nc Heat dissipation capacity influences reproductive performance in an aerial insectivore [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-22T03:44:39-07:00 Simon Tapper, Joseph J. Nocera, and Gary BurnessClimatic warming is predicted to increase the frequency of extreme weather events, which may reduce an individual's capacity for sustained activity due to thermal limits. We tested whether the risk of overheating may limit parental provisioning of an aerial insectivorous bird in population decline. For many seasonally breeding birds, parents are thought to operate close to an energetic ceiling during the 2-3 week chick-rearing period. The factors determining the ceiling remain unknown, although it may be set by an individual's capacity to dissipate body heat (the heat dissipation limitation hypothesis). Over two breeding seasons we experimentally trimmed the ventral feathers of female tree swallows (Tachycineta bicolor, Vieillot, 1808) to provide a thermal window. We then monitored maternal and paternal provisioning rates, nestling growth rates, and fledging success. We found the effect of our experimental treatment was context-dependent. Females with an enhanced capacity to dissipate heat fed their nestlings at higher rates than controls when conditions were hot, but the reverse was true under cool conditions. Control females and their mates both reduced foraging under hot conditions. In contrast, male partners of trimmed females maintained a constant feeding rate across temperatures, suggesting attempts to match the feeding rate of their partners. On average, nestlings of trimmed females were heavier than controls, but did not have a higher probability of fledging. We suggest that removal of a thermal constraint allowed females to increase provisioning rates, but additionally provided nestlings with a thermal advantage via increased heat transfer during maternal brooding. Our data provide support for the heat dissipation limitation hypothesis and suggest that depending on temperature, heat dissipation capacity can influence reproductive success in aerial insectivores. Full Article
nc A rapid intrinsic heart rate resetting response with thermal acclimation in rainbow trout, Oncorhynchus mykiss [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-27T23:57:20-07:00 Rachel L. Sutcliffe, Shaorong Li, Matthew J. H. Gilbert, Patricia M. Schulte, Kristi M. Miller, and Anthony P. FarrellWe examined cardiac pacemaker rate resetting in rainbow trout following a reciprocal temperature transfer. In the original experiment, performed in winter, 4°C-acclimated fish transferred to 12°C reset intrinsic heart rate after just 1 h (from 56.8±1.2 to 50.8±1.5 bpm); 12°C-acclimated fish transferred to 4°C reset intrinsic heart rate after 8 h (from 33.4±0.7 to 37.7±1.2 bpm). However, in a replicate experiment, performed in the summer using a different brood year, intrinsic heart rate was not reset, even after 10 weeks at a new temperature. Using this serendipitous opportunity, we compared mRNA expression changes of a suite of proteins in sinoatrial node (SAN), atrial and ventricular tissues after both 1 h and longer than 3 weeks for both experimental acclimation groups to identify those changes only associated with pacemaker rate resetting. Of the changes in mRNA expression occurring after more than 3 weeks of warm acclimation and associated with pacemaker rate resetting, we observed downregulation of NKA α1c in the atrium and ventricle, and upregulation of HCN1 in the ventricle. However, in the SAN there were no mRNA expression changes unique to the fish with pacemaker rate resetting after either 1 h or 3 weeks of warm acclimation. Thus, despite identifying changes in mRNA expression of contractile cardiac tissues, there was absence of changes in mRNA expression directly involved with the initial, rapid pacemaker rate resetting with warm acclimation. Importantly, pacemaker rate resetting with thermal acclimation does not always occur in rainbow trout. Full Article
nc Mechanisms and consequences of flight polyphenisms in an outbreaking bark beetle species [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-27T01:37:02-07:00 Kelsey L. Jones, Rahmatollah Rajabzadeh, Guncha Ishangulyyeva, Nadir Erbilgin, and Maya L. EvendenFlight polyphenisms naturally occur as discrete or continuous traits in insects. Discrete flight polyphenisms include winged and wingless morphs, whereas continuous flight polyphenisms can take the form of short- or long-distance fliers. The mountain pine beetle (Dendroctonus ponderosae) exhibits polyphenic variation in flight distance but the consequences of this flight variation on life history strategies of beetles is unknown. This study assessed the effect of flight on two particular aspects of beetle biology: (1) an energetic trade-off between flight distance and host colonisation capacity; and (2) the relationship between flight distance and pheromone production. A 23-h flight treatment was applied to a subset of beetles using computer. After flight treatment, both flown and unflown (control) beetles were given the opportunity to colonise bolts of host trees, and beetles that entered hosts were aerated to collect pheromone. A trade-off occurred between initiation of host colonisation and percent body weight lost during flight, which indicates energy-use during flight affects host acceptance in female mountain pine beetles. Furthermore, production of the aggregation pheromone trans-verbenol by female beetles was influenced by both percent weight lost during flight and flight distance. Male production of exo-brevicomin was affected by beetle condition following flight but not by the energy used during flight. These novel results give new insight into the polyphenic flight behaviour of mountain pine beetles. Flight variation is adaptive by acting to maintain population levels through safe and risky host colonisation strategies. These findings suggest mechanisms that facilitate the extremities of the continuous flight polyphenism spectrum. These opposing mechanisms appear to maintain the high variation in flight exhibited by this species. Full Article
nc The effect of ambient oxygen on the thermal performance of a cockroach, Nauphoeta cinerea [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-04T02:24:22-07:00 Emily J. Lombardi, Candice L. Bywater, and Craig R. WhiteThe Oxygen and Capacity-Limited Thermal Tolerance (OCLTT) hypothesis proposes that the thermal tolerance of an animal is shaped by its capacity to deliver oxygen in relation to oxygen demand. Studies testing this hypothesis have largely focused on measuring short-term performance responses in animals under acute exposure to critical thermal maximums. The OCLTT hypothesis, however, emphasises the importance of sustained animal performance over acute tolerance. The present study tested the effect of chronic hypoxia and hyperoxia during development on medium to long-term performance indicators at temperatures spanning the optimal temperature for growth in the speckled cockroach, Nauphoeta cinerea. In contrast to the predictions of the OCLTT hypothesis, development under hypoxia did not significantly reduce growth rate or running performance, and development under hyperoxia did not significantly increase growth rate or running performance. The effect of developmental temperature and oxygen on tracheal morphology and metabolic rate were also not consistent with OCLTT predictions, suggesting that oxygen delivery capacity is not the primary driver shaping thermal tolerance in this species. Collectively, these findings suggest that the OCLTT hypothesis does not explain moderate-to-long-term thermal performance in Nauphoeta cinerea, which raises further questions about the generality of the hypothesis. Full Article
nc Floral vibrations by buzz-pollinating bees achieve higher frequency, velocity and acceleration than flight and defence vibrations [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-04T02:24:22-07:00 David J. Pritchard and Mario Vallejo-MarinVibrations play an important role in insect behaviour. In bees, vibrations are used in a variety of contexts including communication, as a warning signal to deter predators and during pollen foraging. However, little is known about how the biomechanical properties of bee vibrations vary across multiple behaviours within a species. In this study, we compared the properties of vibrations produced by Bombus terrestris audax (Hymenoptera: Apidae) workers in three contexts: during flight, during defensive buzzing, and in floral vibrations produced during pollen foraging on two buzz-pollinated plants (Solanum, Solanaceae). Using laser vibrometry, we were able to obtain contactless measures of both the frequency and amplitude of the thoracic vibrations of bees across the three behaviours. Despite all three types of vibrations being produced by the same power flight muscles, we found clear differences in the mechanical properties of the vibrations produced in different contexts. Both floral and defensive buzzes had higher frequency and amplitude velocity, acceleration, and displacement than the vibrations produced during flight. Floral vibrations had the highest frequency, amplitude velocity and acceleration of all the behaviours studied. Vibration amplitude, and in particular acceleration, of floral vibrations has been suggested as the key property for removing pollen from buzz-pollinated anthers. By increasing frequency and amplitude velocity and acceleration of their vibrations during vibratory pollen collection, foraging bees may be able to maximise pollen removal from flowers, although their foraging decisions are likely to be influenced by the presumably high cost of producing floral vibrations. Full Article
nc Impact of temperature on bite force and bite endurance in the Leopard Iguana (Diplolaemus leopardinus) in the Andes Mountains [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-04T02:24:22-07:00 Nadia Vicenzi, Alejandro Laspiur, Paola L. Sassi, Ruben Massarelli, John Krenz, and Nora R. IbargüengoytiaIn ectotherms, temperature exerts a strong influence on the performance of physiological and ecological traits. One approach to understand the impact of rising temperatures on animals and their ability to cope with climate change is to quantify variation in thermal-sensitive traits. Here, we examined the thermal biology, the temperature dependence and the thermal plasticity of bite force (endurance and magnitude) in Diplolaemus leopardinus, an aggressive and territorial lizard, endemic to Mendoza province, Argentina. Our results indicated that this lizard behaves like a moderate thermoregulator which uses the rocks of its environment as the main heat source. Bite endurance was not influenced by head morphometry and body temperature, whereas bite force was influenced by head length and jaw length, and exhibited thermal dependence. Before thermal acclimation treatments, the maximum bite force for D. leopardinus occured at the lowest body temperature and fell sharply with increasing body temperature. After acclimation treatments, lizards acclimated at higher temperatures exhibited greater bite force. Bite force showed phenotypic plasticity, which reveals that leopard iguanas are able to maintain (and even improve) their bite force under a rising-temperature scenario. Full Article
nc Membrane peroxidation index and maximum lifespan are negatively correlated in fish of genus Nothobranchius [SHORT COMMUNICATION] By jeb.biologists.org Published On :: 2020-05-04T02:24:22-07:00 Jorge de Costa, Gustavo Barja, and Pedro F. Almaida-PaganLipid composition of cell membranes is linked to metabolic rate and lifespan in mammals and birds but very little information is available for fishes. In this study, three fish species of the short-lived annual genus Nothobranchius with different maximum lifespan potentials (MLSP) and the longer-lived outgroup species Aphyosemion australe were studied to test whether they conform to the predictions of the longevity-homeoviscous adaptation (LHA) theory of aging. Lipid analyses were performed in whole fish samples and peroxidation indexes (PIn) for every PL class and for the whole membrane, were calculated. Total PL content was significantly lower in A. australe and N. korthausae, the two species with the highest MLSP, and a negative correlation between membrane total PIn and fish MLSP was found, this meaning that the longer-lived fish species have more saturated membranes and therefore, a lower susceptibility to oxidative damage, as the LHA theory posits. Full Article
nc Absolute ethanol intake predicts ethanol preference in Drosophila [SHORT COMMUNICATION] By jeb.biologists.org Published On :: 2020-05-04T02:24:22-07:00 Scarlet J. Park and William W. JaFactors that mediate ethanol preference in Drosophila melanogaster are not well understood. A major confound has been the use of diverse methods to estimate ethanol consumption. We measured fly consumptive ethanol preference on base diets varying in nutrients, taste, and ethanol concentration. Both sexes showed ethanol preference that was abolished on high nutrient concentration diets. Additionally, manipulating total food intake without altering the nutritive value of the base diet or the ethanol concentration was sufficient to evoke or eliminate ethanol preference. Absolute ethanol intake and food volume consumed were stronger predictors of ethanol preference than caloric intake or the dietary caloric content. Our findings suggest that the effect of the base diet on ethanol preference is largely mediated by total consumption associated with the delivery medium, which ultimately determines the level of ethanol intake. We speculate that a physiologically relevant threshold for ethanol intake is essential for preferential ethanol consumption. Full Article
nc Whale sharks increase swimming effort while filter feeding, but appear to maintain high foraging efficiencies [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-04T02:24:22-07:00 David E. Cade, J. Jacob Levenson, Robert Cooper, Rafael de la Parra, D. Harry Webb, and Alistair D. M. DoveWhale sharks (Rhincodon typus Smith 1828) – the largest extant fish species – reside in tropical environments, making them an exception to the general rule that animal size increases with latitude. How this largest fish thrives in tropical environments that promote high metabolism but support less robust zooplankton communities has not been sufficiently explained. We used open-source inertial measurement units (IMU) to log 397 hours of whale shark behavior in Yucatan, Mexico, at a site of both active feeding and intense wildlife tourism. Here we show that the strategies employed by whale sharks to compensate for the increased drag of an open mouth are similar to ram-feeders five orders of magnitude smaller and one order of magnitude larger. Presumed feeding constituted 20% of the total time budget of four sharks, with individual feeding bouts lasting up to 11 consecutive hrs. Compared to normal, sub-surface swimming, three sharks increased their stroke rate and amplitude while surface feeding, while one shark that fed at depth did not demonstrate a greatly increased energetic cost. Additionally, based on time-depth budgets, we estimate that aerial surveys of shark populations should consider including a correction factor of 3 to account for the proportion of daylight hours that sharks are not visible at the surface. With foraging bouts generally lasting several hours, interruptions to foraging during critical feeding periods may represent substantial energetic costs to these endangered species, and this study presents baseline data from which management decisions affecting tourist interactions with whale sharks may be made. Full Article
nc Fish embryo vulnerability to combined acidification and warming coincides with low capacity for homeostatic regulation [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-05T05:22:41-07:00 Flemming Dahlke, Magnus Lucassen, Ulf Bickmeyer, Sylke Wohlrab, Velmurugu Puvanendran, Atle Mortensen, Melissa Chierici, Hans-Otto Pörtner, and Daniela StorchThe vulnerability of fish embryos and larvae to environmental factors is often attributed to a lack of adult-like organ systems (gills) and thus insufficient homeostatic capacity. However, experimental data supporting this hypothesis are scarce. Here, by using Atlantic cod (Gadus morhua) as a model, the relationship between embryo vulnerability (to projected ocean acidification and warming) and homeostatic capacity was explored through parallel analyses of stage-specific mortality and in vitro activity and expression of major ion pumps (ATP-Synthase, Na+/K+-ATPase, H+-ATPase) and co-transporters (NBC1, NKCC1). Immunolocalization of these transporters was used to study ionocyte morphology in newly-hatched larvae. Treatment-related embryo mortality until hatch (+20% due to acidification and warming) occurred primarily during an early period (gastrulation) characterized by extremely low ion transport capacities. Thereafter, embryo mortality decreased in parallel with an exponential increase in activity and expression of all investigated ion transporters. Significant changes in transporter activity and expression in response to acidification (+15% activity) and warming (-30% expression) indicate some potential for short-term acclimatization, although likely associated with energetic trade-offs. Interestingly, whole-larvae enzyme capacities (supported by abundant epidermal ionocytes) reached levels similar to those previously measured in gill tissue of adult cod, suggesting that early-life stages without functional gills are better equipped in terms of ion homeostasis than previously thought. This study implies that the gastrulation period represents a critical transition from inherited (maternal) defenses to active homeostatic regulation, which facilitates enhanced resilience of later stages to environmental factors. Full Article
nc Body temperature maintenance acclimates in a winter-tenacious songbird [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-06T07:21:49-07:00 Maria Stager, Nathan R. Senner, Bret W. Tobalske, and Zachary A. ChevironFlexibility in heat generation and dissipation mechanisms provides endotherms the ability to match their thermoregulatory strategy with external demands. However, the degree to which these two mechanisms account for seasonal changes in body temperature regulation is little explored. Here we present novel data on the regulation of avian body temperature to investigate how birds alter mechanisms of heat production and heat conservation to deal with variation in ambient conditions. We subjected Dark-eyed Juncos (Junco hyemalis) to chronic cold acclimations of varying duration and subsequently quantified their metabolic rates, thermal conductance, and ability to maintain normothermia. Cold-acclimated birds adjusted traits related to both heat generation (increased summit metabolic rate) and heat conservation (decreased conductance) to improve their body temperature regulation. Increases in summit metabolic rate occurred rapidly, but plateaued after one week of cold exposure. In contrast, changes to conductance occurred only after nine weeks of cold exposure. Thus, the ability to maintain body temperature continued to improve throughout the experiment, but the mechanisms underlying this improvement changed through time. Our results demonstrate the ability of birds to adjust thermoregulatory strategies in response to thermal cues and reveal that birds may combine multiple responses to meet the specific demands of their environments. Full Article
nc Immunosenescence and its influence on reproduction in a long-lived vertebrate [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-06T07:21:49-07:00 Jessica M. Judson, Dawn M. Reding, and Anne M. BronikowskiImmunosenescence is a well-known phenomenon in mammal systems, but its relevance in other long-lived vertebrates is less understood. Further, the influence of age and reproductive effort on immune function in long-lived species can be challenging to assess, as long-term data are scarce and it is often difficult to sample the oldest age classes. We used the painted turtle (Chrysemys picta) to test hypotheses of immunosenescence and a trade-off between reproductive output and immune function in a population of a long-lived vertebrate that has been monitored for over 30 years. These long-term data are utilized to employ a unique approach of aging turtles with mark-recapture data and population-specific growth modeling to obtain more accurate estimates of age. We analyzed natural antibodies, lysis ability, and bactericidal competence in 126 individuals from 1 to 33 years of age captured during May and June in 2011. Older turtles exhibited greater natural antibody levels than young individuals across sexes. Young females with large clutches exhibited greater lysis ability, while older females with large clutches had decreased lysis ability, suggesting a trade-off between reproductive output and immune function conditional upon age. However, bactericidal competence increased later in the nesting season for older females. Our study rejects the hypothesis of immunosenescence in a long-lived turtle, despite evidence of actuarial and reproductive senescence in this population. Additionally, we detected mixed evidence for a trade-off between reproduction and immune health. Full Article
nc Physiological responses of wild zebra finches (Taeniopygia guttata) to heatwaves [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-06T07:21:49-07:00 Christine Elizabeth Cooper, Laura Leilani Hurley, Pierre Deviche, and Simon Charles GriffithDesert birds inhabit hot, dry environments that are becoming hotter and drier as a consequence of climate change. Extreme weather such as heatwaves can cause mass-mortality events that may significantly impact populations and species. There are currently insufficient data concerning physiological plasticity to inform models of species’ response to extreme events and develop mitigation strategies. Consequently, we examine here the physiological plasticity of a small desert bird in response to hot (mean maximum ambient temperature=42.7°C) and cooler (mean maximum ambient temperature=31.4°C) periods during a single Austral summer. We measured body mass, metabolic rate, evaporative water loss, and body temperature, along with blood parameters (corticosterone, glucose, and uric acid) of wild zebra finches (Taeniopygia guttata; Gould 1837) to assess their physiological state and determine the mechanisms by which they respond to heatwaves. Hot days were not significant stressors; they did not result in modification of baseline blood parameters or an inability to maintain body mass, provided drinking water was available. During heatwaves, finches shifted their thermoneutral zone to higher temperatures. They reduced metabolic heat production, evaporative water loss and wet thermal conductance, and increased hyperthermia, especially when exposed to high ambient temperature. A consideration of the significant physiological plasticity that we have demonstrated to achieve more favourable heat and water balance is essential for effectively modelling and planning for the impacts of climate change on biodiversity. Full Article
nc Renal, Cardiovascular, and Safety Outcomes of Canagliflozin by Baseline Kidney Function: A Secondary Analysis of the CREDENCE Randomized Trial By jasn.asnjournals.org Published On :: 2020-04-30T10:00:30-07:00 Background Canagliflozin reduced renal and cardiovascular events in people with type 2 diabetes in the CREDENCE trial. We assessed efficacy and safety of canagliflozin by initial estimated glomerular filtration rate (eGFR). Methods CREDENCE randomly assigned 4401 participants with an eGFR of 30 to <90 ml/min per 1.73 m2 and substantial albuminuria to canagliflozin 100 mg or placebo. We used Cox proportional hazards regression to analyze effects on renal and cardiovascular efficacy and safety outcomes within screening eGFR subgroups (30 to <45, 45 to <60, and 60 to <90 ml/min per 1.73 m2) and linear mixed effects models to analyze the effects on eGFR slope. Results At screening, 1313 (30%), 1279 (29%), and 1809 (41%) participants had an eGFR of 30 to <45, 45 to <60, and 60 to <90 ml/min per 1.73 m2, respectively. The relative benefits of canagliflozin for renal and cardiovascular outcomes appeared consistent among eGFR subgroups (all P interaction >0.11). Subgroups with lower eGFRs, who were at greater risk, exhibited larger absolute benefits for renal outcomes. Canagliflozin’s lack of effect on serious adverse events, amputations, and fractures appeared consistent among eGFR subgroups. In all subgroups, canagliflozin use led to an acute eGFR drop followed by relative stabilization of eGFR loss. Among those with an eGFR of 30 to <45 ml/min per 1.73 m2, canagliflozin led to an initial drop of 2.03 ml/min per 1.73 m2. Thereafter, decline in eGFR was slower in the canagliflozin versus placebo group (–1.72 versus –4.33 ml/min per 1.73 m2; between-group difference 2.61 ml/min per 1.73 m2). Conclusions Canagliflozin safely reduced the risk of renal and cardiovascular events, with consistent results across eGFR subgroups, including the subgroup initiating treatment with an eGFR of 30 to <45 ml/min per 1.73 m2. Absolute benefits for renal outcomes were greatest in subgroups with lower eGFR. Clinical Trial registry name and registration number Evaluation of the Effects of Canagliflozin on Renal and Cardiovascular Outcomes in Participants With Diabetic Nephropathy (CREDENCE), NCT02065791. Full Article
nc ARHGEF7 ({beta}-PIX) Is Required for the Maintenance of Podocyte Architecture and Glomerular Function By jasn.asnjournals.org Published On :: 2020-04-30T10:00:29-07:00 Background Previous studies showed that Cdc42, a member of the prototypical Rho family of small GTPases and a regulator of the actin cytoskeleton, is critical for the normal development and health of podocytes. However, upstream regulatory mechanisms for Cdc42 activity in podocytes are largely unknown. Methods We used a proximity-based ligation assay, BioID, to identify guanine nucleotide exchange factors that activate Cdc42 in immortalized human podocytes. We generated podocyte-specific ARHGEF7 (commonly known as β-PIX) knockout mice by crossing β-PIX floxed mice with Podocin-Cre mice. Using shRNA, we established cultured mouse podocytes with β-PIX knockdown and their controls. Results We identified β-PIX as a predominant guanine nucleotide exchange factor that interacts with Cdc42 in human podocytes. Podocyte-specific β-PIX knockout mice developed progressive proteinuria and kidney failure with global or segmental glomerulosclerosis in adulthood. Glomerular podocyte density gradually decreased in podocyte-specific β-PIX knockout mice, indicating podocyte loss. Compared with controls, glomeruli from podocyte-specific β-PIX knockout mice and cultured mouse podocytes with β-PIX knockdown exhibited significant reduction in Cdc42 activity. Loss of β-PIX promoted podocyte apoptosis, which was mediated by the reduced activity of the prosurvival transcriptional regulator Yes-associated protein. Conclusions These findings indicate that β-PIX is required for the maintenance of podocyte architecture and glomerular function via Cdc42 and its downstream Yes-associated protein activities. This appears to be the first evidence that a Rho–guanine nucleotide exchange factor plays a critical role in podocytes. Full Article
nc Tubule-Specific Mst1/2 Deficiency Induces CKD via YAP and Non-YAP Mechanisms By jasn.asnjournals.org Published On :: 2020-04-30T10:00:29-07:00 Background The serine/threonine kinases MST1 and MST2 are core components of the Hippo pathway, which has been found to be critically involved in embryonic kidney development. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the pathway’s main effectors. However, the biologic functions of the Hippo/YAP pathway in adult kidneys are not well understood, and the functional role of MST1 and MST2 in the kidney has not been studied. Methods We used immunohistochemistry to examine expression in mouse kidneys of MST1 and MST2, homologs of Hippo in Drosophila. We generated mice with tubule-specific double knockout of Mst1 and Mst2 or triple knockout of Mst1, Mst2, and Yap. PCR array and mouse inner medullary collecting duct cells were used to identify the primary target of Mst1/Mst2 deficiency. Results MST1 and MST2 were predominantly expressed in the tubular epithelial cells of adult kidneys. Deletion of Mst1/Mst2 in renal tubules increased activity of YAP but not TAZ. The kidneys of mutant mice showed progressive inflammation, tubular and glomerular damage, fibrosis, and functional impairment; these phenotypes were largely rescued by deletion of Yap in renal tubules. TNF-α expression was induced via both YAP-dependent and YAP-independent mechanisms, and TNF-α and YAP amplified the signaling activities of each other in the tubules of kidneys with double knockout of Mst1/Mst2. Conclusions Our findings show that tubular Mst1/Mst2 deficiency leads to CKD through both the YAP and non-YAP pathways and that tubular YAP activation induces renal fibrosis. The pathogenesis seems to involve the reciprocal stimulation of TNF-α and YAP signaling activities. Full Article
nc Atorvastatin Reduces In Vivo Fibrin Deposition and Macrophage Accumulation, and Improves Primary Patency Duration and Maturation of Murine Arteriovenous Fistula By jasn.asnjournals.org Published On :: 2020-04-30T10:00:29-07:00 Background Arteriovenous fistulas placed surgically for dialysis vascular access have a high primary failure rate resulting from excessive inward remodeling, medial fibrosis, and thrombosis. No clinically established pharmacologic or perisurgical therapies currently address this unmet need. Statins’ induction of multiple anti-inflammatory and antithrombotic effects suggests that these drugs might reduce arteriovenous fistula failure. Yet, the in vivo physiologic and molecular effects of statins on fistula patency and maturation remain poorly understood. Methods We randomized 108 C57Bl/6J mice to receive daily atorvastatin 1.14 mg/kg or PBS (control) starting 7 days before end-to-side carotid artery–jugular vein fistula creation and for up to 42 days after fistula creation. We then assessed longitudinally the effects of statin therapy on primary murine fistula patency and maturation. We concomitantly analyzed the in vivo arteriovenous fistula thrombogenic and inflammatory macrophage response to statin therapy, using the fibrin-targeted, near-infrared fluorescence molecular imaging agent FTP11-CyAm7 and dextranated, macrophage-avid nanoparticles CLIO-VT680. Results In vivo molecular-structural imaging demonstrated that atorvastatin significantly reduced fibrin deposition at day 7 and macrophage accumulation at days 7 and 14, findings supported by histopathologic and gene-expression analyses. Structurally, atorvastatin promoted favorable venous limb outward remodeling, preserved arteriovenous fistula blood flow, and prolonged primary arteriovenous fistula patency through day 42 (P<0.05 versus control for all measures). Conclusions These findings provide new in vivo evidence that statins improve experimental arteriovenous fistula patency and maturation, indicating that additional clinical evaluation of statin therapy in patients on dialysis undergoing arteriovenous fistula placement is warranted. Full Article
nc Muscleblind-like 2 controls the hypoxia response of cancer cells [ARTICLE] By rnajournal.cshlp.org Published On :: 2020-04-16T06:30:22-07:00 Hypoxia is a hallmark of solid cancers, supporting proliferation, angiogenesis, and escape from apoptosis. There is still limited understanding of how cancer cells adapt to hypoxic conditions and survive. We analyzed transcriptome changes of human lung and breast cancer cells under chronic hypoxia. Hypoxia induced highly concordant changes in transcript abundance, but divergent splicing responses, underlining the cell type-specificity of alternative splicing programs. While RNA-binding proteins were predominantly reduced, hypoxia specifically induced muscleblind-like protein 2 (MBNL2). Strikingly, MBNL2 induction was critical for hypoxia adaptation by controlling the transcript abundance of hypoxia response genes, such as vascular endothelial growth factor A (VEGFA). MBNL2 depletion reduced the proliferation and migration of cancer cells, demonstrating an important role of MBNL2 as cancer driver. Hypoxia control is specific for MBNL2 and not shared by its paralog MBNL1. Thus, our study revealed MBNL2 as central mediator of cancer cell responses to hypoxia, regulating the expression and alternative splicing of hypoxia-induced genes. Full Article
nc Visualizing the structure and motion of the long noncoding RNA HOTAIR [ARTICLE] By rnajournal.cshlp.org Published On :: 2020-04-16T06:30:22-07:00 Long noncoding RNA molecules (lncRNAs) are estimated to account for the majority of eukaryotic genomic transcripts, and have been associated with multiple diseases in humans. However, our understanding of their structure–function relationships is scarce, with structural evidence coming mostly from indirect biochemical approaches or computational predictions. Here we describe direct visualization of the lncRNA HOTAIR (HOx Transcript AntIsense RNA) using atomic force microscopy (AFM) in nucleus-like conditions at 37°. Our observations reveal that HOTAIR has a discernible, although flexible, shape. Fast AFM scanning enabled the quantification of the motion of HOTAIR, and provided visual evidence of physical interactions with genomic DNA segments. Our report provides a biologically plausible description of the anatomy and intrinsic properties of HOTAIR, and presents a framework for studying the structural biology of lncRNAs. Full Article
nc A single unidirectional piRNA cluster similar to the flamenco locus is the major source of EVE-derived transcription and small RNAs in Aedes aegypti mosquitoes [ARTICLE] By rnajournal.cshlp.org Published On :: 2020-04-16T06:30:22-07:00 Endogenous viral elements (EVEs) are found in many eukaryotic genomes. Despite considerable knowledge about genomic elements such as transposons (TEs) and retroviruses, we still lack information about nonretroviral EVEs. Aedes aegypti mosquitoes have a highly repetitive genome that is covered with EVEs. Here, we identified 129 nonretroviral EVEs in the AaegL5 version of the A. aegypti genome. These EVEs were significantly associated with TEs and preferentially located in repeat-rich clusters within intergenic regions. Genome-wide transcriptome analysis showed that most EVEs generated transcripts although only around 1.4% were sense RNAs. The majority of EVE transcription was antisense and correlated with the generation of EVE-derived small RNAs. A single genomic cluster of EVEs located in a 143 kb repetitive region in chromosome 2 contributed with 42% of antisense transcription and 45% of small RNAs derived from viral elements. This region was enriched for TE-EVE hybrids organized in the same coding strand. These generated a single long antisense transcript that correlated with the generation of phased primary PIWI-interacting RNAs (piRNAs). The putative promoter of this region had a conserved binding site for the transcription factor Cubitus interruptus, a key regulator of the flamenco locus in Drosophila melanogaster. Here, we have identified a single unidirectional piRNA cluster in the A. aegypti genome that is the major source of EVE transcription fueling the generation of antisense small RNAs in mosquitoes. We propose that this region is a flamenco-like locus in A. aegypti due to its relatedness to the major unidirectional piRNA cluster in Drosophila melanogaster. Full Article
nc RNAconTest: comparing tools for noncoding RNA multiple sequence alignment based on structural consistency [BIOINFORMATICS] By rnajournal.cshlp.org Published On :: 2020-04-16T06:30:22-07:00 The importance of noncoding RNA sequences has become increasingly clear over the past decade. New RNA families are often detected and analyzed using comparative methods based on multiple sequence alignments. Accordingly, a number of programs have been developed for aligning and deriving secondary structures from sets of RNA sequences. Yet, the best tools for these tasks remain unclear because existing benchmarks contain too few sequences belonging to only a small number of RNA families. RNAconTest (RNA consistency test) is a new benchmarking approach relying on the observation that secondary structure is often conserved across highly divergent RNA sequences from the same family. RNAconTest scores multiple sequence alignments based on the level of consistency among known secondary structures belonging to reference sequences in their output alignment. Similarly, consensus secondary structure predictions are scored according to their agreement with one or more known structures in a family. Comparing the performance of 10 popular alignment programs using RNAconTest revealed that DAFS, DECIPHER, LocARNA, and MAFFT created the most structurally consistent alignments. The best consensus secondary structure predictions were generated by DAFS and LocARNA (via RNAalifold). Many of the methods specific to noncoding RNAs exhibited poor scalability as the number or length of input sequences increased, and several programs displayed substantial declines in score as more sequences were aligned. Overall, RNAconTest provides a means of testing and improving tools for comparative RNA analysis, as well as highlighting the best available approaches. RNAconTest is available from the DECIPHER website (http://DECIPHER.codes/Downloads.html). Full Article
nc Post-Breast Cancer Radiotherapy Bronchiolitis Obliterans Organizing Pneumonia By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:Radiotherapy for breast cancer has been implicated in the development of bronchiolitis obliterans organizing pneumonia (BOOP). Patients may be asymptomatic or may have pulmonary and constitutional symptoms that are moderate or severe. Postradiotherapy BOOP usually develops during the 12 months after completion of radiotherapy and is characterized by ground-glass opacities in the radiation-exposed lung and frequently in the non-irradiated lung.METHODS:An updated literature search and review was performed to update the systematic review we conducted in 2014. Ten new publications were identified: 2 Japanese epidemiological studies, 1 Japanese case series study, 6 case reports, and 1 review article.RESULTS:The incidence of postradiotherapy BOOP was 1.4% in both Japanese epidemiological studies. Risk factors included increasing age, cigarette smoking, and increasing central lung distance. The case reports included 7 women who had breast cancer postradiation BOOP and 1 woman who had an ataxia telangiectasia mutated (ATM) gene mutation, which may increase radiation sensitivity.CONCLUSION:Postradiotherapy BOOP in women with breast cancer occurs at a rate of 1.0–3.0% and may occur in women with immune system dysfunction and genetic mutations. Full Article
nc An Interrater Reliability Study of Pulmonary Function Assessment With a Portable Spirometer By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:In this study, we aimed to validate the agreement between pulmonary function measurements obtained with a portable spirometer and measurements obtained with conventional spirometry in Chinese pediatric and adult populations.METHODS:Pulmonary function testing was performed to evaluate subjects enrolled at Shanghai Zhongshan Hospital (n = 104) and Shanghai Children's Medical Center (n = 103). The portable spirometers and conventional devices were applied to each subject with a 20-min quiescent period between each measurement. Pulmonary function parameters of FVC, FEV1, peak expiratory flow, maximum expiratory flow at 25%, 50%, and 75% of FVC (MEF25, MEF50, and MEF75, respectively), and FEV1/FVC% were compared with intraclass correlation and Bland-Altman methods.RESULTS:A satisfactory concordance of pulmonary function was observed between spirometry measurements obtained with portable versus conventional spirometers. Intraclass correlation indicated excellent reliability (>0.75) for all pulmonary function indicators in pediatric and adult subjects. Significant positive correlations of all variables measured with different spirometers were observed (all P < .001). No significant bias was observed in either group, although limits of agreement varied. Funnel effects were observed for peak expiratory flow in pediatric subjects and for FVC, FEV1, MEF50, and MEF25 in adult subjects.CONCLUSIONS:The portable spirometer is an alternative to the conventional device for the measurement of pulmonary function. Compared with the conventional device, the portable spirometer is expected to provide convenient, operational, and financial advantages. Full Article
nc Physiological Responses During Field Walking Tests in Adults with Bronchiectasis By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:Field walking tests are commonly used in patients with chronic pulmonary diseases for assessment of functional capacity. However, the physiological demands and magnitude of desaturation on 6-min walk test (6MWT), incremental shuttle walk test (ISWT), and endurance shuttle walk test (ESWT) have not been investigated in patients with bronchiectasis. The objective of this study was to compare the physiological responses and the magnitude of desaturation of subjects with bronchiectasis when performing the 6MWT, ISWT, and ESWT.METHODS:Thirty-two subjects underwent the 6MWT, ISWT, and ESWT on 3 different days. Pulmonary gas exchange, heart rate, and SpO2 were measured in all tests.RESULTS:There were no differences in the peak rate of oxygen uptake, ventilation, dyspnea, and leg fatigue between the tests. Equivalent cardiac demand (ie, heart rate at peak) was observed with the 6MWT (137 ± 21 beats/min) and the ESWT (142 ± 21 beats/min), but this was lower in the ISWT (135 ± 19 beats/min) compared to ESWT (P < .05). Most subjects achieved a vigorous exercise intensity (heart rate of 70–90% of predicted) in all tests. There was no difference in desaturation among the tests (6MWT: −6.8 ± 6.6%, ISWT: −6.1 ± 6.0%, and ESWT: −7.0 ± 5.4%).CONCLUSIONS:The 6MWT, ISWT, and ESWT induced similar physiological responses at the peak of exercise, eliciting a vigorous exercise intensity. The magnitude of desaturation was similar across tests. This means these tests can be used interchangeably for evaluation of exercise-induced desaturation. Full Article
nc Distribution of Ventilation Measured by Electrical Impedance Tomography in Critically Ill Children By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:Electrical impedance tomography (EIT) is a noninvasive, portable lung imaging technique that provides functional distribution of ventilation. We aimed to describe the relationship between the distribution of ventilation by mode of ventilation and level of oxygenation impairment in children who are critically ill. We also aimed to describe the safety of EIT application.METHODS:A prospective observational study of EIT images obtained from subjects in the pediatric ICU. Images were categorized by whether the subjects were on intermittent mandatory ventilation (IMV), continuous spontaneous ventilation, or no positive-pressure ventilation. Images were categorized by the level of oxygenation impairment when using SpO2/FIO2. Distribution of ventilation is described by the center of ventilation.RESULTS:Sixty-four images were obtained from 25 subjects. Forty-two images obtained during IMV with a mean ± SD center of ventilation of 55 ± 6%, 14 images during continuous spontaneous ventilation with a mean ± SD center of ventilation of 48.1 ± 11%, and 8 images during no positive-pressure ventilation with a mean ± SD center of ventilation of 47.5 ± 10%. Seventeen images obtained from subjects with moderate oxygenation impairment with a mean ± SD center of ventilation of 59.3 ± 1.9%, 12 with mild oxygenation impairment with a mean ± SD center of ventilation of 52.6 ± 2.3%, and 4 without oxygenation impairment with a mean ± SD center of ventilation of 48.3 ± 4%. There was more ventral distribution of ventilation with IMV versus continuous spontaneous ventilation (P = .009), with IMV versus no positive-pressure ventilation (P = .01) cohorts, and with moderate oxygenation impairment versus cohorts without oxygenation impairment (P = .009). There were no adverse events related to the placement and use of EIT in our study.CONCLUSIONS:Children who had worse oxygen impairment or who received controlled modes of ventilation had more ventral distribution of ventilation than those without oxygen impairment or the subjects who were spontaneously breathing. The ability of EIT to detect changes in the distribution of ventilation in real time may allow for distribution-targeted mechanical ventilation strategies to be deployed proactively; however, future studies are needed to determine the effectiveness of such a strategy. Full Article
nc Alteration in the Plasma Concentrations of Endogenous Organic Anion-Transporting Polypeptide 1B Biomarkers in Patients with Non-Small Cell Lung Cancer Treated with Paclitaxel [Articles] By dmd.aspetjournals.org Published On :: 2020-04-16T08:31:41-07:00 Paclitaxel has been considered to cause OATP1B-mediated drug-drug interactions at therapeutic doses; however, its clinical relevance has not been demonstrated. This study aimed to elucidate in vivo inhibition potency of paclitaxel against OATP1B1 and OATP1B3 using endogenous OATP1B biomarkers. Paclitaxel is an inhibitor of OATP1B1 and OATP1B3, with Ki of 0.579 ± 0.107 and 5.29 ± 3.87 μM, respectively. Preincubation potentiated its inhibitory effect on both OATP1B1 and OATP1B3, with Ki of 0.154 ± 0.031 and 0.624 ± 0.183 μM, respectively. Ten patients with non–small cell lung cancer who received 200 mg/m2 of paclitaxel by a 3-hour infusion were recruited. Plasma concentrations of 10 endogenous OATP1B biomarkers—namely, coproporphyrin I, coproporphyrin III, glycochenodeoxycholate-3-sulfate, glycochenodeoxycholate-3-glucuronide, glycodeoxycholate-3-sulfate, glycodeoxycholate-3-glucuronide, lithocholate-3-sulfate, glycolithocholate-3-sulfate, taurolithocholate-3-sulfate, and chenodeoxycholate-24-glucuronide—were determined in the patients with non–small cell lung cancer on the day before paclitaxel administration and after the end of paclitaxel infusion for 7 hours. Paclitaxel increased the area under the plasma concentration-time curve (AUC) of the endogenous biomarkers 2- to 4-fold, although a few patients did not show any increment in the AUC ratios of lithocholate-3-sulfate, glycolithocholate-3-sulfate, and taurolithocholate-3-sulfate. Therapeutic doses of paclitaxel for the treatment of non–small cell lung cancer (200 mg/m2) will cause significant OATP1B1 inhibition during and at the end of the infusion. This is the first demonstration that endogenous OATP1B biomarkers could serve as surrogate biomarkers in patients. SIGNIFICANCE STATEMENT Endogenous biomarkers can address practical and ethical issues in elucidating transporter-mediated drug-drug interaction (DDI) risks of anticancer drugs clinically. We could elucidate a significant increment of the plasma concentrations of endogenous OATP1B biomarkers after a 3-hour infusion (200 mg/m2) of paclitaxel, a time-dependent inhibitor of OATP1B, in patients with non–small cell lung cancer. The endogenous OATP1B biomarkers are useful to assess the possibility of OATP1B-mediated DDIs in patients and help in appropriately designing a dosing schedule to avoid the DDIs. Full Article
nc Correction to "Coordinated Regulation of UGT2B15 Expression by Long Noncoding RNA LINC00574 and hsa-miR-129-5p in HepaRG Cells" [Errata] By dmd.aspetjournals.org Published On :: 2020-04-09T08:02:00-07:00 Full Article
nc Evaluation of Quantitative Relationship Between Target Expression and Antibody-Drug Conjugate Exposure Inside Cancer Cells [Articles] By dmd.aspetjournals.org Published On :: 2020-04-09T08:02:00-07:00 Antibody-drug conjugates (ADCs) employ overexpressed cell surface antigens to deliver cytotoxic payloads inside cancer cells. However, the relationship between target expression and ADC efficacy remains ambiguous. In this manuscript, we have addressed a part of this ambiguity by quantitatively investigating the effect of antigen expression levels on ADC exposure within cancer cells. Trastuzumab-valine-citrulline-monomethyl auristatin E was used as a model ADC, and four different cell lines with diverse levels of human epidermal growth factor receptor 2 (HER2) expression were used as model cells. The pharmacokinetics (PK) of total trastuzumab, released monomethyl auristatin E (MMAE), and total MMAE were measured inside the cells and in the cell culture media following incubation with two different concentrations of ADC. In addition, target expression levels, target internalization rate, and cathepsin B and MDR1 protein concentrations were determined for each cell line. All the PK data were mathematically characterized using a cell-level systems PK model for ADC. It was found that SKBR-3, MDA-MB-453, MCF-7, and MDA-MB-468 cells had ~800,000, ~250,000, ~50,000, and ~10,000 HER2 receptors per cell, respectively. A strong linear relationship (R2 > 0.9) was observed between HER2 receptor count and released MMAE exposure inside the cancer cells. There was an inverse relationship found between HER2 expression level and internalization rate, and cathepsin B and multidrug resistance protein 1 (MDR1) expression level varied slightly among the cell lines. The PK model was able to simultaneously capture all the PK profiles reasonably well while estimating only two parameters. Our results demonstrate a strong quantitative relationship between antigen expression level and intracellular exposure of ADCs in cancer cells. SIGNIFICANCE STATEMENT In this manuscript, we have demonstrated a strong linear relationship between target expression level and antibody-drug conjugate (ADC) exposure inside cancer cells. We have also shown that this relationship can be accurately captured using the cell-level systems pharmacokinetics model developed for ADCs. Our results indirectly suggest that the lack of relationship between target expression and efficacy of ADC may stem from differences in the pharmacodynamic properties of cancer cells. Full Article
nc Interaction of the Brain-Selective Sulfotransferase SULT4A1 with Other Cytosolic Sulfotransferases: Effects on Protein Expression and Function [Articles] By dmd.aspetjournals.org Published On :: 2020-04-09T08:02:00-07:00 Sulfotransferase (SULT) 4A1 is a brain-selective sulfotransferase-like protein that has recently been shown to be essential for normal neuronal development in mice. In the present study, SULT4A1 was found to colocalize with SULT1A1/3 in human brain neurons. Using immunoprecipitation, SULT4A1 was shown to interact with both SULT1A1 and SULT1A3 when expressed in human cells. Mutation of the conserved dimerization motif located in the C terminus of the sulfotransferases prevented this interaction. Both ectopically expressed and endogenous SULT4A1 decreased SULT1A1/3 protein levels in neuronal cells, and this was also prevented by mutation of the dimerization motif. During differentiation of neuronal SH-SY5Y cells, there was a loss in SULT1A1/3 protein but an increase in SULT4A1 protein. This resulted in an increase in the toxicity of dopamine, a substrate for SULT1A3. Inhibition of SULT4A1 using small interference RNA abrogated the loss in SULT1A1/3 and reversed dopamine toxicity. These results show a reciprocal relationship between SULT4A1 and the other sulfotransferases, suggesting that it may act as a chaperone to control the expression of SULT1A1/3 in neuronal cells. SIGNIFICANCE STATEMENT The catalytically inactive sulfotransferase (SULT) 4A1 may regulate the function of other SULTs by interacting with them via a conserved dimerization motif. In neuron-like cells, SULT4A1 is able to modulate dopamine toxicity by interacting with SULT1A3, potentially decreasing the metabolism of dopamine. Full Article
nc Correction: Rational design, synthesis, and evaluation of uncharged, “smart” bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase. [Additions and Corrections] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 VOLUME 295 (2020) PAGES 4079–4092There was an error in the abstract. “The pyridinium cation hampers uptake of OPs into the central nervous system (CNS)” should read as “The pyridinium cation hampers uptake into the central nervous system (CNS).” Full Article
nc Correction: Histone demethylase KDM6B promotes epithelial-mesenchymal transition. [Additions and Corrections] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 VOLUME 287 (2012) PAGES 44508–44517In Fig. 1A, the wrong image for the control group was presented. The authors inadvertently cropped the control images in Fig. 1, A and E, from the same raw image. Fig. 1A has now been corrected and does not affect the results or conclusions of the work. The authors sincerely apologize for their mistake during figure preparation and for any inconvenience this may have caused readers.jbc;295/19/6781/F1F1F1Figure 1A. Full Article
nc Effects of deficiency in the RLBP1-encoded visual cycle protein CRALBP on visual dysfunction in humans and mice [Cell Biology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Mutations in retinaldehyde-binding protein 1 (RLBP1), encoding the visual cycle protein cellular retinaldehyde-binding protein (CRALBP), cause an autosomal recessive form of retinal degeneration. By binding to 11-cis-retinoid, CRALBP augments the isomerase activity of retinoid isomerohydrolase RPE65 (RPE65) and facilitates 11-cis-retinol oxidation to 11-cis-retinal. CRALBP also maintains the 11-cis configuration and protects against unwanted retinaldehyde activity. Studying a sibling pair that is compound heterozygous for mutations in RLBP1/CRALBP, here we expand the phenotype of affected individuals, elucidate a previously unreported phenotype in RLBP1/CRALBP carriers, and demonstrate consistencies between the affected individuals and Rlbp1/Cralbp−/− mice. In the RLBP1/CRALBP-affected individuals, nonrecordable rod-specific electroretinogram traces were recovered after prolonged dark adaptation. In ultrawide-field fundus images, we observed radially arranged puncta typical of RLBP1/CRALBP-associated disease. Spectral domain-optical coherence tomography (SD-OCT) revealed hyperreflective aberrations within photoreceptor-associated bands. In short-wavelength fundus autofluorescence (SW-AF) images, speckled hyperautofluorescence and mottling indicated macular involvement. In both the affected individuals and their asymptomatic carrier parents, reduced SW-AF intensities, measured as quantitative fundus autofluorescence (qAF), indicated chronic impairment in 11-cis-retinal availability and provided information on mutation severity. Hypertransmission of the SD-OCT signal into the choroid together with decreased near-infrared autofluorescence (NIR-AF) provided evidence for retinal pigment epithelial cell (RPE) involvement. In Rlbp1/Cralbp−/− mice, reduced 11-cis-retinal levels, qAF and NIR-AF intensities, and photoreceptor loss were consistent with the clinical presentation of the affected siblings. These findings indicate that RLBP1 mutations are associated with progressive disease involving RPE atrophy and photoreceptor cell degeneration. In asymptomatic carriers, qAF disclosed previously undetected visual cycle deficiency. Full Article
nc SUMOylation of the transcription factor ZFHX3 at Lys-2806 requires SAE1, UBC9, and PIAS2 and enhances its stability and function in cell proliferation [Protein Synthesis and Degradation] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 SUMOylation is a posttranslational modification (PTM) at a lysine residue and is crucial for the proper functions of many proteins, particularly of transcription factors, in various biological processes. Zinc finger homeobox 3 (ZFHX3), also known as AT motif-binding factor 1 (ATBF1), is a large transcription factor that is active in multiple pathological processes, including atrial fibrillation and carcinogenesis, and in circadian regulation and development. We have previously demonstrated that ZFHX3 is SUMOylated at three or more lysine residues. Here, we investigated which enzymes regulate ZFHX3 SUMOylation and whether SUMOylation modulates ZFHX3 stability and function. We found that SUMO1, SUMO2, and SUMO3 each are conjugated to ZFHX3. Multiple lysine residues in ZFHX3 were SUMOylated, but Lys-2806 was the major SUMOylation site, and we also found that it is highly conserved among ZFHX3 orthologs from different animal species. Using molecular analyses, we identified the enzymes that mediate ZFHX3 SUMOylation; these included SUMO1-activating enzyme subunit 1 (SAE1), an E1-activating enzyme; SUMO-conjugating enzyme UBC9 (UBC9), an E2-conjugating enzyme; and protein inhibitor of activated STAT2 (PIAS2), an E3 ligase. Multiple analyses established that both SUMO-specific peptidase 1 (SENP1) and SENP2 deSUMOylate ZFHX3. SUMOylation at Lys-2806 enhanced ZFHX3 stability by interfering with its ubiquitination and proteasomal degradation. Functionally, Lys-2806 SUMOylation enabled ZFHX3-mediated cell proliferation and xenograft tumor growth of the MDA-MB-231 breast cancer cell line. These findings reveal the enzymes involved in, and the functional consequences of, ZFHX3 SUMOylation, insights that may help shed light on ZFHX3's roles in various cellular and pathophysiological processes. Full Article
nc A flexible network of vimentin intermediate filaments promotes migration of amoeboid cancer cells through confined environments [Cell Biology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Tumor cells can spread to distant sites through their ability to switch between mesenchymal and amoeboid (bleb-based) migration. Because of this difference, inhibitors of metastasis must account for each migration mode. However, the role of vimentin in amoeboid migration has not been determined. Because amoeboid leader bleb–based migration (LBBM) occurs in confined spaces and vimentin is known to strongly influence cell-mechanical properties, we hypothesized that a flexible vimentin network is required for fast amoeboid migration. To this end, here we determined the precise role of the vimentin intermediate filament system in regulating the migration of amoeboid human cancer cells. Vimentin is a classic marker of epithelial-to-mesenchymal transition and is therefore an ideal target for a metastasis inhibitor. Using a previously developed polydimethylsiloxane slab–based approach to confine cells, RNAi-based vimentin silencing, vimentin overexpression, pharmacological treatments, and measurements of cell stiffness, we found that RNAi-mediated depletion of vimentin increases LBBM by ∼50% compared with control cells and that vimentin overexpression and simvastatin-induced vimentin bundling inhibit fast amoeboid migration and proliferation. Importantly, these effects were independent of changes in actomyosin contractility. Our results indicate that a flexible vimentin intermediate filament network promotes LBBM of amoeboid cancer cells in confined environments and that vimentin bundling perturbs cell-mechanical properties and inhibits the invasive properties of cancer cells. Full Article
nc The tethering function of mitofusin2 controls osteoclast differentiation by modulating the Ca2+-NFATc1 axis [A2;A22] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Dynamic regulation of the mitochondrial network by mitofusins (MFNs) modulates energy production, cell survival, and many intracellular signaling events, including calcium handling. However, the relative importance of specific mitochondrial functions and their dependence on MFNs vary greatly among cell types. Osteoclasts have many mitochondria, and increased mitochondrial biogenesis and oxidative phosphorylation enhance bone resorption, but little is known about the mitochondrial network or MFNs in osteoclasts. Because expression of each MFN isoform increases with osteoclastogenesis, we conditionally deleted MFN1 and MFN2 (double conditional KO (dcKO)) in murine osteoclast precursors, finding that this increased bone mass in young female mice and abolished osteoclast precursor differentiation into mature osteoclasts in vitro. Defective osteoclastogenesis was reversed by overexpression of MFN2 but not MFN1; therefore, we generated mice lacking only MFN2 in osteoclasts. MFN2-deficient female mice had increased bone mass at 1 year and resistance to Receptor Activator of NF-κB Ligand (RANKL)-induced osteolysis at 8 weeks. To explore whether MFN-mediated tethering or mitophagy is important for osteoclastogenesis, we overexpressed MFN2 variants defective in either function in dcKO precursors and found that, although mitophagy was dispensable for differentiation, tethering was required. Because the master osteoclastogenic transcriptional regulator nuclear factor of activated T cells 1 (NFATc1) is calcium-regulated, we assessed calcium release from the endoplasmic reticulum and store-operated calcium entry and found that the latter was blunted in dcKO cells. Restored osteoclast differentiation by expression of intact MFN2 or the mitophagy-defective variant was associated with normalization of store-operated calcium entry and NFATc1 levels, indicating that MFN2 controls mitochondrion–endoplasmic reticulum tethering in osteoclasts. Full Article
nc The major subunit of widespread competence pili exhibits a novel and conserved type IV pilin fold [Protein Structure and Folding] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Type IV filaments (T4F), which are helical assemblies of type IV pilins, constitute a superfamily of filamentous nanomachines virtually ubiquitous in prokaryotes that mediate a wide variety of functions. The competence (Com) pilus is a widespread T4F, mediating DNA uptake (the first step in natural transformation) in bacteria with one membrane (monoderms), an important mechanism of horizontal gene transfer. Here, we report the results of genomic, phylogenetic, and structural analyses of ComGC, the major pilin subunit of Com pili. By performing a global comparative analysis, we show that Com pili genes are virtually ubiquitous in Bacilli, a major monoderm class of Firmicutes. This also revealed that ComGC displays extensive sequence conservation, defining a monophyletic group among type IV pilins. We further report ComGC solution structures from two naturally competent human pathogens, Streptococcus sanguinis (ComGCSS) and Streptococcus pneumoniae (ComGCSP), revealing that this pilin displays extensive structural conservation. Strikingly, ComGCSS and ComGCSP exhibit a novel type IV pilin fold that is purely helical. Results from homology modeling analyses suggest that the unusual structure of ComGC is compatible with helical filament assembly. Because ComGC displays such a widespread distribution, these results have implications for hundreds of monoderm species. Full Article
nc Small-molecule agonists of the RET receptor tyrosine kinase activate biased trophic signals that are influenced by the presence of GFRa1 co-receptors [Neurobiology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Glial cell line–derived neurotrophic factor (GDNF) is a growth factor that regulates the health and function of neurons and other cells. GDNF binds to GDNF family receptor α1 (GFRa1), and the resulting complex activates the RET receptor tyrosine kinase and subsequent downstream signals. This feature restricts GDNF activity to systems in which GFRa1 and RET are both present, a scenario that may constrain GDNF breadth of action. Furthermore, this co-dependence precludes the use of GDNF as a tool to study a putative functional cross-talk between GFRa1 and RET. Here, using biochemical techniques, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and immunohistochemistry in murine cells, tissues, or retinal organotypic cultures, we report that a naphthoquinone/quinolinedione family of small molecules (Q compounds) acts as RET agonists. We found that, like GDNF, signaling through the parental compound Q121 is GFRa1-dependent. Structural modifications of Q121 generated analogs that activated RET irrespective of GFRa1 expression. We used these analogs to examine RET–GFRa1 interactions and show that GFRa1 can influence RET-mediated signaling and enhance or diminish AKT Ser/Thr kinase or extracellular signal-regulated kinase signaling in a biased manner. In a genetic mutant model of retinitis pigmentosa, a lead compound, Q525, afforded sustained RET activation and prevented photoreceptor neuron loss in the retina. This work uncovers key components of the dynamic relationships between RET and its GFRa co-receptor and provides RET agonist scaffolds for drug development. Full Article
nc Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adȷacent motif (PAM) sequences [Molecular Biophysics] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 The CRISPR/Cas9 nucleases have been widely applied for genome editing in various organisms. Cas9 nucleases complexed with a guide RNA (Cas9–gRNA) find their targets by scanning and interrogating the genomic DNA for sequences complementary to the gRNA. Recognition of the DNA target sequence requires a short protospacer adjacent motif (PAM) located outside this sequence. Given that the efficiency of target location may depend on the strength of interactions that promote target recognition, here we sought to compare affinities of different Cas9 nucleases for their cognate PAM sequences. To this end, we measured affinities of Cas9 nucleases from Streptococcus pyogenes, Staphylococcus aureus, and Francisella novicida complexed with guide RNAs (gRNAs) (SpCas9–gRNA, SaCas9–gRNA, and FnCas9–gRNA, respectively) and of three engineered SpCas9–gRNA variants with altered PAM specificities for short, PAM-containing DNA probes. We used a “beacon” assay that measures the relative affinities of DNA probes by determining their ability to competitively affect the rate of Cas9–gRNA binding to fluorescently labeled target DNA derivatives called “Cas9 beacons.” We observed significant differences in the affinities for cognate PAM sequences among the studied Cas9 enzymes. The relative affinities of SpCas9–gRNA and its engineered variants for canonical and suboptimal PAMs correlated with previous findings on the efficiency of these PAM sequences in genome editing. These findings suggest that high affinity of a Cas9 nuclease for its cognate PAM promotes higher genome-editing efficiency. Full Article
nc Inhibition of glycosphingolipid biosynthesis reverts multidrug resistance by differentially modulating ABC transporters in chronic myeloid leukemias [Cell Biology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Multidrug resistance (MDR) in cancer arises from cross-resistance to structurally- and functionally-divergent chemotherapeutic drugs. In particular, MDR is characterized by increased expression and activity of ATP-binding cassette (ABC) superfamily transporters. Sphingolipids are substrates of ABC proteins in cell signaling, membrane biosynthesis, and inflammation, for example, and their products can favor cancer progression. Glucosylceramide (GlcCer) is a ubiquitous glycosphingolipid (GSL) generated by glucosylceramide synthase, a key regulatory enzyme encoded by the UDP-glucose ceramide glucosyltransferase (UGCG) gene. Stressed cells increase de novo biosynthesis of ceramides, which return to sub-toxic levels after UGCG mediates incorporation into GlcCer. Given that cancer cells seem to mobilize UGCG and have increased GSL content for ceramide clearance, which ultimately contributes to chemotherapy failure, here we investigated how inhibition of GSL biosynthesis affects the MDR phenotype of chronic myeloid leukemias. We found that MDR is associated with higher UGCG expression and with a complex GSL profile. UGCG inhibition with the ceramide analog d-threo-1-(3,4,-ethylenedioxy)phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (EtDO-P4) greatly reduced GSL and monosialotetrahexosylganglioside levels, and co-treatment with standard chemotherapeutics sensitized cells to mitochondrial membrane potential loss and apoptosis. ABC subfamily B member 1 (ABCB1) expression was reduced, and ABCC-mediated efflux activity was modulated by competition with nonglycosylated ceramides. Consistently, inhibition of ABCC-mediated transport reduced the efflux of exogenous C6-ceramide. Overall, UGCG inhibition impaired the malignant glycophenotype of MDR leukemias, which typically overcomes drug resistance through distinct mechanisms. This work sheds light on the involvement of GSL in chemotherapy failure, and its findings suggest that targeted GSL modulation could help manage MDR leukemias. Full Article
nc Perturbation of phosphoglycerate kinase 1 (PGK1) only marginally affects glycolysis in cancer cells [Metabolism] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Phosphoglycerate kinase 1 (PGK1) plays important roles in glycolysis, yet its forward reaction kinetics are unknown, and its role especially in regulating cancer cell glycolysis is unclear. Here, we developed an enzyme assay to measure the kinetic parameters of the PGK1-catalyzed forward reaction. The Km values for 1,3-bisphosphoglyceric acid (1,3-BPG, the forward reaction substrate) were 4.36 μm (yeast PGK1) and 6.86 μm (human PKG1). The Km values for 3-phosphoglycerate (3-PG, the reverse reaction substrate and a serine precursor) were 146 μm (yeast PGK1) and 186 μm (human PGK1). The Vmax of the forward reaction was about 3.5- and 5.8-fold higher than that of the reverse reaction for the human and yeast enzymes, respectively. Consistently, the intracellular steady-state concentrations of 3-PG were between 180 and 550 μm in cancer cells, providing a basis for glycolysis to shuttle 3-PG to the serine synthesis pathway. Using siRNA-mediated PGK1-specific knockdown in five cancer cell lines derived from different tissues, along with titration of PGK1 in a cell-free glycolysis system, we found that the perturbation of PGK1 had no effect or only marginal effects on the glucose consumption and lactate generation. The PGK1 knockdown increased the concentrations of fructose 1,6-bisphosphate, dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, and 1,3-BPG in nearly equal proportions, controlled by the kinetic and thermodynamic states of glycolysis. We conclude that perturbation of PGK1 in cancer cells insignificantly affects the conversion of glucose to lactate in glycolysis. Full Article
nc Brain manganese and the balance between essential roles and neurotoxicity [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Manganese (Mn) is an essential micronutrient required for the normal development of many organs, including the brain. Although its roles as a cofactor in several enzymes and in maintaining optimal physiology are well-known, the overall biological functions of Mn are rather poorly understood. Alterations in body Mn status are associated with altered neuronal physiology and cognition in humans, and either overexposure or (more rarely) insufficiency can cause neurological dysfunction. The resultant balancing act can be viewed as a hormetic U-shaped relationship for biological Mn status and optimal brain health, with changes in the brain leading to physiological effects throughout the body and vice versa. This review discusses Mn homeostasis, biomarkers, molecular mechanisms of cellular transport, and neuropathological changes associated with disruptions of Mn homeostasis, especially in its excess, and identifies gaps in our understanding of the molecular and biochemical mechanisms underlying Mn homeostasis and neurotoxicity. Full Article
nc Thioredoxin regulates human mercaptopyruvate sulfurtransferase at physiologically-relevant concentrations [Enzymology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 3-Mercaptopyruvate sulfur transferase (MPST) catalyzes the desulfuration of 3-mercaptopyruvate (3-MP) and transfers sulfane sulfur from an enzyme-bound persulfide intermediate to thiophilic acceptors such as thioredoxin and cysteine. Hydrogen sulfide (H2S), a signaling molecule implicated in many physiological processes, can be released from the persulfide product of the MPST reaction. Two splice variants of MPST, differing by 20 amino acids at the N terminus, give rise to the cytosolic MPST1 and mitochondrial MPST2 isoforms. Here, we characterized the poorly-studied MPST1 variant and demonstrated that substitutions in its Ser–His–Asp triad, proposed to serve a general acid–base role, minimally affect catalytic activity. We estimated the 3-MP concentration in murine liver, kidney, and brain tissues, finding that it ranges from 0.4 μmol·kg−1 in brain to 1.4 μmol·kg−1 in kidney. We also show that N-acetylcysteine, a widely-used antioxidant, is a poor substrate for MPST and is unlikely to function as a thiophilic acceptor. Thioredoxin exhibits substrate inhibition, increasing the KM for 3-MP ∼15-fold compared with other sulfur acceptors. Kinetic simulations at physiologically-relevant substrate concentrations predicted that the proportion of sulfur transfer to thioredoxin increases ∼3.5-fold as its concentration decreases from 10 to 1 μm, whereas the total MPST reaction rate increases ∼7-fold. The simulations also predicted that cysteine is a quantitatively-significant sulfane sulfur acceptor, revealing MPST's potential to generate low-molecular-weight persulfides. We conclude that the MPST1 and MPST2 isoforms are kinetically indistinguishable and that thioredoxin modulates the MPST-catalyzed reaction in a physiologically-relevant concentration range. Full Article
nc The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis [Cell Biology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Sperm head shaping is a key event in spermiogenesis and is tightly controlled via the acrosome–manchette network. Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of Sad1 and UNC84 domain–containing (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain proteins and form conserved nuclear envelope bridges implicated in transducing mechanical forces from the manchette to sculpt sperm nuclei into a hook-like shape. However, the role of LINC complexes in sperm head shaping is still poorly understood. Here we assessed the role of SUN3, a testis-specific LINC component harboring a conserved SUN domain, in spermiogenesis. We show that CRISPR/Cas9-generated Sun3 knockout male mice are infertile, displaying drastically reduced sperm counts and a globozoospermia-like phenotype, including a missing, mislocalized, or fragmented acrosome, as well as multiple defects in sperm flagella. Further examination revealed that the sperm head abnormalities are apparent at step 9 and that the sperm nuclei fail to elongate because of the absence of manchette microtubules and perinuclear rings. These observations indicate that Sun3 deletion likely impairs the ability of the LINC complex to transduce the cytoskeletal force to the nuclear envelope, required for sperm head elongation. We also found that SUN3 interacts with SUN4 in mouse testes and that the level of SUN4 proteins is drastically reduced in Sun3-null mice. Altogether, our results indicate that SUN3 is essential for sperm head shaping and male fertility, providing molecular clues regarding the underlying pathology of the globozoospermia-like phenotype. Full Article
nc Targeting the polyamine pathway—“a means” to overcome chemoresistance in triple-negative breast cancer [Cell Biology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Triple-negative breast cancer (TNBC) is characterized by its aggressive biology, early metastatic spread, and poor survival outcomes. TNBC lacks expression of the targetable receptors found in other breast cancer subtypes, mandating use of cytotoxic chemotherapy. However, resistance to chemotherapy is a significant problem, encountered in about two-thirds of TNBC patients, and new strategies are needed to mitigate resistance. In this issue of the Journal of Biological Chemistry, Geck et al. report that TNBC cells are highly sensitive to inhibition of the de novo polyamine synthesis pathway and that inhibition of this pathway sensitizes cells to TNBC-relevant chemotherapy, uncovering new opportunities for addressing chemoresistance. Full Article
nc Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Treatment of patients with triple-negative breast cancer (TNBC) is limited by a lack of effective molecular therapies targeting this disease. Recent studies have identified metabolic alterations in cancer cells that can be targeted to improve responses to standard-of-care chemotherapy regimens. Using MDA-MB-468 and SUM-159PT TNBC cells, along with LC-MS/MS and HPLC metabolomics profiling, we found here that exposure of TNBC cells to the cytotoxic chemotherapy drugs cisplatin and doxorubicin alter arginine and polyamine metabolites. This alteration was because of a reduction in the levels and activity of a rate-limiting polyamine biosynthetic enzyme, ornithine decarboxylase (ODC). Using gene silencing and inhibitor treatments, we determined that the reduction in ODC was mediated by its negative regulator antizyme, targeting ODC to the proteasome for degradation. Treatment with the ODC inhibitor difluoromethylornithine (DFMO) sensitized TNBC cells to chemotherapy, but this was not observed in receptor-positive breast cancer cells. Moreover, TNBC cell lines had greater sensitivity to single-agent DFMO, and ODC levels were elevated in TNBC patient samples. The alterations in polyamine metabolism in response to chemotherapy, as well as DFMO-induced preferential sensitization of TNBC cells to chemotherapy, reported here suggest that ODC may be a targetable metabolic vulnerability in TNBC. Full Article
nc A single amino acid substitution uncouples catalysis and allostery in an essential biosynthetic enzyme in Mycobacterium tuberculosis [Enzymology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Allostery exploits the conformational dynamics of enzymes by triggering a shift in population ensembles toward functionally distinct conformational or dynamic states. Allostery extensively regulates the activities of key enzymes within biosynthetic pathways to meet metabolic demand for their end products. Here, we have examined a critical enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS), at the gateway to aromatic amino acid biosynthesis in Mycobacterium tuberculosis, which shows extremely complex dynamic allostery: three distinct aromatic amino acids jointly communicate occupancy to the active site via subtle changes in dynamics, enabling exquisite fine-tuning of delivery of these essential metabolites. Furthermore, this allosteric mechanism is co-opted by pathway branchpoint enzyme chorismate mutase upon complex formation. In this study, using statistical coupling analysis, site-directed mutagenesis, isothermal calorimetry, small-angle X-ray scattering, and X-ray crystallography analyses, we have pinpointed a critical node within the complex dynamic communication network responsible for this sophisticated allosteric machinery. Through a facile Gly to Pro substitution, we have altered backbone dynamics, completely severing the allosteric signal yet remarkably, generating a nonallosteric enzyme that retains full catalytic activity. We also identified a second residue of prime importance to the inter-enzyme communication with chorismate mutase. Our results reveal that highly complex dynamic allostery is surprisingly vulnerable and provide further insights into the intimate link between catalysis and allostery. Full Article
nc Case 1: Neonatal Trauma Following Motor Vehicle Collision in Pregnancy By neoreviews.aappublications.org Published On :: 2020-05-01T01:00:20-07:00 Full Article
nc Neonatal Management During the Coronavirus Disease (COVID-19) Outbreak: The Chinese Experience By neoreviews.aappublications.org Published On :: 2020-05-01T01:00:20-07:00 Full Article
nc Geology of the Chang 7 Member oil shale of the Yanchang Formation of the Ordos Basin in central north China By pg.lyellcollection.org Published On :: 2020-05-01T00:30:41-07:00 We present a review of the Chang 7 Member oil shale, which occurs in the middle–late Triassic Yanchang Formation of the Ordos Basin in central north China. The oil shale has a thickness of 28 m (average), an area of around 30 000 km2 and a Ladinian age. It is mainly brown-black to black in colour with a laminar structure. It is characterized by average values of 18 wt% TOC (total organic carbon), 8 wt% oil yield, a 8.35 MJ kg–1 calorific value, 400 kg t–1 hydrocarbon productivity and kerogen of type I–II1, showing a medium quality. On average, it comprises 49% clay minerals, 29% quartz, 16% feldspar and some iron oxides, which is close to the average mineral composition of global shale. The total SiO2 and Al2O3 comprise 63.69 wt% of the whole rock, indicating a medium ash type. The Sr/Ba is 0.33, the V/Ni is 7.8, the U/Th is 4.8 and the FeO/Fe2O3 is 0.5, indicating formation in a strongly reducing, freshwater or low-salinity sedimentary environment. Multilayered intermediate-acid tuff is developed in the basin, which may have promoted the formation of the oil shale. The Ordos Basin was formed during the northwards subduction of the Qinling oceanic plate during the Ladinian–Norian in a back-arc basin context. The oil shale of the Ordos Basin has a large potential for hydrocarbon generation. Supplementary material: Tables of oil-shale geochemical composition, proximate and organic matter analyses from the Chang 7 Member oil shale, the Ordos Basin, Central north China are available at https://doi.org/10.6084/m9.figshare.c.4411703 Full Article
nc Recycling of heterogeneous material in the subduction factory: evidence from the sedimentary melange of the Internal Ligurian Units, Italy By jgs.lyellcollection.org Published On :: 2020-05-04T02:10:48-07:00 In the Northern Apennine (Italy), the Internal Ligurian Units consist of Middle–Late Jurassic ophiolites covered by thick sedimentary deposits whose top is represented by the Early Paleocene Bocco Shale. This formation is characterized by mass-transport deposits interlayered with thin-bedded siliciclastic turbidites. The sedimentological and structural features of these mass-transport deposits reveal a long-lived history of recycling of heterogeneous material in a subduction setting. This history started with the frontal accretion of a fragment of oceanic crust into an accretionary prism whose lower slope was subsequently affected by tectonic erosion and consequent instability, leading to the production of mass-transport deposits and the transfer of material to the lower plate. These mass-transport deposits were subsequently underthrust and then again transferred to the base of the accretionary prism by coherent underplating, before their exhumation to the surface. The Bocco Shale is thus representative of a subduction setting where both accretionary and erosive events occurred, depending on changing boundary conditions. The reconstructed history for the Bocco Shale indicates that the sedimentary and gravitational processes both at the prism front and on the prism slope, possibly induced by alternating accretion and erosion events, are the most efficient mechanisms of lithological mixing and recycling in subduction margins. Full Article