cts Helping Hand: Men's Grip Strength May Up Marriage Prospects By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: Helping Hand: Men's Grip Strength May Up Marriage ProspectsCategory: Health NewsCreated: 5/2/2018 12:00:00 AMLast Editorial Review: 5/2/2018 12:00:00 AM Full Article
cts As Coronavirus Fears Surge, Keep Cleaning Products Away From Children By www.medicinenet.com Published On :: Sat, 9 May 2020 00:00:00 PDT Title: As Coronavirus Fears Surge, Keep Cleaning Products Away From ChildrenCategory: Health NewsCreated: 4/27/2020 12:00:00 AMLast Editorial Review: 4/27/2020 12:00:00 AM Full Article
cts Don't Believe All the 'Science' on CBD Products By www.medicinenet.com Published On :: Tue, 17 Mar 2020 00:00:00 PDT Title: Don't Believe All the 'Science' on CBD ProductsCategory: Health NewsCreated: 3/16/2020 12:00:00 AMLast Editorial Review: 3/17/2020 12:00:00 AM Full Article
cts Legal Pot Products Too Potent for Chronic Pain By www.medicinenet.com Published On :: Fri, 27 Mar 2020 00:00:00 PDT Title: Legal Pot Products Too Potent for Chronic PainCategory: Health NewsCreated: 3/27/2020 12:00:00 AMLast Editorial Review: 3/27/2020 12:00:00 AM Full Article
cts FDA Bans Products That Help Kids Hide Vape Use From Parents By www.medicinenet.com Published On :: Tue, 28 Apr 2020 00:00:00 PDT Title: FDA Bans Products That Help Kids Hide Vape Use From ParentsCategory: Health NewsCreated: 4/27/2020 12:00:00 AMLast Editorial Review: 4/28/2020 12:00:00 AM Full Article
cts Recommended Diuretic Drug Tied to Harmful Side Effects By www.medicinenet.com Published On :: Wed, 19 Feb 2020 00:00:00 PDT Title: Recommended Diuretic Drug Tied to Harmful Side EffectsCategory: Health NewsCreated: 2/18/2020 12:00:00 AMLast Editorial Review: 2/19/2020 12:00:00 AM Full Article
cts Birth Control Options (Types and Side Effects) By www.medicinenet.com Published On :: Fri, 10 Apr 2020 00:00:00 PDT Title: Birth Control Options (Types and Side Effects)Category: Diseases and ConditionsCreated: 9/13/1999 12:00:00 AMLast Editorial Review: 4/10/2020 12:00:00 AM Full Article
cts Lasix Side Effects, Warnings, and Drug Interactions By www.medicinenet.com Published On :: Wed, 4 Mar 2020 00:00:00 PDT Title: Lasix Side Effects, Warnings, and Drug InteractionsCategory: MedicationsCreated: 3/4/2020 12:00:00 AMLast Editorial Review: 3/4/2020 12:00:00 AM Full Article
cts Birth Control Pills (List of Oral Contraceptives and Side Effects) By www.medicinenet.com Published On :: Thu, 30 Jan 2020 00:00:00 PDT Title: Birth Control Pills (List of Oral Contraceptives and Side Effects)Category: MedicationsCreated: 12/31/1997 12:00:00 AMLast Editorial Review: 1/30/2020 12:00:00 AM Full Article
cts Allergy Med Singulair to Get 'Black Box' Warning Over Psych Side Effects: FDA By www.medicinenet.com Published On :: Thu, 5 Mar 2020 00:00:00 PDT Title: Allergy Med Singulair to Get 'Black Box' Warning Over Psych Side Effects: FDACategory: Health NewsCreated: 3/4/2020 12:00:00 AMLast Editorial Review: 3/5/2020 12:00:00 AM Full Article
cts The Additive Effects of Cell Phone Use and Dental Hygiene Practice on Finger Muscle Strength: A Pilot Study By jdh.adha.org Published On :: 2020-04-30T12:39:03-07:00 Purpose: The purpose of this study was to determine strength of muscles involved with instrumentation (scaling) by dental hygienists and the additive effects of cellular (mobile) phone usage, as indicated by measurements of muscular force generation.Methods: A convenience sample of licensed dental hygienists currently in clinical practice (n=16) and an equal number of individuals not currently using devices/tools repetitively for work (n=16), agreed to participate in this pilot study. All participants completed a modified cell phone usage questionnaire to determine their use pattern and frequency. Upon completion of the questionnaire, participants' force production in six muscle groups was measured using a hand-held dynamometer. Descriptive statistics were used to analyze the data.Results: A total of 16 licensed dental hygienists (n=16) and 16 participants with no history of using tools/devices repetitively for work (n=16), comprised the experimental and control groups, repectively. The control group generated greater muscle force than the experimental group for the abductor pollicis longus (p=0.045). Significant differences were identified when comparing the low mobile phone users in the experimental group to the control group for the flexor pollicis brevis (p=0.031), abductor pollicis longus (p=0.031), and flexor digitorum (p=0.006), with the control group demonstrating higher muscle force. Years in clinical practice and mobile phone use was shown to have a significant effect on muscular force generation for the flexor pollicis brevis (F=3.645, df=3, p=0.020) and flexor digitorum (F=3.560, df=3, p=0.022); subjects who practiced dental hygiene the longest produced the least amount of muscle force.Conclusion: Results from this pilot study indicate there are no significant additive effects of cell phone use and dental hygiene practice on finger muscles used for instrumentation. However, results indicate that dental hygiene practice demonstrated significant effects on muscular strength as compared to individuals who do not use tools/devices repetitively for work. The small sample size may have impacted results and the study should be repeated with a larger sample. Full Article
cts A novel GPER antagonist protects against the formation of estrogen-induced cholesterol gallstones in female mice [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 Many clinical studies and epidemiological investigations have clearly demonstrated that women are twice as likely to develop cholesterol gallstones as men, and oral contraceptives and other estrogen therapies dramatically increase that risk. Further, animal studies have revealed that estrogen promotes cholesterol gallstone formation through the estrogen receptor (ER) α, but not ERβ, pathway. More importantly, some genetic and pathophysiological studies have found that G protein-coupled estrogen receptor (GPER) 1 is a new gallstone gene, Lith18, on chromosome 5 in mice and produces additional lithogenic actions, working independently of ERα, to markedly increase cholelithogenesis in female mice. Based on computational modeling of GPER, a novel series of GPER-selective antagonists were designed, synthesized, and subsequently assessed for their therapeutic effects via calcium mobilization, cAMP, and ERα and ERβ fluorescence polarization binding assays. From this series of compounds, one new compound, 2-cyclohexyl-4-isopropyl-N-(4-methoxybenzyl)aniline (CIMBA), exhibits superior antagonism and selectivity exclusively for GPER. Furthermore, CIMBA reduces the formation of 17β-estradiol-induced gallstones in a dose-dependent manner in ovariectomized mice fed a lithogenic diet for 8 weeks. At 32 μg/day/kg CIMBA, no gallstones are found, even in ovariectomized ERα (–/–) mice treated with 6 μg/day 17β-estradiol and fed the lithogenic diet for 8 weeks. In conclusion, CIMBA treatment protects against the formation of estrogen-induced cholesterol gallstones by inhibiting the GPER signaling pathway in female mice. CIMBA may thus be a new agent for effectively treating cholesterol gallstone disease in women. Full Article
cts The Multifunctional Long-Distance Movement Protein of Pea Enation Mosaic Virus 2 Protects Viral and Host Transcripts from Nonsense-Mediated Decay By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT The nonsense-mediated decay (NMD) pathway presents a challenge for RNA viruses with termination codons that precede extended 3' untranslated regions (UTRs). The umbravirus Pea enation mosaic virus 2 (PEMV2) is a nonsegmented, positive-sense RNA virus with an unusually long 3' UTR that is susceptible to NMD. To establish a systemic infection, the PEMV2 long-distance movement protein p26 was previously shown to both stabilize viral RNAs and bind them for transport through the plant’s vascular system. The current study demonstrated that p26 protects both viral and nonviral messenger RNAs from NMD. Although p26 localizes to both the cytoplasm and nucleolus, p26 exerts its anti-NMD effects exclusively in the cytoplasm independently of long-distance movement. Using a transcriptome-wide approach in the model plant Nicotiana benthamiana, p26 protected a subset of cellular NMD target transcripts, particularly those containing long, structured, GC-rich 3' UTRs. Furthermore, transcriptome sequencing (RNA-seq) revealed that the NMD pathway is highly dysfunctional during PEMV2 infection, with 1,820 (48%) of NMD targets increasing in abundance. Widespread changes in the host transcriptome are common during plant RNA virus infections, and these results suggest that, in at least some instances, virus-mediated NMD inhibition may be a major contributing factor. IMPORTANCE Nonsense-mediated decay (NMD) represents an RNA regulatory pathway that degrades both natural and faulty messenger RNAs with long 3' untranslated regions. NMD targets diverse families of RNA viruses, requiring that viruses counteract the NMD pathway for successful amplification in host cells. A protein required for long-distance movement of Pea enation mosaic virus 2 (PEMV2) is shown to also protect both viral and host mRNAs from NMD. RNA-seq analyses of the Nicotiana benthamiana transcriptome revealed that PEMV2 infection significantly impairs the host NMD pathway. RNA viruses routinely induce large-scale changes in host gene expression, and, like PEMV2, may use NMD inhibition to alter the host transcriptome in an effort to increase virus amplification. Full Article
cts Reply to Losick, "Concerns about Continuing Claims that a Protein Complex Interacts with the Phosphorelay" By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 Full Article
cts Barrier-to-Autointegration Factor 1 Protects against a Basal cGAS-STING Response By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT Although the pathogen recognition receptor pathways that activate cell-intrinsic antiviral responses are well delineated, less is known about how the host regulates this response to prevent sustained signaling and possible immune-mediated damage. Using a genome-wide CRISPR-Cas9 screening approach to identify host factors that modulate interferon-stimulated gene (ISG) expression, we identified the DNA binding protein Barrier-to-autointegration factor 1 (Banf1), a previously described inhibitor of retrovirus integration, as a modulator of basal cell-intrinsic immunity. Ablation of Banf1 by gene editing resulted in chromatin activation near host defense genes with associated increased expression of ISGs, including Oas2, Rsad2 (viperin), Ifit1, and ISG15. The phenotype in Banf1-deficient cells occurred through a cGAS-, STING-, and IRF3-dependent signaling axis, was associated with reduced infection of RNA and DNA viruses, and was reversed in Banf1 complemented cells. Confocal microscopy and biochemical studies revealed that a loss of Banf1 expression resulted in higher level of cytosolic double-stranded DNA at baseline. Our study identifies an undescribed role for Banf1 in regulating the levels of cytoplasmic DNA and cGAS-dependent ISG homeostasis and suggests possible therapeutic directions for promoting or inhibiting cell-intrinsic innate immune responses. IMPORTANCE Although the interferon (IFN) signaling pathway is a key host mechanism to restrict infection of a diverse range of viral pathogens, its unrestrained activity either at baseline or in the context of an immune response can result in host cell damage and injury. Here, we used a genome-wide CRISPR-Cas9 screen and identified the DNA binding protein Barrier-to-autointegration factor 1 (Banf1) as a modulator of basal cell-intrinsic immunity. A loss of Banf1 expression resulted in higher level of cytosolic double-stranded DNA at baseline, which triggered IFN-stimulated gene expression via a cGAS-STING-IRF3 axis that did not require type I IFN or STAT1 signaling. Our experiments define a regulatory network in which Banf1 limits basal inflammation by preventing self DNA accumulation in the cytosol. Full Article
cts Vaccine-Induced Th1-Type Response Protects against Invasive Group A Streptococcus Infection in the Absence of Opsonizing Antibodies By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT Recent global advocacy efforts have highlighted the importance of development of a vaccine against group A Streptococcus (GAS). Combo5 is a non-M protein-based vaccine that provides protection against GAS skin infection in mice and reduces the severity of pharyngitis in nonhuman primates. However, Combo5 with the addition of aluminum hydroxide (alum) as an adjuvant failed to protect against invasive GAS infection of mice. Here, we show that formulation of Combo5 with adjuvants containing saponin QS21 significantly improves protective efficacy, even though all 7 adjuvants tested generated high antigen-specific IgG antibody titers, including alum. Detailed characterization of Combo5 formulated with SMQ adjuvant, a squalene-in-water emulsion containing a TLR4 agonist and QS21, showed significant differences from the results obtained with alum in IgG subclasses generated following immunization, with an absence of GAS opsonizing antibodies. SMQ, but not alum, generated strong interleukin-6 (IL-6), gamma interferon (IFN-), and tumor necrosis alpha (TNF-α) responses. This work highlights the importance of adjuvant selection for non-M protein-based GAS vaccines to optimize immune responses and protective efficacy. IMPORTANCE Availability of a group A Streptococcus vaccine remains an unmet public health need. Here, we tested different adjuvant formulations to improve the protective efficacy of non-M protein vaccine Combo5 in an invasive disease model. We show that novel adjuvants can dramatically shape the type of immune response developed following immunization with Combo5 and significantly improve protection. In addition, protection afforded by Combo5 is not mediated by opsonizing antibodies, believed to be the main correlate of protection against GAS infections. Overall, this report highlights the importance of adjuvant selection in raising protective immune responses against GAS invasive infection. Adjuvants that can provide a more balanced Th1/Th2-type response may be required to optimize protection of GAS vaccines, particularly those based on non-M protein antigens. Full Article
cts Concerns about Continuing Claims that a Protein Complex Interacts with the Phosphorelay By mbio.asm.org Published On :: 2020-03-10T01:30:42-07:00 Full Article
cts Latent Toxoplasmosis Effects on Rodents and Humans: How Much is Real and How Much is Media Hype? By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 ABSTRACT Toxoplasma gondii is a ubiquitous, intracellular protozoan parasite with a broad range of intermediate hosts, including humans and rodents. In many hosts, T. gondii establishes a latent long-term infection by converting from its rapidly dividing or lytic form to its slowly replicating and encysting form. In humans and rodents, the major organ for encystment is the central nervous system (CNS), which has led many to investigate how this persistent CNS infection might influence rodent and human behavior and, more recently, neurodegenerative diseases. Given the interest in this topic, here we seek to take a global approach to the data for and against the effects of latent T. gondii on behavior and neurodegeneration and the proposed mechanisms that might underlie behavior modifications. Full Article
cts The Mitochondrial Calcium Uniporter Interacts with Subunit c of the ATP Synthase of Trypanosomes and Humans By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 ABSTRACT Mitochondrial Ca2+ transport mediated by the uniporter complex (MCUC) plays a key role in the regulation of cell bioenergetics in both trypanosomes and mammals. Here we report that Trypanosoma brucei MCU (TbMCU) subunits interact with subunit c of the mitochondrial ATP synthase (ATPc), as determined by coimmunoprecipitation and split-ubiquitin membrane-based yeast two-hybrid (MYTH) assays. Mutagenesis analysis in combination with MYTH assays suggested that transmembrane helices (TMHs) are determinants of this specific interaction. In situ tagging, followed by immunoprecipitation and immunofluorescence microscopy, revealed that T. brucei ATPc (TbATPc) coimmunoprecipitates with TbMCUC subunits and colocalizes with them to the mitochondria. Blue native PAGE and immunodetection analyses indicated that the TbMCUC is present together with the ATP synthase in a large protein complex with a molecular weight of approximately 900 kDa. Ablation of the TbMCUC subunits by RNA interference (RNAi) significantly increased the AMP/ATP ratio, revealing the downregulation of ATP production in the cells. Interestingly, the direct physical MCU-ATPc interaction is conserved in Trypanosoma cruzi and human cells. Specific interaction between human MCU (HsMCU) and human ATPc (HsATPc) was confirmed in vitro by mutagenesis and MYTH assays and in vivo by coimmunoprecipitation. In summary, our study has identified that MCU complex physically interacts with mitochondrial ATP synthase, possibly forming an MCUC-ATP megacomplex that couples ADP and Pi transport with ATP synthesis, a process that is stimulated by Ca2+ in trypanosomes and human cells. IMPORTANCE The mitochondrial calcium uniporter (MCU) is essential for the regulation of oxidative phosphorylation in mammalian cells, and we have shown that in Trypanosoma brucei, the etiologic agent of sleeping sickness, this channel is essential for its survival and infectivity. Here we reveal that that Trypanosoma brucei MCU subunits interact with subunit c of the mitochondrial ATP synthase (ATPc). Interestingly, the direct physical MCU-ATPc interaction is conserved in T. cruzi and human cells. Full Article
cts A Virus Hosted in Malaria-Infected Blood Protects against T Cell-Mediated Inflammatory Diseases by Impairing DC Function in a Type I IFN-Dependent Manner By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT Coinfections shape immunity and influence the development of inflammatory diseases, resulting in detrimental or beneficial outcome. Coinfections with concurrent Plasmodium species can alter malaria clinical evolution, and malaria infection itself can modulate autoimmune reactions. Yet, the underlying mechanisms remain ill defined. Here, we demonstrate that the protective effects of some rodent malaria strains on T cell-mediated inflammatory pathologies are due to an RNA virus cohosted in malaria-parasitized blood. We show that live and extracts of blood parasitized by Plasmodium berghei K173 or Plasmodium yoelii 17X YM, protect against P. berghei ANKA-induced experimental cerebral malaria (ECM) and myelin oligodendrocyte glycoprotein (MOG)/complete Freund’s adjuvant (CFA)-induced experimental autoimmune encephalomyelitis (EAE), and that protection is associated with a strong type I interferon (IFN-I) signature. We detected the presence of the RNA virus lactate dehydrogenase-elevating virus (LDV) in the protective Plasmodium stabilates and we established that LDV infection alone was necessary and sufficient to recapitulate the protective effects on ECM and EAE. In ECM, protection resulted from an IFN-I-mediated reduction in the abundance of splenic conventional dendritic cell and impairment of their ability to produce interleukin (IL)-12p70, leading to a decrease in pathogenic CD4+ Th1 responses. In EAE, LDV infection induced IFN-I-mediated abrogation of IL-23, thereby preventing the differentiation of granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing encephalitogenic CD4+ T cells. Our work identifies a virus cohosted in several Plasmodium stabilates across the community and deciphers its major consequences on the host immune system. More generally, our data emphasize the importance of considering contemporaneous infections for the understanding of malaria-associated and autoimmune diseases. IMPORTANCE Any infection modifies the host immune status, potentially ameliorating or aggravating the pathophysiology of a simultaneous inflammatory condition. In the course of investigating how malaria infection modulates the severity of contemporaneous inflammatory diseases, we identified a nonpathogenic mouse virus in stabilates of two widely used rodent parasite lines: Plasmodium berghei K173 and Plasmodium yoelii 17X YM. We established that the protective effects of these Plasmodium lines on cerebral malaria and multiple sclerosis are exclusively due to this virus. The virus induces a massive type I interferon (IFN-I) response and causes quantitative and qualitative defects in the ability of dendritic cells to promote pathogenic T cell responses. Beyond revealing a possible confounding factor in rodent malaria models, our work uncovers some bases by which a seemingly innocuous viral (co)infection profoundly changes the immunopathophysiology of inflammatory diseases. Full Article
cts A Chimeric Japanese Encephalitis Vaccine Protects against Lethal Yellow Fever Virus Infection without Inducing Neutralizing Antibodies By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT Recent outbreaks of yellow fever virus (YFV) in West Africa and Brazil resulted in rapid depletion of global vaccine emergency stockpiles and raised concerns about being unprepared against future YFV epidemics. Here we report that a live attenuated virus similar to the Japanese encephalitis virus (JEV) vaccine JE-CVax/Imojev that consists of YFV-17D vaccine from which the structural (prM/E) genes have been replaced with those of the JEV SA14-14-2 vaccine strain confers full protection in mice against lethal YFV challenge. In contrast to the YFV-17D-mediated protection against YFV, this protection is not mediated by neutralizing antibodies but correlates with YFV-specific nonneutralizing antibodies and T cell responses against cell-associated YFV NS1 and other YFV nonstructural (NS) proteins. Our findings reveal the potential of YFV NS proteins to mediate protection and demonstrate that chimeric flavivirus vaccines, such as Imojev, could confer protection against two flaviviruses. This dual protection may have implications for the possible off-label use of JE-CVax in case of emergency and vaccine shortage during YFV outbreaks. In addition, populations in Asia that have been vaccinated with Imojev may already be protected against YFV should outbreaks ever occur on that continent, as several countries/regions in the Asia-Pacific are vulnerable to international spread of the YFV. IMPORTANCE Efficient and safe vaccines against yellow fever (e.g., YFV-17D) that provide long-lasting protection by rapidly inducing neutralizing antibody responses exist. However, the vaccine supply cannot cope with an increasing demand posed by urban outbreaks in recent years. Here we report that JE-CVax/Imojev, a YFV-17D-based chimeric Japanese encephalitis vaccine, also efficiently protects against YFV infection in mice. In case of shortage of the YFV vaccine during yellow fever outbreaks, (off-label) use of JE-CVax/Imojev may be considered. Moreover, wider use of JE-CVax/Imojev in Asia may lower the risk of the much-feared YFV spillover to the continent. More generally, chimeric vaccines that combine surface antigens and replication machineries of two distinct flaviviruses may be considered dual vaccines for the latter pathogen without induction of surface-specific antibodies. Following this rationale, novel flavivirus vaccines that do not hold a risk for antibody-dependent enhancement (ADE) of infection (inherent to current dengue vaccines and dengue vaccine candidates) could be designed. Full Article
cts Single-Dose, Intranasal Immunization with Recombinant Parainfluenza Virus 5 Expressing Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Spike Protein Protects Mice from Fatal MERS-CoV Infection By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) can cause severe and fatal acute respiratory disease in humans and remains endemic in the Middle East since first being identified in 2012. There are currently no approved vaccines or therapies available for MERS-CoV. In this study, we evaluated parainfluenza virus 5 (PIV5)-based vaccine expressing the MERS-CoV envelope spike protein (PIV5/MERS-S) in a human DPP4 knockin C57BL/6 congenic mouse model (hDPP4 KI). Following a single-dose intranasal immunization, PIV5-MERS-S induced neutralizing antibody and robust T cell responses in hDPP4 KI mice. A single intranasal administration of 104 PFU PIV5-MERS-S provided complete protection against a lethal challenge with mouse-adapted MERS-CoV (MERSMA6.1.2) and improved virus clearance in the lung. In comparison, single-dose intramuscular immunization with 106 PFU UV-inactivated MERSMA6.1.2 mixed with Imject alum provided protection to only 25% of immunized mice. Intriguingly, an influx of eosinophils was observed only in the lungs of mice immunized with inactivated MERS-CoV, suggestive of a hypersensitivity-type response. Overall, our study indicated that PIV5-MERS-S is a promising effective vaccine candidate against MERS-CoV infection. IMPORTANCE MERS-CoV causes lethal infection in humans, and there is no vaccine. Our work demonstrates that PIV5 is a promising vector for developing a MERS vaccine. Furthermore, success of PIV5-based MERS vaccine can be employed to develop a vaccine for emerging CoVs such as SARS-CoV-2, which causes COVID-19. Full Article
cts Phosphomimetic T335D Mutation of Hydroxypyruvate Reductase 1 Modifies Cofactor Specificity and Impacts Arabidopsis Growth in Air By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Photorespiration is an essential process in oxygenic photosynthetic organisms triggered by the oxygenase activity of Rubisco. In peroxisomes, photorespiratory HYDROXYPYRUVATE REDUCTASE1 (HPR1) catalyzes the conversion of hydroxypyruvate to glycerate together with the oxidation of a pyridine nucleotide cofactor. HPR1 regulation remains poorly understood; however, HPR1 phosphorylation at T335 has been reported. By comparing the kinetic properties of phosphomimetic (T335D), nonphosphorylatable (T335A), and wild-type recombinant Arabidopsis (Arabidopsis thaliana) HPR1, it was found that HPR1-T335D exhibits reduced NADH-dependent hydroxypyruvate reductase activity while showing improved NADPH-dependent activity. Complementation of the Arabidopsis hpr1-1 mutant by either wild-type HPR1 or HPR1-T335A fully complemented the photorespiratory growth phenotype of hpr1-1 in ambient air, whereas HPR1-T335D-containing hpr1-1 plants remained smaller and had lower photosynthetic CO2 assimilation rates. Metabolite analyses indicated that these phenotypes were associated with subtle perturbations in the photorespiratory cycle of HPR1-T335D-complemented hpr1-1 rosettes compared to all other HPR1-containing lines. Therefore, T335 phosphorylation may play a role in the regulation of HPR1 activity in planta, although it was not required for growth under ambient air controlled conditions. Furthermore, improved NADP-dependent HPR1 activities in peroxisomes could not compensate for the reduced NADH-dependent HPR1 activity. Full Article
cts Early and Often: The Need for Comprehensive Discussion of Treatment-Induced Cancer Late Effects By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Full Article
cts Parental Considerations Regarding Cure and Late Effects for Children With Cancer By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 BACKGROUND: More than 80% of children with cancer become long-term survivors, yet most survivors experience late effects of treatment. Little is known about how parents and physicians consider late-effects risks against a potential survival benefit when making treatment decisions. METHODS: We used a discrete choice experiment to assess the importance of late effects on treatment decision-making and acceptable trade-offs between late-effects risks and survival benefit. We surveyed 95 parents of children with cancer and 41 physicians at Dana-Farber/Boston Children’s Cancer and Blood Disorders Center to assess preferences for 5 late effects of treatment: neurocognitive impairment, infertility, cardiac toxicity, second malignancies, and impaired growth and development. RESULTS: Each late effect had a statistically significant association with treatment choice, as did survival benefit (P < .001). Avoidance of severe cognitive impairment was the most important treatment consideration to parents and physicians. Parents also valued cure and decreased risk of second malignancies; physician decision-making was driven by avoidance of second malignancies and infertility. Both parents and physicians accepted a high risk of infertility (parents, a 137% increased risk; physicians, an 80% increased risk) in exchange for a 10% greater chance of cure. CONCLUSIONS: Avoidance of severe neurocognitive impairment was the predominant driver of parent and physician treatment preferences, even over an increased chance of cure. This highlights the importance of exploring parental late-effects priorities when discussing treatment options. Full Article
cts Dominance Effects and Functional Enrichments Improve Prediction of Agronomic Traits in Hybrid Maize [Genomic Prediction] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Single-cross hybrids have been critical to the improvement of maize (Zea mays L.), but the characterization of their genetic architectures remains challenging. Previous studies of hybrid maize have shown the contribution of within-locus complementation effects (dominance) and their differential importance across functional classes of loci. However, they have generally considered panels of limited genetic diversity, and have shown little benefit from genomic prediction based on dominance or functional enrichments. This study investigates the relevance of dominance and functional classes of variants in genomic models for agronomic traits in diverse populations of hybrid maize. We based our analyses on a diverse panel of inbred lines crossed with two testers representative of the major heterotic groups in the U.S. (1106 hybrids), as well as a collection of 24 biparental populations crossed with a single tester (1640 hybrids). We investigated three agronomic traits: days to silking (DTS), plant height (PH), and grain yield (GY). Our results point to the presence of dominance for all traits, but also among-locus complementation (epistasis) for DTS and genotype-by-environment interactions for GY. Consistently, dominance improved genomic prediction for PH only. In addition, we assessed enrichment of genetic effects in classes defined by genic regions (gene annotation), structural features (recombination rate and chromatin openness), and evolutionary features (minor allele frequency and evolutionary constraint). We found support for enrichment in genic regions and subsequent improvement of genomic prediction for all traits. Our results suggest that dominance and gene annotations improve genomic prediction across diverse populations in hybrid maize. Full Article
cts Space is the Place: Effects of Continuous Spatial Structure on Analysis of Population Genetic Data [Population and Evolutionary Genetics] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Real geography is continuous, but standard models in population genetics are based on discrete, well-mixed populations. As a result, many methods of analyzing genetic data assume that samples are a random draw from a well-mixed population, but are applied to clustered samples from populations that are structured clinally over space. Here, we use simulations of populations living in continuous geography to study the impacts of dispersal and sampling strategy on population genetic summary statistics, demographic inference, and genome-wide association studies (GWAS). We find that most common summary statistics have distributions that differ substantially from those seen in well-mixed populations, especially when Wright’s neighborhood size is < 100 and sampling is spatially clustered. "Stepping-stone" models reproduce some of these effects, but discretizing the landscape introduces artifacts that in some cases are exacerbated at higher resolutions. The combination of low dispersal and clustered sampling causes demographic inference from the site frequency spectrum to infer more turbulent demographic histories, but averaged results across multiple simulations revealed surprisingly little systematic bias. We also show that the combination of spatially autocorrelated environments and limited dispersal causes GWAS to identify spurious signals of genetic association with purely environmentally determined phenotypes, and that this bias is only partially corrected by regressing out principal components of ancestry. Last, we discuss the relevance of our simulation results for inference from genetic variation in real organisms. Full Article
cts Fast Algorithms for Conducting Large-Scale GWAS of Age-at-Onset Traits Using Cox Mixed-Effects Models [Statistical Genetics and Genomics] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Age-at-onset is one of the critical traits in cohort studies of age-related diseases. Large-scale genome-wide association studies (GWAS) of age-at-onset traits can provide more insights into genetic effects on disease progression and transitions between stages. Moreover, proportional hazards (or Cox) regression models can achieve higher statistical power in a cohort study than a case-control trait using logistic regression. Although mixed-effects models are widely used in GWAS to correct for sample dependence, application of Cox mixed-effects models (CMEMs) to large-scale GWAS is so far hindered by intractable computational cost. In this work, we propose COXMEG, an efficient R package for conducting GWAS of age-at-onset traits using CMEMs. COXMEG introduces fast estimation algorithms for general sparse relatedness matrices including, but not limited to, block-diagonal pedigree-based matrices. COXMEG also introduces a fast and powerful score test for dense relatedness matrices, accounting for both population stratification and family structure. In addition, COXMEG generalizes existing algorithms to support positive semidefinite relatedness matrices, which are common in twin and family studies. Our simulation studies suggest that COXMEG, depending on the structure of the relatedness matrix, is orders of magnitude computationally more efficient than coxme and coxph with frailty for GWAS. We found that using sparse approximation of relatedness matrices yielded highly comparable results in controlling false-positive rate and retaining statistical power for an ethnically homogeneous family-based sample. By applying COXMEG to a study of Alzheimer’s disease (AD) with a Late-Onset Alzheimer’s Disease Family Study from the National Institute on Aging sample comprising 3456 non-Hispanic whites and 287 African Americans, we identified the APOE 4 variant with strong statistical power (P = 1e–101), far more significant than that reported in a previous study using a transformed variable and a marginal Cox model. Furthermore, we identified novel SNP rs36051450 (P = 2e–9) near GRAMD1B, the minor allele of which significantly reduced the hazards of AD in both genders. These results demonstrated that COXMEG greatly facilitates the application of CMEMs in GWAS of age-at-onset traits. Full Article
cts Surfactant Protein-A Protects against IL-13-Induced Inflammation in Asthma [MUCOSAL IMMUNOLOGY] By www.jimmunol.org Published On :: 2020-05-04T13:00:28-07:00 Key Points SP-A is a collectin and plays a key role in innate immunity in the lung. SP-A modulates inflammation in airway epithelial cells from patients with asthma. SP-A modulates IL-13–induced inflammation through downstream IL-6/STAT3 signaling. Full Article
cts Infant behavioral inhibition predicts personality and social outcomes three decades later [Anthropology] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Does infant temperament predict adult personality and life-course patterns? To date, there is scant evidence examining relations between child temperament and adult outcomes, and extant research has relied on limited methods for measuring temperament such as maternal report. This prospective longitudinal study followed a cohort of infants (n = 165)... Full Article
cts Bringing light to ER contacts and a new phase in organelle communication [Cell Biology] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Functioning cells depend on the outward-facing plasma membrane (PM) effectively contacting the endoplasmic reticulum (ER), which serves as a central hub for contacts with mitochondria and other intracellular organelles. The contact sites are critical to intracellular communication because they mediate intermembrane exchange of lipids, ions, and other small molecules that... Full Article
cts Forest protects Heliconius butterflies from climate extremes [INSIDE JEB] By jeb.biologists.org Published On :: 2020-04-16T05:35:47-07:00 Kathryn Knight Full Article
cts Experimental facilitation of heat loss affects work rate and innate immune function in a breeding passerine bird [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-16T05:19:55-07:00 Fredrik Andreasson, Arne Hegemann, Andreas Nord, and Jan-Ake Nilsson The capacity to get rid of excess heat produced during hard work is a possible constraint on parental effort during reproduction [heat dissipation limit (HDL) theory]. We released hard-working blue tits (Cyanistes caeruleus) from this constraint by experimentally removing ventral plumage. We then assessed whether this changed their reproductive effort (feeding rate and nestling size) and levels of self-maintenance (change in body mass and innate immune function). Feather-clipped females reduced the number of feeding visits and increased levels of constitutive innate immunity compared with unclipped females but did not fledge smaller nestlings. Thus, they increased self-maintenance without compromising current reproductive output. In contrast, feather clipping did not affect the number of feeding visits or innate immune function in males, despite increased heat loss rate. Our results show that analyses of physiological parameters, such as constitutive innate immune function, can be important when trying to understand sources of variation in investment in self-maintenance versus reproductive effort and that risk of overheating can influence innate immune function during reproduction. Full Article
cts The effects of elevated temperature and PCO2 on the energetics and haemolymph pH homeostasis of juveniles of the European lobster, Homarus gammarus [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-16T04:02:51-07:00 Daniel P. Small, Piero Calosi, Samuel P. S. Rastrick, Lucy M. Turner, Stephen Widdicombe, and John I. Spicer Regulation of extracellular acid–base balance, while maintaining energy metabolism, is recognised as an important aspect when defining an organism's sensitivity to environmental changes. This study investigated the haemolymph buffering capacity and energy metabolism (oxygen consumption, haemolymph [l-lactate] and [protein]) in early benthic juveniles (carapace length <40 mm) of the European lobster, Homarus gammarus, exposed to elevated temperature and PCO2. At 13°C, H. gammarus juveniles were able to fully compensate for acid–base disturbances caused by the exposure to elevated seawater PCO2 at levels associated with ocean acidification and carbon dioxide capture and storage (CCS) leakage scenarios, via haemolymph [HCO3–] regulation. However, metabolic rate remained constant and food consumption decreased under elevated PCO2, indicating reduced energy availability. Juveniles at 17°C showed no ability to actively compensate haemolymph pH, resulting in decreased haemolymph pH particularly under CCS conditions. Early benthic juvenile lobsters at 17°C were not able to increase energy intake to offset increased energy demand and therefore appear to be unable to respond to acid–base disturbances due to increased PCO2 at elevated temperature. Analysis of haemolymph metabolites suggests that, even under control conditions, juveniles were energetically limited. They exhibited high haemolymph [l-lactate], indicating recourse to anaerobic metabolism. Low haemolymph [protein] was linked to minimal non-bicarbonate buffering and reduced oxygen transport capacity. We discuss these results in the context of potential impacts of ongoing ocean change and CCS leakage scenarios on the development of juvenile H. gammarus and future lobster populations and stocks. Full Article
cts Absolute ethanol intake predicts ethanol preference in Drosophila [SHORT COMMUNICATION] By jeb.biologists.org Published On :: 2020-05-04T02:24:22-07:00 Scarlet J. Park and William W. JaFactors that mediate ethanol preference in Drosophila melanogaster are not well understood. A major confound has been the use of diverse methods to estimate ethanol consumption. We measured fly consumptive ethanol preference on base diets varying in nutrients, taste, and ethanol concentration. Both sexes showed ethanol preference that was abolished on high nutrient concentration diets. Additionally, manipulating total food intake without altering the nutritive value of the base diet or the ethanol concentration was sufficient to evoke or eliminate ethanol preference. Absolute ethanol intake and food volume consumed were stronger predictors of ethanol preference than caloric intake or the dietary caloric content. Our findings suggest that the effect of the base diet on ethanol preference is largely mediated by total consumption associated with the delivery medium, which ultimately determines the level of ethanol intake. We speculate that a physiologically relevant threshold for ethanol intake is essential for preferential ethanol consumption. Full Article
cts Role of Impaired Nutrient and Oxygen Deprivation Signaling and Deficient Autophagic Flux in Diabetic CKD Development: Implications for Understanding the Effects of Sodium-Glucose Cotransporter 2-Inhibitors By jasn.asnjournals.org Published On :: 2020-04-30T10:00:29-07:00 Growing evidence indicates that oxidative and endoplasmic reticular stress, which trigger changes in ion channels and inflammatory pathways that may undermine cellular homeostasis and survival, are critical determinants of injury in the diabetic kidney. Cells are normally able to mitigate these cellular stresses by maintaining high levels of autophagy, an intracellular lysosome-dependent degradative pathway that clears the cytoplasm of dysfunctional organelles. However, the capacity for autophagy in both podocytes and renal tubular cells is markedly impaired in type 2 diabetes, and this deficiency contributes importantly to the intensity of renal injury. The primary drivers of autophagy in states of nutrient and oxygen deprivation—sirtuin-1 (SIRT1), AMP-activated protein kinase (AMPK), and hypoxia-inducible factors (HIF-1α and HIF-2α)—can exert renoprotective effects by promoting autophagic flux and by exerting direct effects on sodium transport and inflammasome activation. Type 2 diabetes is characterized by marked suppression of SIRT1 and AMPK, leading to a diminution in autophagic flux in glomerular podocytes and renal tubules and markedly increasing their susceptibility to renal injury. Importantly, because insulin acts to depress autophagic flux, these derangements in nutrient deprivation signaling are not ameliorated by antihyperglycemic drugs that enhance insulin secretion or signaling. Metformin is an established AMPK agonist that can promote autophagy, but its effects on the course of CKD have been demonstrated only in the experimental setting. In contrast, the effects of sodium-glucose cotransporter–2 (SGLT2) inhibitors may be related primarily to enhanced SIRT1 and HIF-2α signaling; this can explain the effects of SGLT2 inhibitors to promote ketonemia and erythrocytosis and potentially underlies their actions to increase autophagy and mute inflammation in the diabetic kidney. These distinctions may contribute importantly to the consistent benefit of SGLT2 inhibitors to slow the deterioration in glomerular function and reduce the risk of ESKD in large-scale randomized clinical trials of patients with type 2 diabetes. Full Article
cts Risks of N95 Face Mask Use in Subjects With COPD By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:The N95 filtering facepiece respirator (FFR) is the most popular individual protective device to reduce exposure to particulate matter. However, concerns have been raised with regard to its use because it can increase respiratory resistance and dead space. Therefore, this study assessed the safety of N95 use in patients with COPD and air-flow limitation.METHODS:This prospective study was performed at a tertiary hospital and enrolled 97 subjects with COPD. The subjects were monitored for symptoms and physiologic variables during a 10-min rest period and 6-min walking test while wearing an N95.RESULTS:Of the 97 subjects, 7 with COPD did not wear the N95 for the entire test duration. This mask-failure group showed higher British modified Medical Research Council dyspnea scale scores and lower FEV1 percent of predicted values than did the successful mask use group. A modified Medical Research Council dyspnea scale score ≥ 3 (odds ratio 167, 95% CI 8.4 to >999.9; P = .008) or a FEV1 < 30% predicted (odds ratio 163, 95% CI 7.4 to >999.9; P = .001) was associated with a risk of failure to wear the N95. Breathing frequency, blood oxygen saturation, and exhaled carbon dioxide levels also showed significant differences before and after N95 use.CONCLUSIONS:This study demonstrated that subjects with COPD who had modified Medical Research Council dyspnea scale scores ≥ 3 or FEV1 < 30% predicted wear N95s only with care. Full Article
cts PEEP Titration to Minimize Driving Pressure in Subjects With ARDS: A Prospective Physiological Study By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:Observational studies report that lower driving pressure (ie, the difference between plateau pressure and PEEP) is associated with improved survival in patients with ARDS and may be a key mediator of lung-protective ventilation strategies. The primary objective of this study was to characterize reductions in driving pressure that could be achieved through changes in PEEP.METHODS:In this prospective physiological pilot study, 10 subjects with ARDS were placed on PEEP according to the ARDS Network Lower PEEP/FIO2 Table. PEEP was adjusted in small increments and decrements above and below this initial PEEP, and driving pressure was measured at each PEEP level. Subsequently, PEEP was set at the level resulting in the lowest driving pressure, and driving pressure was measured after 1, 5, 15, and 30 min to assess stability over time at constant PEEP.RESULTS:All subjects had ARDS with a median (interquartile range [IQR]) PaO2/FIO2 of 116 (98–132) at enrollment. Median (IQR) driving pressure at baseline was 14 (13–17) cm H2O. After PEEP titration, median driving pressure decreased to 13 (12–14) cm H2O. The largest reduction in driving pressure was 4 cm H2O. Two subjects had no change in driving pressure at multiple PEEP levels. To achieve the lowest driving pressure, final PEEP was increased in 6 subjects and decreased in 4 subjects from the baseline PEEP prescribed by the ARDS Network Lower PEEP/FIO2 Table. Driving pressure reached equilibrium within 1–5 min and remained stable for 30 min following PEEP titration.CONCLUSIONS:PEEP titration had a variable effect in changing driving pressure across this small sample of ARDS subjects. In some subjects, PEEP was decreased from values given in the ARDS Network Lower PEEP/FIO2 Table to minimize driving pressure. Changes in driving pressure stabilized within a few minutes of PEEP titration. Full Article
cts Interaction of the Brain-Selective Sulfotransferase SULT4A1 with Other Cytosolic Sulfotransferases: Effects on Protein Expression and Function [Articles] By dmd.aspetjournals.org Published On :: 2020-04-09T08:02:00-07:00 Sulfotransferase (SULT) 4A1 is a brain-selective sulfotransferase-like protein that has recently been shown to be essential for normal neuronal development in mice. In the present study, SULT4A1 was found to colocalize with SULT1A1/3 in human brain neurons. Using immunoprecipitation, SULT4A1 was shown to interact with both SULT1A1 and SULT1A3 when expressed in human cells. Mutation of the conserved dimerization motif located in the C terminus of the sulfotransferases prevented this interaction. Both ectopically expressed and endogenous SULT4A1 decreased SULT1A1/3 protein levels in neuronal cells, and this was also prevented by mutation of the dimerization motif. During differentiation of neuronal SH-SY5Y cells, there was a loss in SULT1A1/3 protein but an increase in SULT4A1 protein. This resulted in an increase in the toxicity of dopamine, a substrate for SULT1A3. Inhibition of SULT4A1 using small interference RNA abrogated the loss in SULT1A1/3 and reversed dopamine toxicity. These results show a reciprocal relationship between SULT4A1 and the other sulfotransferases, suggesting that it may act as a chaperone to control the expression of SULT1A1/3 in neuronal cells. SIGNIFICANCE STATEMENT The catalytically inactive sulfotransferase (SULT) 4A1 may regulate the function of other SULTs by interacting with them via a conserved dimerization motif. In neuron-like cells, SULT4A1 is able to modulate dopamine toxicity by interacting with SULT1A3, potentially decreasing the metabolism of dopamine. Full Article
cts Effects of deficiency in the RLBP1-encoded visual cycle protein CRALBP on visual dysfunction in humans and mice [Cell Biology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Mutations in retinaldehyde-binding protein 1 (RLBP1), encoding the visual cycle protein cellular retinaldehyde-binding protein (CRALBP), cause an autosomal recessive form of retinal degeneration. By binding to 11-cis-retinoid, CRALBP augments the isomerase activity of retinoid isomerohydrolase RPE65 (RPE65) and facilitates 11-cis-retinol oxidation to 11-cis-retinal. CRALBP also maintains the 11-cis configuration and protects against unwanted retinaldehyde activity. Studying a sibling pair that is compound heterozygous for mutations in RLBP1/CRALBP, here we expand the phenotype of affected individuals, elucidate a previously unreported phenotype in RLBP1/CRALBP carriers, and demonstrate consistencies between the affected individuals and Rlbp1/Cralbp−/− mice. In the RLBP1/CRALBP-affected individuals, nonrecordable rod-specific electroretinogram traces were recovered after prolonged dark adaptation. In ultrawide-field fundus images, we observed radially arranged puncta typical of RLBP1/CRALBP-associated disease. Spectral domain-optical coherence tomography (SD-OCT) revealed hyperreflective aberrations within photoreceptor-associated bands. In short-wavelength fundus autofluorescence (SW-AF) images, speckled hyperautofluorescence and mottling indicated macular involvement. In both the affected individuals and their asymptomatic carrier parents, reduced SW-AF intensities, measured as quantitative fundus autofluorescence (qAF), indicated chronic impairment in 11-cis-retinal availability and provided information on mutation severity. Hypertransmission of the SD-OCT signal into the choroid together with decreased near-infrared autofluorescence (NIR-AF) provided evidence for retinal pigment epithelial cell (RPE) involvement. In Rlbp1/Cralbp−/− mice, reduced 11-cis-retinal levels, qAF and NIR-AF intensities, and photoreceptor loss were consistent with the clinical presentation of the affected siblings. These findings indicate that RLBP1 mutations are associated with progressive disease involving RPE atrophy and photoreceptor cell degeneration. In asymptomatic carriers, qAF disclosed previously undetected visual cycle deficiency. Full Article
cts Perturbation of phosphoglycerate kinase 1 (PGK1) only marginally affects glycolysis in cancer cells [Metabolism] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Phosphoglycerate kinase 1 (PGK1) plays important roles in glycolysis, yet its forward reaction kinetics are unknown, and its role especially in regulating cancer cell glycolysis is unclear. Here, we developed an enzyme assay to measure the kinetic parameters of the PGK1-catalyzed forward reaction. The Km values for 1,3-bisphosphoglyceric acid (1,3-BPG, the forward reaction substrate) were 4.36 μm (yeast PGK1) and 6.86 μm (human PKG1). The Km values for 3-phosphoglycerate (3-PG, the reverse reaction substrate and a serine precursor) were 146 μm (yeast PGK1) and 186 μm (human PGK1). The Vmax of the forward reaction was about 3.5- and 5.8-fold higher than that of the reverse reaction for the human and yeast enzymes, respectively. Consistently, the intracellular steady-state concentrations of 3-PG were between 180 and 550 μm in cancer cells, providing a basis for glycolysis to shuttle 3-PG to the serine synthesis pathway. Using siRNA-mediated PGK1-specific knockdown in five cancer cell lines derived from different tissues, along with titration of PGK1 in a cell-free glycolysis system, we found that the perturbation of PGK1 had no effect or only marginal effects on the glucose consumption and lactate generation. The PGK1 knockdown increased the concentrations of fructose 1,6-bisphosphate, dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, and 1,3-BPG in nearly equal proportions, controlled by the kinetic and thermodynamic states of glycolysis. We conclude that perturbation of PGK1 in cancer cells insignificantly affects the conversion of glucose to lactate in glycolysis. Full Article
cts A Single Intramuscular Dose of a Plant-Made Virus-Like Particle Vaccine Elicits a Balanced Humoral and Cellular Response and Protects Young and Aged Mice from Influenza H1N1 Virus Challenge despite a Modest/Absent Humoral Response [Vaccines] By cvi.asm.org Published On :: 2017-12-05T08:00:30-08:00 Virus-like-particle (VLP) influenza vaccines can be given intramuscularly (i.m.) or intranasally (i.n.) and may have advantages over split-virion formulations in the elderly. We tested a plant-made VLP vaccine candidate bearing the viral hemagglutinin (HA) delivered either i.m. or i.n. in young and aged mice. Young adult (5- to 8-week-old) and aged (16- to 20-month-old) female BALB/c mice received a single 3-μg dose based on the HA (A/California/07/2009 H1N1) content of a plant-made H1-VLP (i.m. or i.n.) split-virion vaccine (i.m.) or were left naive. After vaccination, humoral and splenocyte responses were assessed, and some mice were challenged. Both VLP and split vaccines given i.m. protected 100% of the young animals, but the VLP group lost the least weight and had stronger humoral and cellular responses. Compared to split-vaccine recipients, aged animals vaccinated i.m. with VLP were more likely to survive challenge (80% versus 60%). The lung viral load postchallenge was lowest in the VLP i.m. groups. Mice vaccinated with VLP i.n. had little detectable immune response, but survival was significantly increased. In both age groups, i.m. administration of the H1-VLP vaccine elicited more balanced humoral and cellular responses and provided better protection from homologous challenge than the split-virion vaccine. Full Article
cts Coseismic and monsoon-triggered landslide impacts on remote trekking infrastructure, Langtang Valley, Nepal By qjegh.lyellcollection.org Published On :: 2020-05-01T00:46:18-07:00 In 2015, the Mw 7.8 Gorkha earthquake struck Nepal, triggering thousands of landslides across the central and eastern Himalayas. These landslides had many adverse effects, including causing widespread damage to low-grade transport routes (e.g. tracks, footpaths) in rural regions that depend on tourism for survival. Langtang Valley is a glacial–periglacial landscape located 60 km north of Kathmandu. It is one of the most popular trekking regions in Nepal and has been severely affected by Gorkha earthquake-triggered and monsoon-triggered landsliding. Here, qualitative and quantitative observations from fieldwork and remote sensing are used to describe the materials and geomorphology of the landslides across Langtang Valley, and to quantify the extent to which coseismic and monsoon-triggered landslides have affected Langtang's trekking infrastructure. The dominant bedrock materials involved within Langtang landslides are found to be a range of gneisses and intruded leucogranites. In total, 64 landslides are found to have intersected trekking paths across Langtang, with coseismic and monsoon-triggered landslides having an impact on c. 3 km and 0.8 km of path respectively. It is observed that the practice of reconstructing paths through unstable landslide deposits is leaving the trekking infrastructure across Langtang increasingly vulnerable to future failure. Full Article
cts The mammalian cytosolic thioredoxin reductase pathway acts via a membrane protein to reduce ER-localised proteins [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-30T01:09:45-07:00 Xiaofei Cao, Sergio Lilla, Zhenbo Cao, Marie Anne Pringle, Ojore B. V. Oka, Philip J. Robinson, Tomasz Szmaja, Marcel van Lith, Sara Zanivan, and Neil J. Bulleid Folding of proteins entering the mammalian secretory pathway requires the insertion of the correct disulfides. Disulfide formation involves both an oxidative pathway for their insertion and a reductive pathway to remove incorrectly formed disulfides. Reduction of these disulfides is crucial for correct folding and degradation of misfolded proteins. Previously, we showed that the reductive pathway is driven by NADPH generated in the cytosol. Here, by reconstituting the pathway using purified proteins and ER microsomal membranes, we demonstrate that the thioredoxin reductase system provides the minimal cytosolic components required for reducing proteins within the ER lumen. In particular, saturation of the pathway and its protease sensitivity demonstrates the requirement for a membrane protein to shuttle electrons from the cytosol to the ER. These results provide compelling evidence for the crucial role of the cytosol in regulating ER redox homeostasis, ensuring correct protein folding and facilitating the degradation of misfolded ER proteins. Full Article
cts STIM1 interacts with termini of Orai channels in a sequential manner [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-29T03:28:24-07:00 Liling Niu, Fuyun Wu, Kaili Li, Jing Li, Shenyuan L. Zhang, Junjie Hu, and Qian Wang Store-operated Ca2+ entry (SOCE) is critical for numerous Ca2+-related processes. The activation of SOCE requires engagement between stromal interaction molecule 1 (STIM1) molecules on the endoplasmic reticulum and Ca2+ release-activated channel (CRAC) Orai on the plasma membrane. However, the molecular details of their interactions remain elusive. Here, we analyzed STIM1-Orai interactions using synthetic peptides derived from the N- and C-termini of Orai channels (Orai-NT and Orai-CT, respectively) and purified fragments of STIM1. The binding of STIM1 to Orai-NT is hydrophilic based, whereas binding to the Orai-CT is mostly hydrophobic. STIM1 decreases its affinity for Orai-CT when Orai-NT is present, supporting a stepwise interaction. Orai3-CT exhibits stronger binding to STIM1 than Orai1-CT, largely due to the shortness of one helical turn. The role of newly identified residues was confirmed by co-immunoprecipitation and Ca2+ imaging using full-length molecules. Our results provide important insight into CRAC gating by STIM1. Full Article
cts PIP3 depletion rescues myoblast fusion defects in human rhabdomyosarcoma cells [SHORT REPORT] By jcs.biologists.org Published On :: 2020-04-28T08:24:46-07:00 Yen-Ling Lian, Kuan-Wei Chen, Yu-Ting Chou, Ting-Ling Ke, Bi-Chang Chen, Yu-Chun Lin, and Linyi Chen Myoblast fusion is required for myotube formation during myogenesis, and defects in myoblast differentiation and fusion have been implicated in a number of diseases, including human rhabdomyosarcoma. Although transcriptional regulation of the myogenic program has been studied extensively, the mechanisms controlling myoblast fusion remain largely unknown. This study identified and characterized the dynamics of a distinct class of blebs, termed bubbling blebs, which are smaller than those that participate in migration. The formation of these bubbling blebs occurred during differentiation and decreased alongside a decline in phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) at the plasma membrane before myoblast fusion. In a human rhabdomyosarcoma-derived (RD) cell line that exhibits strong blebbing dynamics and myoblast fusion defects, PIP3 was constitutively abundant on the membrane during myogenesis. Targeting phosphatase and tensin homolog (PTEN) to the plasma membrane reduced PIP3 levels, inhibited bubbling blebs and rescued myoblast fusion defects in RD cells. These findings highlight the differential distribution and crucial role of PIP3 during myoblast fusion and reveal a novel mechanism underlying myogenesis defects in human rhabdomyosarcoma. Full Article
cts Encoding, Consolidation, and Renormalization in Depression: Synaptic Homeostasis, Plasticity, and Sleep Integrate Rapid Antidepressant Effects [Review Articles] By pharmrev.aspetjournals.org Published On :: 2020-03-05T08:17:23-08:00 Recent studies have strived to find an association between rapid antidepressant effects and a specific subset of pharmacological targets and molecular pathways. Here, we propose a broader hypothesis of encoding, consolidation, and renormalization in depression (ENCORE-D), which suggests that, fundamentally, rapid and sustained antidepressant effects rely on intrinsic homeostatic mechanisms evoked as a response to the acute pharmacological or physiologic effects triggered by the treatment. We review evidence that supports the notion that various treatments with a rapid onset of action, such as ketamine, electroconvulsive therapy, and sleep deprivation, share the ability to acutely excite cortical networks, which increases synaptic potentiation, alters patterns of functional connectivity, and ameliorates depressive symptoms. We proceed to examine how the initial effects are short-lived and, as such, require both consolidation during wake and maintenance throughout sleep to remain sustained. Here, we incorporate elements from the synaptic homeostasis hypothesis and theorize that the fundamental mechanisms of synaptic plasticity and sleep, particularly the homeostatic emergence of slow-wave electroencephalogram activity and the renormalization of synaptic strength, are at the center of sustained antidepressant effects. We conclude by discussing the various implications of the ENCORE-D hypothesis and offer several considerations for future experimental and clinical research. Significance Statement Proposed molecular perspectives of rapid antidepressant effects fail to appreciate the temporal distribution of the effects of ketamine on cortical excitation and plasticity as well as the prolonged influence on depressive symptoms. The encoding, consolidation, and renormalization in depression hypothesis proposes that the lasting clinical effects can be best explained by adaptive functional and structural alterations in neural circuitries set in motion in response to the acute pharmacological effects of ketamine (i.e., changes evoked during the engagement of receptor targets such as N-methyl-D-aspartate receptors) or other putative rapid-acting antidepressants. The present hypothesis opens a completely new avenue for conceptualizing and targeting brain mechanisms that are important for antidepressant effects wherein sleep and synaptic homeostasis are at the center stage. Full Article
cts Early 18F-FDG PET/CT Response Predicts Survival in Relapsed or Refractory Hodgkin Lymphoma Treated with Nivolumab By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 Monoclonal antibodies (mAbs) against programmed cell death 1 (PD-1), such as nivolumab and pembrolizumab, are associated with high response rates in patients with relapsed or refractory classic Hodgkin lymphoma (HL). To date, no prognostic factor for overall survival (OS) has been established with these agents in HL. We examined whether the first early response assessment evaluated using 18F-FDG PET/CT may be associated with OS in this setting. Methods: This retrospective study included 45 patients from 34 institutions. In a masked, centralized review, 3 independent radiologists classified PET/CT scans obtained at a median of 2.0 mo (interquartile range, 1.7–3.7 mo) after nivolumab initiation using existing criteria (i.e., 2014 Lugano classification and 2016 LYRIC). Patients were classified according to 4 possible response categories: complete metabolic response (CMR), partial metabolic response (PMR), no metabolic response (NMR), or progressive metabolic disease (PMD). Because the OS of patients with NMR and PMR was similar, they were grouped together. OS was estimated using the Kaplan–Meier method and compared between groups using log-rank testing. Results: Eleven patients (24%) died after a median follow-up of 21.2 mo. The classification was identical between Lugano and LYRIC because all 16 progression events classified as indeterminate response per LYRIC were confirmed on subsequent evaluations. Both Lugano and LYRIC classified patients as CMR in 13 cases (29%), PMD in 16 (36%), NMR in 4 (9%), and PMR in 12 (27%). The 2-y OS probability was significantly different in patients with PMD (0.53; 95% confidence interval [95%CI], 0.32–0.87), NMR or PMR (0.80; 95%CI, 0.63–1.00), and CMR (1.00; 95%CI, 1.00–1.00) in the overall population (P = 0.02, 45 patients), as well as according to a landmark analysis at 3 mo (P = 0.05, 32 patients). Conclusion: In relapsed or refractory HL patients treated with anti-PD-1 mAbs, the first early PET/CT assessment using either Lugano or LYRIC predicted OS and allowed early risk stratification, suggesting that PET/CT might be used to develop risk-adapted strategies. Full Article
cts Drosophila estrogen-related receptor directs a transcriptional switch that supports adult glycolysis and lipogenesis [Research Papers] By genesdev.cshlp.org Published On :: 2020-05-01T06:30:22-07:00 Metabolism and development must be closely coupled to meet the changing physiological needs of each stage in the life cycle. The molecular mechanisms that link these pathways, however, remain poorly understood. Here we show that the Drosophila estrogen-related receptor (dERR) directs a transcriptional switch in mid-pupae that promotes glucose oxidation and lipogenesis in young adults. dERR mutant adults are viable but display reduced locomotor activity, susceptibility to starvation, elevated glucose, and an almost complete lack of stored triglycerides. Molecular profiling by RNA-seq, ChIP-seq, and metabolomics revealed that glycolytic and pentose phosphate pathway genes are induced by dERR, and their reduced expression in mutants is accompanied by elevated glycolytic intermediates, reduced TCA cycle intermediates, and reduced levels of long chain fatty acids. Unexpectedly, we found that the central pathways of energy metabolism, including glycolysis, the tricarboxylic acid cycle, and electron transport chain, are coordinately induced at the transcriptional level in mid-pupae and maintained into adulthood, and this response is partially dependent on dERR, leading to the metabolic defects observed in mutants. Our data support the model that dERR contributes to a transcriptional switch during pupal development that establishes the metabolic state of the adult fly. Full Article
cts Are You Still a Postdoc? How My Scientific Identity Intersects with My Immigrant Status By msphere.asm.org Published On :: 2020-05-06T07:29:31-07:00 ABSTRACT Academics in non-tenure-track positions encounter a unique set of challenges on the road toward tenure. Institutionalized policies and lack of mentors are additional burdens for foreign scientists, resulting in representation differences. Becoming a scientist has been a personal and moving journey in which my multiple selves intersect and clash every now and again. My identity as a scientist is a life project and has intersected with my other identities: a young Latina immigrant in Western Europe. This crossroad has molded, and at times, challenged my participation in science. Full Article