinolinium tri­chlorido­(pyridine-2,6-di­carb­oxy­lic acid-κ3O,N,O')copper(II) dihydrate

The title compound, (C9H8NO)[CuCl3(C7H5NO4)]·2H2O, was prepared by reacting CuII acetate dihydrate, solid 8-hy­droxy­quinoline (8-HQ), and solid pyridine-2,6-di­carb­oxy­lic acid (H2pydc), in a 1:1:1 molar ratio, in an aqueous solution of dilute hydro­chloric acid. The CuII atom exhibits a distorted CuO2NCl3 octa­hedral geometry, coordinating two oxygen atoms and one nitro­gen atom from the tridentate H2pydc ligand and three chloride atoms; the nitro­gen atom and one chloride atom occupy the axial positions with Cu—N and Cu—Cl bond lengths of 2.011 (2) Å and 2.2067 (9) Å, respectively. In the equatorial plane, the oxygen and chloride atoms are arranged in a cis configuration, with Cu—O bond lengths of 2.366 (2) and 2.424 (2) Å, and Cu—Cl bond lengths of 2.4190 (10) and 2.3688 (11) Å. The asymmetric unit contains 8-HQ+ as a counter-ion and two uncoordinated water mol­ecules. The crystal structure features strong O—H⋯O and O—H⋯Cl hydrogen bonds as well as weak inter­actions including C—H⋯O, C—H⋯Cl, Cu—Cl⋯π, and π–π, which result in a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing involving the main residues are from H⋯Cl/Cl⋯H inter­actions, contributing 40.3% for the anion. Weak H⋯H contacts contribute 13.2% for the cation and 28.6% for the anion.




l

Crystal structure and Hirshfeld surface analyses, crystal voids, inter­molecular inter­action energies and energy frameworks of 3-benzyl-1-(3-bromoprop­yl)-5,5-di­phenyl­imidazolidine-2,4-dione

The title mol­ecule, C25H23BrN2O2, adopts a cup shaped conformation with the distinctly ruffled imidazolidine ring as the base. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions form helical chains of mol­ecules extending along the b-axis direction that are linked by additional weak C—H⋯π(ring) inter­actions across inversion centres. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.0%), C⋯H/H⋯C (21.3%), Br⋯H/H⋯Br (12.8%) and O⋯H/H⋯O (12.4%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 251.24 Å3 and 11.71%, respectively, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the dispersion energy.




l

Crystal structure and supra­molecular features of a host–guest inclusion complex based on A1/A2-hetero-difunctionalized pillar[5]arene

A host–guest supra­molecular inclusion complex was obtained from the co-crystallization of A1/A2-bromo­but­oxy-hy­droxy difunctionalized pillar[5]arene (PilButBrOH) with adipo­nitrile (ADN), C47H53.18Br0.82O10·C6H8N2. The adipo­nitrile guest is stabilized within the electron-rich cavity of the pillar[5]arene host via multiple C—H⋯O and C—H⋯π inter­actions. Both functional groups on the macrocyclic rim are engaged in supra­molecular inter­actions with an adjacent inclusion complex via hydrogen-bonding (O—H⋯N or C—H⋯Br) inter­actions, resulting in the formation of a supra­molecular dimer in the crystal structure.




l

Synthesis and crystal structure of 1H-1,2,4-triazole-3,5-di­amine monohydrate

The title compound, a hydrate of 3,5-di­amino-1,2,4-triazole (DATA), C2H5N5·H2O, was synthesized in the presence of sodium perchlorate. The evaporation of H2O from its aqueous solution resulted in anhydrous DATA, suggesting that sodium perchlorate was required to precipitate the DATA hydrate. The DATA hydrate crystallizes in the P21/c space group in the form of needle-shaped crystals with one DATA and one water mol­ecule in the asymmetric unit. The water mol­ecules form a three-dimensional network in the crystal structure. Hirshfeld surface analysis revealed that 8.5% of the inter­molecular inter­actions originate from H⋯O contacts derived from the incorporation of the water mol­ecules.




l

Synthesis, crystal structure and properties of μ-tetra­thio­anti­monato-bis­[(cyclam)zinc(II)] perchlorate 0.8-hydrate

The reaction of Zn(ClO4)2·6H2O with Na3SbS4·9H2O in a water/aceto­nitrile mixture leads to the formation of the title compound, (μ-tetra­thio­anti­monato-κ2S:S')bis­[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)zinc(II)] perchlorate 0.8-hydrate, [Zn2(SbS4)(C10H24N4)2]ClO4·0.8H2O or [(Zn-cyclam)2(SbS4)]+[ClO4]−·0.8H2O. The asymmetric unit consists of two crystallographically independent [SbS4]3– anions, two independent perchlorate anions and two independent water mol­ecules as well as four crystallographically independent Zn(cyclam)2+ cations that are located in general positions. Both perchlorate anions and one cyclam ligand are disordered and were refined with a split mode using restraints. The water mol­ecules are partially occupied. Two Zn(cyclam)2+ cations are linked via the [SbS4]3– anions into [Zn2(cyclam)2SbS4]+ cations that are charged-balanced by the [ClO4]− anions. The water mol­ecules of crystallization are hydrogen bonded to the [SbS4]3– anions. The cations, anions and water mol­ecules are linked by N—H⋯O, N—H⋯S and O—H⋯S hydrogen bonds into a three-dimensional network. Powder X-ray diffraction proves that a pure sample had been obtained that was additionally investigated for its spectroscopic properties.




l

Mercury(II) halide complex of cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)]

The mercury(II) halide complex [1,3-di-tert-butyl-2,4-bis­(tert-butyl­amino)-1,3,2λ5,4λ5-di­aza­diphosphetidine-2,4-diselone-κ2Se,Se']di­iodido­mercury(II) N,N-di­methyl­formamide monosolvate, [HgI2(C16H38N4P2Se2)]·C3H7NO or (1)HgI2, 2, containing cis-[(tBuNH)(Se)P(μ-NtBu)2P(Se)(NHtBu)] (1) was synthesized and structurally characterized. The crystal structure of 2 confirms the chelation of chalcogen donors to HgI2 with a natural bite angle of 112.95 (2)°. The coordination geometry around mercury is distorted tetra­hedral as indicated by the τ4 geometry index parameter (τ4 = 0.90). In the mercury complex, the exocyclic tert-butyl­amido substituents are arranged in an (endo, endo) fashion, whereas in the free ligand (1), the exocyclic substituents are arranged in an (exo, endo) pattern. Compound 2 displays non-classical N—H⋯O hydrogen-bonding inter­actions with the solvent N,N-di­methyl­formamide. These inter­actions may introduce geometrical distortion and deviation from an ideal geometry. An isostructural HgBr2 analogue containing cis-[(tBuNH)(S)P(μ-NtBu)2P(S)(NHtBu)] was also synthesized and structurally characterized, CIF data for the compound being presented as supporting information.




l

Structure of 2,3,5-tri­phenyl­tetra­zol-3-ium chloride hemi­penta­hydrate

The title hydrated mol­ecular salt, C19H15N4+·Cl−·2.5H2O, has two tri­phenyl­tetra­zolium cations, two chloride anions and five water mol­ecules in the asymmetric unit. The cations differ in the conformations of the phenyl rings with respect to the heterocyclic core, most notably for the C-bonded phenyl ring, for which the N—C—C—C torsion angles differ by 36.4 (3)°. This is likely a result of one cation accepting an O—H⋯N hydrogen bond from a water mol­ecule [O⋯N = 3.1605 (15) Å], while the other cation accepts no hydrogen bonds. In the extended structure, the water mol­ecules are involved in centrosymmetric (H2O)2Cl2 rings as well as (H2O)4 chains. An unusual O—H⋯π inter­action and weak C—H⋯O and C—H⋯Cl hydrogen bonds are also observed.




l

Crystal structure and Hirshfeld surface analysis of (nitrato-κ2O,O')(1,4,7,10-tetra­aza­cyclo­dodecane-κ4N)nickel(II) nitrate

The crystal structure of the title compound, [Ni(C8H20N4)(NO3)]NO3, at room temperature, has monoclinic (P21/n) symmetry. The structure displays inter­molecular hydrogen bonding. The nickel displays a distorted bipyramidal geometry with the symmetric bidentate bonded nitrate occupying an equatorial site. The 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen) backbone has the [4,8] configuration, with three nitro­gen-bound H atoms directed above the plane of the nitro­gen atoms towards the offset nickel atom with the fourth nitro­gen-bound hydrogen directed below from the plane of the nitro­gen atoms. The nitrate anion O atoms are seen to hydrogen bond to the H atoms bound to the N atoms of the ligand.




l

Synthesis, structures and Hirshfeld surface analyses of 2-hy­droxy-N'-methyl­acetohydrazide and 2-hy­droxy-N-methyl­acetohydrazide

The structures of the title compounds 2-hy­droxy-N'-methyl­acetohydrazide, 1, and 2-hy­droxy-N-methyl­acetohydrazide, 2, both C3H8N2O2, as regioisomers differ in the position of the methyl group relative to the N atoms in 2-hy­droxy-acetohydrazide. In the structure of 1, the 2-hy­droxy-acetohydrazide core [OH—C—C(=O)—NH—NH] is almost planar and the methyl group is rotated relative to this plane. As opposed to 1, in the structure of 2 all non-hydrogen atoms lie in the same plane. The hydroxyl and carbonyl groups in structures 1 and 2 are in trans and cis positions, respectively. The methyl amino group and carbonyl group are in the cis position relative to the C—N bond in structure 1, while the amino group and carbonyl group are in the trans position relative to the C—N bond in stucture 2. In the crystal, mol­ecules of 1 are linked by N—H⋯O and O—H⋯N inter­molecular hydrogen bonds, forming layers parallel to the ab crystallographic plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 55.3%. The contribution of the H⋯O/O⋯H inter­action is somewhat smaller, amounting to 30.8%. In the crystal, as a result of the inter­molecular O—H⋯O hydrogen bonds, mol­ecules of 2 form dimers, which are linked by N—H⋯O hydrogen bonds and a three-dimensional supra­molecular network The major contributors to the Hirshfeld surface are H⋯H (58.5%) and H⋯O/O⋯H contacts (31.7%).




l

N,N'-Di­benzyl­ethyl­enedi­ammonium dichloride

The isolation and crystalline structure of N,N'-di­benzyl­ethyl­enedi­ammonium dichloride, C16H22N22+·2Cl−, is reported. This was obtained as an unintended product of an attempted Curtius rearrangement that involved benzyl­amine as one of the reagents and 1,2-di­chloro­ethane as the solvent. Part of a series of reactions of a course-based undergraduate research experience (CURE), this was not the intended reaction outcome. The goal of the course was to engage students as active participants in a laboratory experience which applies the foundational techniques of a synthetic organic laboratory, using the Curtius rearrangement as a tool for the assembly of medicinally significant scaffolds. The isolation of the title compound, N,N'-di­benzyl­ethyl­enedi­ammonium dichloride, the result of the 1,2-di­chloro­ethane solvent outcompeting the Curtius iso­cyanate inter­mediate in the reaction with the nucleophilic amine, confirms the importance of conducting research at the undergraduate level where the outcome is not predetermined. The solid-state structure of N,N'-di­benzyl­ethyl­enedi­ammonium dichloride was found to feature an all-trans methyl­ene-ammonium backbone. Strong N—H⋯Cl hydrogen bonds and C—H⋯Cl inter­actions lead to a layered structure with pseudo-translational symmetry emulating a C-centered setting. Different phenyl torsion angles at each end of the mol­ecule enable a more stable packing by allowing stronger hydrogen-bonding inter­actions, leading to a more ordered but lower symmetry and modulated structure in P21/n.